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We study transport of spin-polarized electrons through a magnetic single-electron transistor (SET) in the

presence of an external magnetic field. Assuming the SET to have a nanometer-sized central island with a

single electron level, we find that the zero-frequency shot noise diverges as the on-dot spin-flip rate goes to

zero, provided the source and drain leads are completely polarized in the same direction. We present an ana-

lytical expression for the low-frequency super-poissonian shot noise that allows one to specify the necessary

conditions for the experimental observation of the phenomenon.

PACS: 73.23.–b Electronic transport in mesoscopic systems;
73.40.Gk Tunneling (for tunneling in quantum Hall effects).

Keywords: single-electron transistor, spin-flip time, shot-noise, Coulumb blockade, spin-polarized electrons.

Confinement of electrons to a quantum of dot nanometer

size crucially reduces the spin relaxation frequency [1] and

allows for the implementation of various schemes where

quantum information is carried by the spin of electrons [2–5].

Experimental evidence that the spin-flip time in quantum dots

can reach the millisecond range has recently been obtained*

[6,8]. Such long spin relaxation times is obviously an impor-

tant prerequisite for spintronics-based quantum information

processing. At the same time, the advantage coming from the

extremely weak spin relaxation might obviously be an obsta-

cle for its experimental study, demanding measurements of

extremely high accuracy and sensitivity [6]. This is why any

phenomenon that is exceedingly sensitive exclusively to spin

relaxation should be of considerable practical importance.

The Zeeman splitting of energy levels is the phenomenon tra-

ditionally invoked to discriminate between contributions

from different electronic spin-states to observable physical

properties. Today, a number of different methods are used to

create nonequilibrium spin populations and to study how they

relax towards equilibrium. Transport measurements, which

usually provide an excellent tool for such studies, are limited

when it comes to observing very weak spin relaxation by the

necessity to measure the extremely small electrical currents

that result from the electrons being trapped for long times on

the dot [6]. A large sensitivity to slow spin relaxation rates

therefore requires a careful choice of observable. Recently,

numerical simulations have revealed that shot noise in sin-

gle-electron transistor (SET) structures, which significantly

increases with the spin polarization of the tunneling electrons

[7,9], could be such an observable. In this paper we present

an analytical study of this phenomenon where we show that

spin-dependent tunneling in combination with the Coulomb
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* The effect of intradot spin-flip scattering on shot noise was recently studied in Ref. 7. An increased shot-noise was reported

for tunneling of polarized electrons. However, this effect was analyzed only numerically, which does not allow the results to

be used as a tool for spectroscopy.



blockade phenomenon in SETs results in shot noise charac-

terized by a giant super-poissonian Fano factor at low fre-

quencies. Consequently low frequency noise measurements

provides a tool for detecting slow spin flip rates in a quantum

dot.

Below we will study the transport of spin polarized

electrons through a quantum using dot the SET geometry

represented in Fig. 1. Two magnetic leads, biased by a

voltage V serve as source and drain for the spin polarized

electrons, while two electronic states with different spin

orientation are available on the dot. An external magnetic

field oriented perpendicular to the magnetization of the

leads (which we assume are parallel) induces coherent

spin-flip processes on the dot.

To study the electronic transport through this system

we will use the Hamiltonian ��, where

� � � � � ,� � � � �� � � �l d T env (1)
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Here ��l describes noninteracting electrons in the leads

and a a� � � � � �, ,
†

, ,( ) is the creation (annihilation) operator

for electrons in lead � � ( , )L R with energy �� � �, , and spin

projection � � 	 
( , ). The electron density of states �
� in

each lead is assumed to be independent of energy but

strongly dependent on spin direction. The electrons in

each lead are held at a constant electrochemical potential

�L R FE eV/, � � 2, where e is the charge of an electron,

V � 0 is the bias voltage, and EF is the Fermi energy of the

ferromagnetic metal. The Hamiltonian ��d describes elec-

tronic states in the dot and their coupling to the external

magnetic field H � ( , , )H Hx z0 ; � is the Bohr magneton

and intra-dot electron correlations are characterized by

the Coulomb energy U ; the operator a a� �
† ( ) creates (de-

stroys) an electron with spin � and �� �
i

, ' are Pauli matrix

elements (i x y z� , , ). The third term in (1) represents

spin-conserving tunneling of electrons between dot and

leads while the last term describes the interaction between

dot-electrons and the magnetic environment.

In this paper we will study the case when the bias volt-

age V is much smaller than both the spacing between spa-

tially quantized levels on the dot and the Coulomb energy

U , but much larger than the Zeeman energy � ��H z (see

Fig. 1,a). This means that only one electron may be accu-

mulated on the dot. In addition, we will focus on the situa-

tion when the electrons on the leads are almost com-

pletely polarized in the same direction (for definiteness in

the «up» direction): �  � � �� �
 	/ � � �� � �
�
 	 �� �/ 1 (

� �2 1 2� �
�

�� T ).

