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We discuss a number of unusual phenomena, which have been discovered recently in anisotropic

quasiparticle systems in superfluid 4He. These include the creation of high-energy phonons by a pulse of

low-energy phonons, the suprathermal distribution of high-energy phonons in long phonon pulses, the mesa

shape of the angular distribution of low-energy phonons, the creation of a «hot line» when two-phonon

pulses cross. The thermodynamic properties of anisotropic quasiparticle systems of He II are derived for all

degrees of anisotropy.
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67.40.Fd Dynamics of relaxation phenomena.
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1. Introduction

In superfluid helium, it is possible to create quasi-

particle systems which are strongly anisotropic (see, for

example, Refs. 1–3). A phonon pulse is a strongly aniso-

tropic quasiparticle system and can be created by a short

current pulse of duration t p ~ 10 7� –10 5� s in a heater

which is immersed in the superfluid helium. If the bulk

temperature is ~ 50 mK, then the influence of any ambient

excitations, on the pulse, can be neglected, and the quasi-

particle pulse moves in a «quasiparticle vacuum» from

the heater to the detector. The quasiparticle pulse has a net

momentum along the direction normal to the heater which

defines the anisotropy axis. In momentum space, the dis-

tribution of occupied states is strongly anisotropic and

this contrasts with isotropic quasiparticle systems which

have no net momentum and have no special direction in

momentum space.

We shall discuss a number of properties of anisotropic

quasiparticle systems. In quasiequilibrium they can be

characterized by a temperature T and a drift velocity u. In

isotropic systems u � 0, and in weakly anisotropic quasi-

particle systems the drift velocity u is much smaller than

the maximum drift velocity u max. These have been stu-

died for many years, but the properties of strongly aniso-

tropic quasiparticle systems, when the drift velocity u is

near the maximum drift velocity u max, have not been

considered until now.

2. Quasiparticle anisotropic systems of superfluid

helium: experiment and theory

Anisotropic pulses of quasiparticles in superfluid he-

lium are a unique physical system which show interesting

and unusual behavior. One of the most amazing phenom-

ena is the creation of high-energy phonons (h-phonons)

with energy � h ~ 10 K from a pulse of low-energy pho-

nons � � ~ 1 K (�-phonons).

When a single short current pulse is applied to the

heater, two-phonon pulses are detected by the bolometer

(see Fig. 1). The faster pulse is due to �-phonons, and the

slower one is due to h-phonons. Several experiments, in-

cluding quantum evaporation of 4He atoms from the free

surface of liquid helium [4], unambiguously prove that

h-phonons are produced in the bulk of liquid helium and

not in the heater. The heater injects mainly �-phonons

with short high-power pulses, but with long low-power

pulses, it is possible to create rotons. The theory that a

pulse of cold phonons can produce hot phonons has been

presented in Refs. 5, 6.
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The h-phonons are created from the �-phonons as the

system tries to reach equilibrium. The �-phonons in the

pulse interact by four-phonon processes (4pp) and create

pairs of low- and high-energy phonons. When the energy

of the high-energy phonon is greater than 10 K, it is very

stable because it cannot spontaneously decay, unlike

phonons with � � 10 K. The created h-phonons are lost

from the back of the �-phonon pulse due to the difference

in group velocities between the �- and h-phonon subsys-

tems (238 and � 189 m/s, respectively), and create the

second pulse. Whereas h-phonons interact weakly,

�-phonon system attains quasiequilibrium very quickly by

fast three-phonon processes (3pp). This causes the

�-phonons to move as a whole with velocity which is close

to a sound velocity c � 238 m/s. These phonons create the

first pulse.

The theory accounts for the high efficiency of the

h-phonon creation process, when up to ~ 50 per cent of the

initial �-phonon energy along the anisotropy axis can be

transformed to h-phonon energy. Using the exact drift

distribution function, the energy density lost by the �-

phonons, due to h-phonon creation, relative to the initial

�-phonon density �( )t , is shown as a function of time in

Fig. 2.

Measurements of time-resolved angular distribution of

�-phonons at several powers and pulse durations were

made to investigate their temporal and spatial develop-

ment [7]. Figure 3 shows angular distributions of

�-phonon signal, integrated over time, for several input

powers for t p � 50 ns. We can clearly see the constant

central region with decreasing outer regions, in the shape

of a mesa. The theory for the evolution of �-phonon pulses

has been developed for the case of cool pulses [8], when

h-phonon creation is neglected. In this case the evolution

along and transverse to the anisotropy axis, are investi-

gated assuming instantaneous relaxation of the �-phonon

system. This is a good approximation, because the charac-

teristic time of three-phonon processes is less then any

relevant time in the problem by two orders of magnitude.

