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Recent demonstrations of macroscopic quantum coherence in Josephson junction based electronic cir-

cuits opened entirely new dimension for the research and applications in the established field of Josephson

electronics. In this article we discuss basic Josephson circuits for qubit applications, methods of quantum

description of these circuits, circuit solutions for qubit couplings. Principles of manipulation and readout of

superconducting qubits are reviewed and illustrated with recent experiments with various qubit types.
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1. Introduction

Practical implementation of quantum computation algo-

rithms [1,2] requires development of a special kind of hard-

ware, which can broadly be described as a controllable

many-body quantum network. The subject of this article —

superconducting electrical circuits containing Josephson

junctions may serve as elementary blocks of such a network

— quantum bits. The possibility to achieve quantum coher-

ence in macroscopic Josephson junction (JJ) circuits envi-

sioned by Leggett in the beginning of 1980s [3–5] came to

reality almost 20 years later in the experimental demonstra-

tion of coherent quantum oscillation in a single Cooper pair

box by Nakamura et al. [6]. It should be fair to say that this

breakthrough experiment represents the «tip of the iceberg»:

it rests on a huge volume of advanced research on Josephson

junctions and circuits developed during the last 25 years.

Some of this work has concerned fundamental research on

Josephson junctions and superconducting quantum interfer-

ometers (SQUIDs) aimed at understanding macroscopic

quantum tunneling (MQT) [7–9], and macroscopic quantum

coherence (MQC) [5,10], providing the foundation of the

persistent current flux qubit [11–13], and the JJ phase qubit

[14–16]. However, there has also been intense research

aimed at developing superconducting flux-based digital

electronics and computers. Moreover, in the 1990’s, based

on the Coulomb blockade theory for the Josephson tunnel-

ing [17,18], the single Cooper pair box (SCB) was devel-

oped experimentally [19,20], and used to demonstrate the

quantization of Cooper pairs on a small superconducting is-

land, which is the foundation of the charge qubit [6,21].

Since then there has been a steady development [22–26],

with observation of microwave-induced Rabi oscillation of

the two-level populations in charge [27–29], and flux [30–33]

© G. Wendin and V.S. Shumeiko, 2007



qubits and dc-pulse driven oscillation of charge qubits with

rf-SET detection [34]. An important step is the development

of the charge-phase qubit, a hybrid version of the charge

qubit consisting of an SCB in a superconducting loop

[27,28], demonstrating Rabi oscillations with very long co-

herence time, of the order of 1�s, allowing a large set of basic

and advanced («NMR-like») one-qubit operations (gates) to

be performed [29]. In addition, coherent oscillations have

been demonstrated in the «simplest» JJ qubits of them all,

namely a single Josephson junction [14,15,35,36], or a two-JJ

dc-SQUID [16], where the qubit is formed by the two lowest

states in the periodic potential of the JJ itself.

Although a powerful JJ-based quantum computer with

hundreds of qubits remains a distant goal, systems with

5–10 qubits will be built and tested by, say, 2010.

Pairwise coupling of qubits for two-qubit gate operations

is then an essential task, and a few experiments with cou-

pled JJ-qubits with fixed capacitive or inductive cou-

plings have been reported [37–42], in particular the first

realization of a controlled-NOT gate with two coupled

SCBs [38], used together with a one-qubit Hadamard gate

to generate an entangled two-qubit state.

For scalability, and simple operation, the ability to control

qubit couplings, e.g. switching them on and off, will be essen-

tial. So far, experiments on coupled JJ qubits have been per-

formed without direct physical control of the qubit coupling,

but there are many proposed schemes for two(multi)-qubit

gates based on fixed or controllable physical qubit-qubit cou-

plings or tunings of qubits and bus resonators.