The two phenomena of electron spin-polarization in the

leads and Coulomb blockade of double electron occupancy

on the dot determine the current that flows through the

system. To understand qualitatively the peculiarities of

electronic transport in this situation we consider the limi-

ting case when the electrons are completely polarized

(� �L R� � 0). In this case a transition of the spin of the dot

electron from «up» to «down» traps the electron on the dot,

and prevents a current to flow through the system (since

the Coulomb blockade prevents another, spin-up, electron

to enter the dot). This is why the temporal variation of the

current strictly follows the switching of electronic spin, al-

lowing for such events to be counted. A schematic picture

of the current fluctuations �I I I( ) ( )t t� – , where I is the av-

erage value of the current, is shown in Fig. 1,b. It is impor-

tant that the current-current correlation function S( )0 �
� � �� ��dt t� �� �I I( ) (0) , where �� ��� denotes a statistical aver-

age, serves as a measure of the time �
 during which the

electron is trapped on the dot in the spin-down state — the

state that prevents a current to flow through the system.

Two possible channels for the escape of the electron from

this state should be identified: a) a stochastic spin-flip pro-

cess caused by the interaction with the environment and

characterized by the spin relaxation time � �rel � �
1

1 and b) a

magnetic-field induced coherent transition to the spin-up
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Fig. 1. a — Sketch of the nano-magnetic SET device discussed

in the text: a quantum dot, modelled as a single spin-degenerate

electron level, is coupled to two leads with parallel magnetiza-

tion. The tunneling rates �
L R( )

( )	 
 describe the coupling between

and dot electrodes, while the external magnetic field Hx induces

flips between the spin-up and the spin-down state on the dot. The

difference � �L R eV� � in electrochemical potential of the leads

is due to a bias voltage V . b — Schematic picture of the current

fluctuations in the case when the leads are completely polarized

in the same direction (I is the average current).



s t a t e . T h e l a t t e r i s c h a r a c t e r i z e d b y t h e r a t e

 �H xH / /� ( ) ( )2 2� � �, w h e r e � ( ) ( )� �� �2 /

� � � 	 �Im ( )2 1� � �i R is the density of spin-up states on the

dot. Therefore � � � � �( )1
1

H and S( )0 may be estimated as

S H( ) ( )0 1
1� � ��  .

If H x = 0 we have H � 0 and one can see from the above

expression that the zero-frequency shot noise is a diver-

gent function of the spin relaxation rate reaching giant

values for slow enough relaxation. Below we will show

that the average current, on the other hand, does not at all

depend on the external magnetic field and the internal

spin relaxation rate if � �	 
� � 0. Hence a simultaneous

measurement of both the current and the noise for oppo-

site polarities of the bias voltage allows one to deduce the

value of the spin-flip rate.

In order to quantitatively investigate the current and

shot noise in the SET structure described above one can

use the quantum master equation for the reduced density

matrix � ( ) �( )� �r lt t� Tr that describes the state of the dot ( ��
is the total density matrix and Trl denotes a trace over all

electronic states in the leads).

The operator � ( )�r t acts on the Fock space of the quantum

dot, which in the Coulomb blockade regime is spanned by

the three basis vectors | ,0� | | , | |
† †	� � � 
� � �
	 


a a0 0 . In this ba-

sis � ( )�r t is a 3 3� matrix. The diagonal element � �0 0| � ( )|�r t

represents the probability for the dot to be unoccupied, the

singly occupied dot is described by the 2 2� matrix block

� ( � ) | � | ', '� � � � �� �� � � �r r , while nondiagonal elements

� �� �| � |r 0 equal zero.

The time evolution of the probability � and the density

matrix �� is determined by a system of equations that de-

scribe the coupled processes of stochastic charge transfer

and coherent spin dynamics [10] (below we will take

e � �� 1),

�

�
� � �

�
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where � ( ) � ( )� � � � �� � � � � �� � � �	 
 	 
I/ /z2 2. The linear

operator �� �{�} describes the spin relaxation in a singly

occupied dot caused by interaction with the environment.