It was shown that in spite of the dispersion of �-phonon

velocities, the �-phonon pulse moves as a whole with only

a slow change in shape. This is in contrast to the case of

noninteracting phonon pulse, which shows considerable

dispersion.

The theory for the transverse evolution of long pulse

gives the angular distribution for �-phonons due to lateral

spreading. As it has a round shape, we suggest that mesa

shape arises from h-phonon creation, the hotter central re-

gion of �-phonon pulse burns more quickly, whereas the
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Fig. 1. The measured phonon signal in liquid 4He showing the

�- and h-phonons produced by a single heater pulse: pulse du-

ration 10 7� s, heater power 10 mW/mm2, propagation length

15.7 mm, THe = 60 mK, at the saturated vapour pressure.
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Fig. 2. The energy density lost by the �-phonons, due to

h-phonon creation, relative to the initial �-phonon energy den-

sity �( )t , as a function of time, calculated with 	 � 002. for dif-

ferent values of T equal to 0.041 (1), 0.036 (2), 0.030 (3), and

0.025 (4) K.
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Fig. 3. The low-energy phonon signal, integrated over time,

versus heater angle for a range of heater powers is shown. The

pulse length is 50 ns, propagation time is 16.7 mm, and the

lines are guides for the eye.



cooler outer wings of �-phonon distribution are little

changed. This is due to the very strong dependence of the

h-phonon creation rate on �-phonon energy density. This

interpretation is supported by the fact that the sum of �-

and h-phonon angular distributions does not have a mesa

shape but is rounded. It should be noted that the whole

problem of the spatial evolution of the finite �-phonon

pulse, with h-phonon creation taken consistently into

account, is not yet theoretically solved.

Experiments have been performed in which two short

phonon pulses (phonon sheets) are forced to collide [9].

When the angle between the normals to the two sheets is

less then 13° , there is a strong interaction along the line

of intersection of the two sheets. The amplitude of the

�-phonon signal is greater than the sum of the signals from

pulses which move independently to the bolometer (see

Fig. 4). The interaction between the two sheets gets

weaker as the angle between the two normals is larger

then 13°. Also it has been found that the interaction is

negligible when the pressure is increased to 19 bar.

The theory of this phenomenon has been developed

[10]. If the time for the phonon pulses to cross the volume

of overlap of the two sheet is greater than the time for

phonon scattering 
 3pp , then phonons from the two pulses

have enough time to interact with each other. The angle

between the momenta of the two incoming phonons must

be small for three-phonon processes to occur. This inter-

action creates a new anisotropic system, the hot line,

which propagates along the total symmetry axis. The sig-

nals from the hot line are considerably greater than the

sum of the signals from pulses which move independently

to the bolometer (see Fig. 4) because energy is redirected,

from the shrinking phonon sheets, onto the bolometer in

the form of the hot line.

If the time for the phonon pulses to cross the volume of

overlap of the two sheets is less than the time for phonon

scattering 
 3pp , then the phonons from the two pulses

have no time to interact. This occurs when the angle be-

tween two sheets is large or when the 3pp scattering rate

is reduced by applying pressure. Then the hot line does

not form because the pulses pass through each other with-

out interaction.

In addition to the «dynamical phenomena» considered

above, there are very interesting «static properties», in

particular, thermodynamic properties of anisotropic

quasiparticle systems, which we shall discuss in the

following sections.

3. Quasiequilibrium distribution functions of

anisotropic quasiparticle systems

For isotropic quasiparticle systems there is no special

direction as all directions are equivalent. In this case the

distribution function depends on the modulus of momen-

tum p, and the momentum density of quasiparticles is

zero.

Anisotropic quasiparticle systems have a special direc-

tion in momentum space, and the distribution function n

depends on the vector of momentum p, and the momen-

tum density P,

P p p� �
�p

n
d p

( )
( )

3

32
�

,
(1)

is not zero (here � p is the region of integration in momen-

tum space).

The equilibrium distribution function of anisotropic

quasiparticle systems must make the collision integral

equal to zero. Also the momentum density should be non-

zero. These conditions are satisfied by the Bose–Einstein

distribution which is a function of the energy � �� ( )p of

quasiparticles, the temperature T and the drift velocity u:

n
p

k TB

( ) exp
( )

.p
p u

�
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�
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�
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�

�
�

�

�
�

�
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The distribution function n must be positive. As a re-

sult, the drift velocity u can change up to the minimum

value of the phase velocity of the quasiparticles, which

form the system:

0 � � �
�

�
��

�

�
��u u u

p

p
max max

min

( )
,, where

�
(3)

which is determined by the dependence of the quasi-

particle energy � on its momentum p.
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Fig. 4. The bolometer signals for the two separate pulses

(dash-dotted lines) and for the double pulse (solid line). The

sharp peak at 41 �s is due to the �-phonons; the signal after �
44 �s is due to h-phonons. The sum of the signals from the two

separate pulses is shown as the dotted line. The input pulses

are 100 ns and 6.3 mW.