This article aims at describing the inner workings of

superconducting JJ circuits, how these can form

two-level systems acting as qubits, and how they can be

coupled together to multi-qubit networks. Since the field

of experimental qubit applications is only five years old,

it is not even clear if the field represents an emerging

technology for computers. Nevertheless, the JJ-technol-

ogy is presently the only example of a working solid state

qubit with long coherence time, with demonstrated

two-qubit gate operation and readout, and with potential

for scalability. This makes it worthwhile to describe this

system in some detail.

It needs to be said, however, that much of the basic the-

ory for coupled JJ-qubits was worked out well ahead of

experiment [21,43,44], defining and elaborating basic op-

eration and coupling schemes. Several reviews on the

subject are currently available [24,25,44–46], which de-

scribe the basic principles of a multi-JJ-qubit information

processor, including essential schemes for qubit-qubit

coupling. The ambition of the present article is to provide

a both introductory and in-depth overview of essential

Josephson junction quantum circuits, discuss basic issues

of readout and measurement, and connect to the recent ex-

perimental progress with JJ-based qubits for quantum

information processing.

2. Quantum superconducting circuits

Standard superconducting JJ circuits used for the qubit

application and readout are presented in Fig. 1 and include:

current biased single JJ and dc-SQUID, rf-SQUID with

one or more JJ, and the Single Cooper pair Box. These cir-

cuits consist of various combinations of the three basic ele-

ments: capacitive elements including Josephson junction

capacitors, linear inductive elements of superconducting

leads, and non-linear inductances of Josephson tunnel

junctions. All these circuits exhibit dynamical properties

of a network of non-linear oscillators [47].

The possibility for macroscopic electrical circuits to

exhibit a quantum behavior is rather counter intuitive.

However, in fact, that is the consequence of quantum ori-

gin of the electromagnetic field. The Kirchhoff equations

used to describe these circuits represent a lumped element

approximation of the Maxwell equations valid for the

limit of small circuit size compared to the electromag-

netic wave length. Typical superconducting qubits oper-

ate at frequencies of several GHz, which correspond to

the wave lengths in a centimeter range, while circuit ele-

ments are of a submillimeter size. Quantum electrody-

namics being translated to the language of lumped ele-

ment circuits establishes the non-commutation relations

between the charges and the currents.

Quantum behavior of electrical circuits has been ap-

preciated and discussed yet in the 1950s, in the context of

electrical current fluctuation [48]. However, the first ob-

servation of a real quantum effect, macroscopic quantum

tunneling (MQT) was made only in 1981 when quantum

switching of a tunnel junction from the Josephson regime

to the dissipative regime has been discovered [49].

While having been convinced with the possibility of

quantization in electrical circuits, one might be surprised

that the quantum effects are not commonly observed in

conventional normal metal and semiconducting circuits:

Indeed, in high-frequency applications, frequencies up to

THz are available, which correspond to the distance be-

tween the quantized oscillator levels of order 10 K; this

should be observable at temperature of tens milliKelvin.

Furthermore, it is intuitively clear and follows from rigor-

ous analysis [7] that the dissipation effects, which destroy

the quantum coherence, are not efficient when the broad-
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Fig. 1. Basic superconducting circuits for qubit applications:

current biased Josephson junction (a); dc-SQUID (b); rf-SQUID

(c); single Cooper pair box (d); the crossed box indicates combi-

nation of the Josephson tunneling element, and junction capaci-

tor connected in parallel.



ening of the energy levels due to dissipation is smaller

than the distance between the levels. This requirement

can be easily fulfilled in resonators with high quality fac-

tors. In fact, the real difficulty for the observation of the

quantum dynamics is related to the linear oscillator char-

acter of high quality LC-circuits: by virtue of the

Ehrenfest theorem [50], the quantum dynamics and the

classical dynamics of linear oscillators are not distin-

guishable. For the quantum dynamics to be reliably ob-

served a non-linear non-dissipative circuit element is re-

quired; this is provided by the non-linear inductance of

the Josephson tunneling. For an illuminative discussion

of this issue we refer to the paper by Martinis, Devoret

and Clarke [51].