In the general case it can be written in the form

�� � � � � � % � � � � �{�} � [ � � ) �] � � )�� � � �
&
�1 2z z i

i z

iTr ( Tr Tr ( . (4)

Here �1 and � 2 are, respectively, the spin relaxation rate

and the spin dephasing rate, while the coefficient % �
� tanh( ) (' '�/2 is the inverse temperature) characterizes

the difference in the populations of spin-up and spin-

down states if the system is in equilibrium with the envi-

ronment. Here we will consider the case when the thermal

energy is much higher than the Zeeman splitting (but

lower than the bias voltage) and take % � 0. The spin relax-

ation rate �1 defines the rate of direct spin-flip transitions

induced by the environment and as a result has a

first-hand influence on the low-frequency shot noise. In

contrast, the dephasing rate � 2, which controls the decay

of nondiagonal elements of the reduced density matrix,

affects spin-flip processes only indirectly. As we will see

below, it only renormalizes the effect of the external mag-

netic field.

Within our approach the average current, I I� �� �� ��

� i H N R[ � , � ], where �N R is the electron number operator in

the right lead, can be calculated from the formula [10]

I R� Tr { � � },� �0 (5)

where ( , � )� �0 0 represent the stationary solution of

Eq. (3). In our further considerations we will use the for-

malism developed in Ref. 11. Following this approach it

is convenient to rewrite Eqs. (5) in the form

� �

�
� �

|
|

(
(

t
L , (6)

w h e r e t h e c o l u m n v e c t o r |(� i s g i v e n b y |(� �
� � �		 

 	
 
	( , , , , ) |� � � � � (T T , while the matrix L is

determined by Eqs. (3). In this notation the formula for

the average current, Eq. (5), takes the form

I T� � �( (0 0| |J , (7)

were |( 0� obeys equation

L| .( 0 0� � . (8)

By this means the elements of the steady-state density ma-

trix, the vector | ( , , , , )( 0 1 1 1 0 0T T� � , satisfy the equation

L
T T|( 0 0� � , and J is a «current» matrix that has only two

nonzero elements � , �J JR R12 13� �	 
� � . We solved Eq. (8)

and found the following expression for the average cur-

rent when �� �� 1:
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Analyzing the above expression one finds that in the ab-

sence of spin-flip processes ( , )H x � �0 01� the current

vanishes if �R 0 0 . Indeed, under such conditions the

electron can not leave the spin-down state and the current

is blocked forever. Then, from (9) it follows that with

identical leads ( )� � �L R� � the current is equal to

I O0 � ( )� and does not depend (to leading order in � on the
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magnetic field, relaxation rates or Zeeman splitting. Be-

low we will study the shot noise for this very case.

The noise power spectrum is defined as twice the Fou-

rier transform of the current-current correlation function

(see Ref. 12 for a review):

S dt i t( )1 1� �2 e [ �( ) � ]�� �� �I t I I(0) 2 . (10)

Within our formalism the correlation function �� ��� �I I(t) (0)

can be expressed in the form [11]

�� �� � � � � ��( ) �( ) ( ) ( ) | |I t I t t tT0 0 0I ( )� 2 ( (JP J

� � � �2 ( (( ) | (– ) |t tT
0 0JP J , (11)

where P L( )t t� exp is an evolution operator. The first

term on the right hand side of Eq. (11) is the self-correla-

tion term.

Using Eqs. (10) and (11) one can rewrite the formula

for the shot noise in terms of the eigenvalues 3 i of the

matrices L L, T and their associated eigenvectors | ,3 i �
|3 i

T �. Taking into account that the eigenvalue, 3 0 say, that

corresponds to the steady-state solution of Eq. (8), is zero

(accordingly | | , | | )3 ( 3 (0 0 0 0� � � � � �T T , we get

S I Ti

ii

i( ) ( , )1
3

1 3
3 3� �

�&
�2

4

2 2
0

0 ,

T i
i i

i i

( , )
| | | |

|
3 3

3 3 3 3

3 30
0 0�

� � � �

� �

J J
.

(12)

The eigenvalues 3 i are given by zeros of the characteris-

tic polynomial P P( ) | | ( )3 3 3 3� �Det | L – I | 0 . We have

found that in the general case (with arbitrary values of the

parameters � �, ,i xH and � ) the polynomial P0( )3 has the

form

P R0 2
2 22( ) [( ) ]3 3 �� � � � �� �

� � � � � �[ ( ) ]3 3 �2
12 � �L R D

� � � � �4 2 22
1( ) ( ) ( )� 3 � 3H x R L R� � � , (13)

where

D L R R� � � �	 	 	( ) ( )2 1 1� � �� � �� and �� � �� �	 �( )1 2/ .

From the above expression it follows that one of the

roots of the characteristic polynomial 31 vanishes like

3 � �1
2

1�� � �	A hR� ( ~ ) (14)

if � �, 1 and H x go to zero;

A /L R L R� � � 4	 	 	 	( ) ( ) ( , )2 12� � � �

is a dimensionless coefficient of order one.