The energy–momentum relation for superfluid helium

is well known (see, for example, [11]). It contains a pho-

non part � ph ( )p , which has a nearly linear dependence

and the roton part � r p( ), which can be described by a

parabola:

� � �
�ph and ,( ) ( ( )), ( )

( )
p cp p p

p p
r� � � �

�
1

2

0
2

� (4)

where the parameters for the roton spectrum are

� / .k B � 8 71K, p0 1 91/ .� � �
�1, � � 0 161 4. m , and m4

is the 4He atomic mass, at zero pressure.

The function�( )p , which describes the deviation from

linearity for phonon energy–momentum relation, is small

(| ( )|� p �� 1). Nevertheless it completely determines the

type and strength of phonon interactions. According to

[12], at low pressure, the function �( )p is positive for

phonons with momentum 0 � �p pc . This is the momen-

tum range of the �-phonons where the fastest scattering is

3pp. For small p the function�( ) ~p p 2. At cp k B� � 7 K

the function�( )p reaches its maximum value � 0 04. . After

that the function �( )p decreases and becomes zero at

p pc� . For p pc� , �( )p is negative, so 3pp is prohibited

by the conservation laws. In this case the fastest scatter-

ing is 4pp. This is the momentum condition for h-phon-

ons. At zero pressure cp kc B� �10 K. We shall use for

numerical calculations a convenient analytical approxi-

mation of the function �( )p introduced in Ref. 13.

It follows from Eqs. (3) and (4) for the pure phonon

system, that the minimum phase velocity u ph is close to

the sound velocity c. For the phonon–roton system, the

minimum phase velocity u pr � � / 0 is determined by the

roton minimum.

Besides condition (3), the drift velocity u must have a

value which makes the system thermodynamically stable.

The general thermodynamic inequality [14] that can be

applied to superfluid helium, determines the line of ther-

modynamic stability u u T� st ( ). We have derived (see

Refs. 13, 15) the stability curves for anisotropic phonon

and phonon–roton systems. The results are presented on

Fig. 5. At T � 0 the respective maximum drift velocity

coincides with the Landau critical velocity for the corres-

ponding quasiparticle system. The critical velocity de-

creases monotonically with increasing temperature, but

remains close to the u max for temperatures up to T ~ 1 K.

So, strongly anisotropic phonon (Fig. 5,a) and phonon–

roton systems (Fig. 5,b) are thermodynamically stable up

to high temperatures.

The quasiequilibrium state is realized in the pulse for

phonons whose time of relaxation 
 �ph ( ) is smaller than

the current pulse duration t p . Our calculations show [6]

that, in long sufficiently pulse (t p � �10 7 s), there are

phonons with energy up to 11 K in the quasiequilibrium

state. So the quasiequilibrium phonon system can be char-

acterized by the Bose–Einstein distribution (2) up to some

phonon momentum p f � 11 K.

Let us introduce  !� �1 cos , where the angle ! is bet-

ween the phonon momentum p and the anisotropy axis z,

directed along the vector of drift velocity u. Also, we in-

troduce the parameter of anisotropy 	 � � �1 u c. Then the

quasiequilibrium phonon distribution function nph can be

rewritten in a form useful for analyzis:

" #n p
cp

k T
p

B
ph ( , ) exp ( ) ( ) . 	 �  	� � � �

�

�
��

�

�
�� �

�

�
�

�

�
�

�

1 1

1

(5)

For the isotropic phonon system the parameter of ani-

sotropy	 is equal to unity, and the curly bracket, in the ex-

ponent of the expression (5), is close to unity. For the

strongly anisotropic phonon systems, the anisotropy pa-

rameter 	 is much less than unity. �( )p is also small and

the curly bracket, in the exponent is small, when  is

small. As a result, when the angle ! is small we have a
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Fig. 5. The maximum thermodynamically stable drift velocity

divided by umax for anisotropic phonon ( p f �11 K) (a) and for

anisotropic phonon–roton (b) as a function of temperature.



large number of phonons. This situation in momentum

space, is shown schematically on Fig. 6,a for typical val-

ues in experiments 	 � 0 04. and T � 0 05. K; p f �11 K.