A basis for the quantum description of the qubit circuits

is the Hamilton formalism. In the classical limit, the dy-

namical equations for the conjugated variables are equiva-

lent to the standard Kirchhoff rules. The building blocks

for constructing the circuit Hamiltonian are given by the

kinetic energy associated with the charging energy of the

capacitive elements, K CV /� 2 2, and the potential energy

associated with the Josephson inductance, U J �
� � �EJ cos , and the inductance of the superconducting

leads, U / LL ��
2 2 [52–54]. All these quantities are to be

expressed through the superconducting phase difference �
for a given circuit element, whose connection to the volt-

age drop V , and magnetic flux �, is established by the

Josephson relations, V / e� �( ) �.
� 2 , and � � �( / )� 2 2e . In

the Hamilton formalism, the kinetic energy is expressed

through the conjugated momentum to the phase coordinate

conveniently defined as n K /� � � �( � ) ( � )
.

�� . This momen-

tum obeys the Poissonian bracket relation, { , }� �j kn

� ( ) ,1/ jk� � and has the physical meaning of the charge q

accumulated on the junction capacitor in the units of dou-

ble electronic charges, q en� 2 , i.e. the number of the Coo-

per pairs stored on the capacitor. The circuit Hamiltonian is

then constructed by summing up the energies of all the cir-

cuit elements,

H K n Uj j� � �	( ( ) ( )) .

If several circuit elements are connected in a closed loop,

the flux quantization equation imposes the constraint on the

phases of these elements, � � � �	 i e n2
 , where

� �e ee/( )2 � � is the phase associated with the applied mag-

netic flux.

The current-biased Josephson junction, Fig. 1,a, is de-

scribed with the Hamiltonian,

H E nC� �2 E
e

IJ ecos � � �
�

2
, (1)

where E e / CC � ( )2 22 is the charging energy, EJ �
� ( )�

2 2/ e I c is the Josephson energy, I c is the critical

Josephson current; I e indicates the applied current, which

serves as a controlling parameter. The small amplitude

electromagnetic oscillation in this circuit, plasma oscilla-

tion, has the frequency �� � 2E EC J (at I e � 0).

The rf SQUID Hamiltonian, Fig. 1,c, has the form,

H E n E EC J L
e� � � �

� ��2
2

2
cos

( )
; (2)

here E / eL L� �
2 22( ) , �e plays the role of controlling pa-

rameter.

The dc SQUID, shown in Fig. 1,b has two degrees of

freedom, �1 2, , and its Hamiltonian can be written by com-

bining Eqs. (1) and (2) in terms of the phases

� � � � �� ( / )( )1 2 1 2 . In the symmetric case we have,

H E n E n EC C J� � � � � �� � � �
2 2 2 cos cos

�
� � �

� �
�

�E
e

IL
e

e

( )2

2 2

2
�

. (3)

This circuit is often used for qubit measurements.

The single Cooper pair box shown in Fig. 1,d, consists

of small superconducting island coupled to a massive

electrode via small resistive JJ, and also capacitively cou-

pled to an electrostatic gate; the gate potential is con-

trolled by a voltage source Vg . The classical Hamiltonian

for this circuit has the form,

H E n n EC g J� � � �( ) cos2 , (4)

where n C V / eg g g� � 2 plays the role of external control-

ling parameter, C g is the gate capacitance. The name of

the circuit stems from analogous normal metallic circuit,

Single Electron Box (SEB) [55,56]. If the tunnel junction

resistance exceeds the quantum resistance Rq 
 26 K�,

and the temperature is small compared to the charging en-

ergy of the island, the system is in the Coulomb blockade

regime [57,58]: the electrons can be transferred to the is-

land one by one, the number of electrons on the island be-

ing controlled by the gate voltage. In the superconducting

state, the number of electrons on the island changes

pairwise [18,19,59]. To achieve such a regime, one has to

take into account the parity effect [59], difference be-

tween the energies of even and odd numbers of electrons

on the island. While an electron pair belongs to the super-

conducting condensate and has the additional charging

energy EC , a single electron forms an excitation and thus

its energy consists of the charging energy, E /C 2, plus the

excitation energy, �. To provide the SCB regime and pre-

vent the appearance of individual electrons on the island,

the condition � �� E /C 2 must be fulfilled.