As a consequence, the correlation function S( )0 may

according to Eq. (12) diverge and exhibit a giant super-

poissonian behavior for small values of these parameters.

By calculating the «transition» coefficient T ( , )3 30 1 , in the

case of strongly polarized leads ( )� �� 1 and small spin-flip

frequency

 �sf R Rh� � ��	 	� �2
1 (15)

we get (to leading order) the following expression for the

low-frequency Fano factor F S / I( ) ( )1 1� 2 *

F A
A

R
sf R

sf R

( )
( )

1 /
 �

1  �
� 2 2 2

2 2 2
�

�

�

	
	

	

�

� �
. (16)

Equation (16), together with (9) and (15), is the main

result of our considerations. First, from these equations it

follows that the spin dephasing rate � 2, in contrast to the

spin relaxation rate �1, only influences the contribution of

the transverse magnetic field to the spin-flip process, and

that its effect, according to Eq. (9), is strongly restricted

by the condition 4 1� 5 	�R . Then from (16) one can see

that the zero-frequency shot noise diverges as 1/ sf dem-

onstrating a high sensitivity to the intensity of spin-flip

processes, if the leads are completely polarized ( )� � 0 . If

the polarization of the leads is not complete, the spin-flip

processes significantly affect the shot noise only if the

spin-flip frequency  sf is not much smaller than the «mi-

nority» tunneling rate �R

 :

� �R x RH /H	 	� �( )0
2

1� � .

This brings an important restriction on the use of shot

noise measurements as a tool for probing spin-flip pro-

cesses. Indeed, from the above inequality it follows that

in order to increase the sensitivity of shot noise to spin

flips (in particular to the spin relaxation rate �1) one has to

diminish either � (by increasing the polarization in the

leads) or the «majority» tunneling rate �R
	 . However, the

latter alternative is not preferable, since it decreases the

value of the current.

If there is no transverse magnetic field the spin-flip

frequency coincides with the spin-relaxation rate �1. For

this case we have obtained the following expression for

F( )1 :

F
D

( )1
� 1 �

1 � 1
� �

�

� �
1 1

2
2

4
3

2 2
, (17)
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polarized. Hence the low-frequency Fano factor completely characterizes the behavior of the low-frequency shot noise.



where

�1 2� �	 	 
 
( )� � � �L R L R ,

� � � �2 1 18 2� � � � �	 
� � � � � �L L R R R R D( ) ( ) ,

� �3 1
24 2� � � �( )� �L R D ,

which is valid for any values of 1 �
�, � , and �1. One can

easily check that this expression is in agreement with Eq.

(16). From Eq. (17), as well from Eq. (16), it follows that

the zero-frequency Fano factor diverges as 1 1/ � when the

relaxation rate goes to zero if �, H x � 0, i.e., if the leads

are completely polarized and the transverse magnetic

field is zero. On the other hand, if the leads are fully po-

larized and spin-flip processes are absent ( )�1 0� , the

Fano factor F( )0 should coincide with the one that has

been calculated for spinless electrons [11]. The correct

value of the shot noise at zero frequency may be obtained

from Eq. (17) if one takes the appropriate limits in the

correct order, so that

F F( , ) lim lim ( , )1 � 1 �
1 �

� � �
0 0

0 01
0 0

1
1

.

To understand this ordering one has to take into account

that an infinite time is needed to measure zero-frequency

noise, while in a real experimental situation the frequency

under consideration can not be smaller than the inverse

observation time.

We have also calculated the zero-frequency shot noise

in the limit of a strong transverse magnetic field,

(H x
2 1�� . It turns out that only one term in the sum (12)

gives a nonvanishing contribution to the shot-noise in this

limit; the corresponding root of the characteristic poly-

nomial (13) has the asymptotic value

3 h � � � �( ) ( )2 1 2� �L R xO / H( .

Calculating the «transition» coefficient T h( , )3 30 we ob-

tained the following expression for the zero-frequency

Fano factor:

F L R

L R

( )
( )

0 1
4

2 2
� �

�

� �

� �
. (18)

From this expression one can see that in the limit of a

strong magnetic field the zero-frequency shot noise, like

the average current, does not depend on the spin-flip rate,

in particular not the rate due to the magnetic field.

In conclusion, we have studied transport of spin-polar-

ized electrons through a magnetic SET in the presence of

an external magnetic field. Assuming the SET to have a

nanometer-sized central island with a single-electron

level we found that the zero-frequency shot noise di-

verges as the rate for spin-flips on the goes dot to zero if

leads are completely polarized in the same direction. We

presented an analytical expression for the low-frequency

super-poissonian shot noise and discussed the conditions

required for the experimental observation of such an en-

hancement of the low-frequency noise.
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