In directions close to the anisotropy axis, there are a

large number of high-energy phonons with energy higher

than10 K, because for these phonons�( )p is negative and

cancels 	 in the distribution function (5). As a result, the

curly bracket, in the exponent, is smallest for h-phonons.

The large number of high-energy phonons in a long-

phonon pulse we call a suprathermal distribution (see

Refs. 16, 17).

In the direction perpendicular to the z axis there are the

same number of phonons as in the isotropic case at

T � 0 05. K. This is because, for the perpendicular direc-

tion,  is equal to unity and the curly bracket, in the distri-

bution function (5), is also close to unity. At this tempera-

ture, the number of phonons is very small. So we can have

the unusual situation in a strongly anisotropic phonon

system; the temperature of the pulse can be lower than the

temperature of superfluid helium into which it is injected,

but the pulse has a much larger number of phonons than

the helium.

We can define a cone in momentum space, which is cut

from the isotropic Bose distribution for phonons (see

Fig. 6,b):

n pc
c

cp k TB p
( , )

( )

/
!

$ ! !
�

�

�e 1

. (6)

If this cone has a cone angle ! c of 12° and the temperature

T p of the isotropic distribution is1 K, then the energy den-

sity and momentum density, is equal to the anisotropic

system defined by the typical values of 	 � 0 04. and

T � 0 05. K, which were mentioned above. The distribution

function nc , which includes the step function $, is the

Bose-cone approximation. Note that in this cone approxi-

mation, the suprathermal distribution is absent.

4. Energy and angular distributions of anisotropic

quasiparticle systems

Figure 7,a shows the momentum dependence for the

anisotropic phonon system with T � 0 05. K and 	 � 0 04. of

the energy distribution function E p( ), which is deter-

mined for all quasiequilibrium quasiparticle systems by

the following expression:

E p n p p d
k Tp

u

p pu

k T

B

B
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( )
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*ln exp

( )
1

� p pu

k TB

'

+'
. (7)

The energy distribution for the Bose function, when the

drift velocity is equal to zero, has one maximum, as is
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Fig. 6. The exact distribution function (a) is shown schemati-

cally for typical values in experiments 	 � 004. , T � 005. K and

p f �11 K along with the conus distribution function (b) with

cone angle !c � 12° and the temperature Tp �1 K.
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well known. For a strongly anisotropic phonon system,

with typical experimental values 	 and T , we see there are

two almost separate subsystems: a subsystem of low-en-

ergy phonons, which forms the first maximum and a sub-

system of high-energy phonons, which forms the second

maximum. The second maximum is caused by the nega-

tive value of dispersion function �( )p for h-phonons,

which cancels 	 in Eq. (5), and is the suprathermal distri-

bution.

In Fig. 7,b we see the momentum dependence of the

energy distribution function E p( ) for the anisotropic

phonon–roton system, which has the same energy and

momentum density as the phonon system in Fig. 7,a, but

now T � 0.3 K and u u r� � 0 63. . Even though the temper-

ature is low, the roton energy density is very high com-

pared to that in the isotropic phonon–roton system with

u � 0 and T � 0 3. K. Anisotropic phonon–roton systems

are realized when we have superfluid flow in narrow

channels where the normal component is at rest. Also they

should be formed in very long pulses in superfluid he-

lium.

It is natural to define the normalized angular distribu-

tion function, which characterizes the anisotropy of a

quasiparticle subsystem, as follows:

W

n p p dp

d n p p dp

p p
p

p

p

p1 2

1

2

1

2

2

0

2

2

� �

�

� �
( )

( )

( )

 

�  

 �  

,

,

. (8)

Figure 8,a shows angular distribution function

W p p1 2� ( ) for the �- and h-phonons, that form the first and

second maxima in Fig. 7,a. Note, that the h-phonons are

concentrated near the anisotropy axis, with a narrower an-

gular distribution than �-phonons. This behavior was ob-

served in [18].

In Fig. 8,b we see that phonons form a weakly aniso-

tropic background, while the roton subsystem is strongly

anisotropic. It is interesting to note that most of the en-

ergy is in the phonon subsystem, whereas the momentum

is mainly in the roton subsystem.

5. Thermodynamic functions of anisotropic

quasiparticle systems

The the rmodynamic func t ions o f the gas o f

quasiparticles can be found from the expression for the

free energy density F:

F k T
p

k T

d p
B

B

� � �
� ��

�
��

�

�
��

�

�
�

�

�
�� ln exp

( )

( )
1

2

3

3

�




p u

�

, (9)

which we obtain for all levels of anisotropy,

F
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u
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where

L x
nn

xn
, ,

( ) �
�

-
�. 1

1

e (11)

is a polylogarithmic function of ,th order.