The single Cooper pair transistor (SCT) is a useful

modification of the the SCB, presented in Fig. 2; here the

island is connected to the electrode via two Josephson

junctions. Advantage of this circuit is the possibility to

tune the effective Josephson energy of the SCB by apply-
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ing magnetic flux to the circuit loop, similar to the

dc-SQUID. Also, the charge on the island is related to the

magnitude of the induced persistent current circulating in

the loop, which can be used for the measurement of the

charge state of the island. The classical Hamiltonian for

this circuit is a combination of Eqs. (2) and (4), and has

the form,

H E n n E nSCT C g C� � � �� �( ) 2 2

� � � �
� � �

� �
�2

2

2

2

E EJ L
ecos cos

( )
. (5)

Technically, the quantization of electrical circuits is

introduced by generalizing the Poissonian bracket rela-

tion, [ , ]� �j k jkn i� . This quantization rule is satisfied,

similar to the Schr�dinger quantum mechanics, by substi-

tuting the momentum n with the operator n i /� � � �� in

Eqs. (1)–(4) [52–54].

Quantum dynamics of an isolated JJ is described with

the Mathieu-Bloch picture for a particle moving in a peri-

odic potential, similar to the electronic solid state theory

[17]. Two limiting regimes are usually distinguished: the

phase regime, E EJ C�� , is analogous to the tight-bind-

ing approximation, and the charge regime, E EJ C�� , is

analogous to the near-free particle approximation. In the

phase regime, the quantum particle representing the JJ is

basically confined to a single potential well; the well con-

tains many energy levels since ���� EJ . This regime is

the most close to the junction classical dynamics. For the

lowest energy levels the parabolic approximation for the

junction potential is appropriate giving the level spacing

�En 
 ��. However, the non-equidistance of the energy

spectrum is essential allowing to select two energy levels

for qubit operation. Phase qubits and flux qubits usually

operate in this phase regime.

In the charge regime, the junction eigenstate wave

functions are close to the plane waves, exp [ ( ) ]i q/ e2 � ,

where q has the meaning of the charge on the junction ca-

pacitor (quasi charge). In the specific case of the SCB,

this quantity corresponds to the charge on the island,

which must be equal to an integer number of electron

pairs. This charge quantization requirement is fulfilled by

imposing a periodic boundary condition on the junction

wave function,

� � 
( ) ( )� � � � 2 . (6)

This implies that arbitrary state of the SCB is a superposi-

tion of the charge states with integer amount of the Coo-

per pairs,

�( ) exp( )� � �	a inn

n

. (7)

For the half integer values of the gate charge, ng �
� �n /1 2, the two neighboring charge states are almost de-

generate and separated by a small energy interval

E EJ C�� . Charge qubits usually operate in this charge

regime, the two tight levels, n � 0 1, , in the vicinity of

n /g �1 2 being usually selected as the qubit states.

3. Basic qubits

The quantum superconducting circuits considered

above contain a large number of energy levels, while for

qubit operation only two levels are required. Moreover,

these two qubit levels must be well decoupled from the

other levels in the sense that transitions between qubit

levels and the environment must be much less probable

than the transitions between the qubit levels itself. Typi-

cally that means that the qubit should involve a low-lying

pair of levels, well separated from the spectrum of higher

levels, and not being close to resonance with any other

transitions.

Single Josephson junction qubit

The simplest qubit realization is a current biased JJ

with large Josephson energy compared to the charging en-

ergy. In the classical regime, the particle representing the

phase either rests at the bottom of one of the wells of the

tilted cosine potential («washboard» potential), or oscil-

lates within the well. Due to the periodic motion, the aver-

age voltage across the junction is zero, �� � 0. Strongly ex-

cited states, where the particle may escape from the well,

correspond to the dissipative regime with non-zero aver-

age voltage across the junction, �� � 0.

In the quantum regime described by the Hamiltonian

(1), particle confinement, rigorously speaking, is impossi-

ble because of MQT through the potential barrier, see

Fig. 3. However, the probability of MQT is small and the

tunneling may be neglected if the particle energy is close to

960 Fizika Nizkikh Temperatur, 2007, v. 33, No. 9

G. Wendin and V.S. Shumeiko

Vg

SCT

Fig. 2. Single Cooper pair transistor (SCT): SCB with

loop-shape bulk electrode connected to the island via two JJs;

charge fluctuation on the island produces current fluctuation in

the loop.



the bottom of the local potential well, i.e. when E EJ�� .

To find the conditions for such a regime, it is convenient to

approximate the potential with a parabolic function,

U / EJ( ) ( ) cos ( )� 
 � � ��1 2 0 0
2, where �0 corresponds to

the potential minimum, E / e IJ esin ( )� �0 2� . Then the

lowest energy levels, E k /k p� ��� ( )1 2 are determined

by the plasma frequency, � �p J e cI /I� �2 11 4 1 4/ /( ) . It

then follows that the levels are close to the bottom of the

potential if E EC J�� , i.e. when the JJ is in the phase re-

gime, and moreover, if the bias current is not too close to

the critical value, I Ie c� .

It is essential for qubit operation that the spectrum in

the well is not equidistant. Then the two lowest energy

levels, k � 0 1, can be employed for the qubit operation.

Truncating the full Hilbert space of the junction to the

subspace spanned by these two states, |0� and |1�, we may

write the qubit Hamiltonian on the form,

H q z� �
1

2
�� . (8)

where � � �E E1 2.

The interlevel distance is controlled by the bias cur-

rent. When bias current approaches the critical current,

level broadening due to MQT starts to play a role,

E E i /k k k� � � 2 . The MQT rate for the lowest level is

given by [60]

�MQT
p

p p

U U
� �

�

�
�
�

�

�
�
�

52

2

7 2�


 � �
max maxexp

.

� �
, (9)

where U / I /Ie cmax
/( ) ( )� �2 2 2 10

3 2� 
 is the height of

the potential barrier at given bias current.

Flux qubit

An elementary flux qubit can be constructed with an

rf-SQUID operating in the phase regime, E EJ C�� . Let

us consider the Hamiltonian (2) at � �e 
, i.e. at half inte-

ger bias magnetic flux. The potential, U ( )� , shown in

Fig. 4 has two identical wells with equal energy levels

when MQT between the wells is neglected (phase regime,

�J JE�� ). These levels are connected with current fluc-

tuations within each well around averaged values corre-

sponding to clockwise and counterclockwise persistent

currents circulating in the loop (the flux states). Let us

consider the lowest, doubly degenerate, energy level.

When the tunneling is switched on, the levels split, and a

tight two-level system is formed with the level spacing

determined by the MQT rate, which is much smaller than

the level spacing in the well.

In the case that the tunneling barrier is much smaller

than the Josephson energy, the potential in Eq. (2) can be

approximated,

U E EJ L
e( ) ( cos )

( )
� � � � �

� ��

1

2

2


 � �
��

�

�
�

�

�

�
�

E fL �
�

~
~ ~�
� � �

2
4

2

1

24
, (10)

where
~
� � 
� � , f e� � �
, and where the parameter,

� � � ��( )E /EJ L 1 1, determines the height of the tunnel

barrier.