At low values of x, which applies, for example, to a

strongly anisotropic roton gas, it is useful to rewrite the

series (11) as a series in powers of x:
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Fig. 8. a — Angular distribution function W p p1 2� ( )! for the �-

and h-phonons, that form the first and second maxima in

Fig. 7,a. b — Angular distribution function W p p1 2� ( )! for

phonon and roton subsystems, that form the first and second

maxima in Fig. 7,b.
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where � is Euler gamma-function;  is Riemann zeta-func-

tion.

The entropy density S, heat capacity density C, the mo-

mentum density P, and the density of the normal compo-

nent /n can be obtained by differentiating the free energy

density F:

S
F

T
C T

F

T

F P

u
n� �

0
0

� �
0

0
� �

0
0

�, , ,
2

2
P

u
/ . (13)

For differentiation, one should note that dL x dx, ( ) � �
� � �L x, 1( ).

Our calculation shows that the temperature depend-

ence of the thermodynamic functions for a strongly aniso-

tropic phonon system, is essentially different to the iso-

tropic case. The values of the thermodynamic functions,

of strongly anisotropic phonon systems, are much larger

than for the isotropic system at the same temperature, be-

cause they occupy different volumes in momentum space.

So, for example, at the same low temperature, the energy

density of a strongly anisotropic phonon system with ty-

pical value 	 is more than three orders larger than the iso-

tropic one. This fact is also illustrated by Fig. 9, where the

temperature dependence of entropy density S u uph st( )�
of the extremely anisotropic phonon system divided by

entropy density of isotropic phonon system (u � 0), is

shown.

The general expression (10) can be simplified for the

roton system:
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(14)

where we denote � �* ( ) /u p u u� � �0
2 2� .

It should be noted, that the third term in �* ( )u cannot

be omitted, because in highly anisotropic systems (at

u u� max) it can have a similar value to the difference of

the first and second terms.

If u u� max, then �* ( )u � 0, and the function L5 2 0� ( ) is

equal to  ( )5 2� . In this case, when the temperature de-

creases, the free energy of the strongly anisotropic roton

subsystem, decreases as T 5 2� , according to Eq. (14). At

the same time the free energy of the weakly anisotropic

phonon system, varies as T 4 [11].

This temperature dependence gives an unusual prop-

erty: in strongly anisotropic phonon–roton system of

superfluid helium, all the thermodynamic properties of

helium, at all temperatures, are determined by rotons. The

dominance of the rotons over the phonons can also be

seen in the Fig. 10, where the temperature dependence of

the roton entropy density S r divided by the phonon en-

tropy density S ph are presented on the line of thermody-

namic stability, and also for the isotropic systems where

u � 0. This behavior is in strong contrast to the isotropic

quasiparticle system, where rotons «freeze out» faster

than phonons, and so for temperatures less then 0.5 K the

roton contribution can be neglected.

Conclusion

We see that the strongly anisotropic phonon and

phonon–roton systems are thermodynamically stable over

a wide temperature range and can be realized in experi-
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ments. A number of unusual phenomena have been dis-

covered recently such as the phenomenon of the creation

of high-energy phonons by a pulse of low-energy phon-

ons; the suprathermal distribution of high-energy pho-

nons in long phonon pulses; the mesa shape angular dis-

tribution of low-energy phonons; the phenomenon of the

«hot line» formation, when two phonon pulses cross.

The theoretical results on anisotropic quasiparticle

systems considered in this paper are:

1. The energy distribution of a strongly anisotropic

phonon system has two maxima. The second maximum, is

formed by h-phonons, and it demonstrates a suprathermal

distribution, which is realized in long pulses.

2. The h-phonons are concentrated near the anisotropy

axis; they have smaller angular distribution than �-phon-

ons, which was observed in Ref. 18.

3. The values of the thermodynamic functions, of strong-

ly anisotropic phonon systems, are much larger than for

isotropic systems at the same temperature.

4. In the strongly anisotropic phonon–roton system, all

thermodynamic properties of helium, at all temperatures,

are determined by rotons.

5. The thermodynamic functions of strongly aniso-

tropic phonon and phonon–roton systems have unusual

temperature dependencies, which are essentially different

from the isotropic system.

Although a number of astonishing facts have already

been discovered, we think that the physics of anisotropic

quasiparticle systems will show more surprising phenom-

ena in the future.
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