The qubit Hamiltonian is derived by projecting the full

Hilbert space of the Hamiltonian (2) on the subspace

spanned by these two levels. The starting point of the

truncation procedure is to approximate the double well

potential with U l and U r , as shown in Fig. 4, to confine

the particle to the left or to the right well, respectively.

The corresponding ground state wave functions | l� and |r�
satisfy the stationary Schr�dinger equation,

H l E l H r E rl l r r| | , | |� � � � � � . (11)

The averaged induced flux for these states, �l and �r

have opposite signs, manifesting opposite directions of

the circulating persistent currents. Let us allow the bias

flux to deviate slightly from the half integer value,

� � �e f
 , so that the ground state energies are not equal

but still close to each other, E El r
 . The tunneling will

hybridize the levels, and we can approximate the true

eigenfunction, | E�,
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Fig. 3. Quantized energy levels in the potential of a current bi-

ased JJ; the two lower levels form the JJ qubit, the dashed line

indicates a leaky level with higher energy.
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Fig. 4. Double-well potential of the rf-SQUID with degenerate

quantum levels in the wells. Macroscopic quantum tunneling

through the potential barrier introduces a level splitting �, and

the lowest level pair forms a qubit (a); truncation of the junc-

tion Hamiltonian, dashed lines indicate potentials of the left

and right wells with ground energy levels (b).



H E E E| | ,� � � (12)

with a superposition, | | |E a l b r� � � � �. The qubit Hamil-

tonian is given by the matrix elements of the full

Hamiltonian, Eq. (12), with respect to the states | l� and |r�:

H E l U U l H E r U U rll l l rr r r� � � � � � � � � �| | , | | ,

H E r l r U U lrl l l� � � � � � �| | | .

In the diagonal matrix elements, the second terms are

small because the wave functions are exponentially small

in the region where the deviation of the approximated po-

tential from the true one is appreciable. The off diagonal

matrix element is exponentially small because of small

overlap of the ground state wave functions in the left and

right wells, and also here the main contribution comes

from the first term. Since the wave functions can be chosen

real, the truncated Hamiltonian is symmetric, H Hlr rl� .

Then introducing � � �  E E fr l , and �/ H rl2 � , we ar-

rive at the Hamiltonian of the flux qubit,

H z x� � �
1

2
( )�� �� . (13)

The energy spectrum of the flux qubit is given by the

equation,

E1 2
2 21

2
, ,� �� � � (14)

as shown in Fig. 5. The energy levels are controlled by the

bias magnetic flux. The dashed lines refer to the persis-

tent current states in the absence of macroscopic tunnel-

ling. These states, | l� and |r�, form the basis of the qubit

Hamiltonian in Eq. (13), and correspond to certain values

of the induced flux, �l and �r . Far from the degeneracy

point (� � 0, corresponding to a half-integer bias flux,

� �e 
), the qubit eigenstates are almost pure flux states.

At the flux degeneracy point, the expectation value of the

induced flux is equal zero, and the qubit eigen states are

given by equal weight superpositions of the flux states,

| , | | |E E l r1 2� � � � �� (cat states). The level spacing at this

point is determined by the small amplitude of tunneling

through macroscopic potential barrier.

The possibility to achieve quantum coherence of mac-

roscopic current states in an rf-SQUID with a small ca-

pacitance Josephson junction was first pointed out in

1984 by Leggett [4]. However, successful experimental

observation of the effect was achieved only in 2000 by

Friedman et al. [13].

Flux qubit with 3 junctions

The main drawback of the flux qubit with a single

Josephson junction (rf-SQUID) described above con-

cerns the large inductance of the qubit loop, the energy of

which must be comparable to the Josephson energy to

form the required double-well potential profile. This im-

plies large size of the qubit loop, which makes the qubit

vulnerable to dephasing by magnetic fluctuations of the

environment. One way to overcome this difficulty was

pointed out by Mooij et al. [11], replacing the large loop

inductance by the Josephson inductance of an additional

tunnel junction, as shown in Fig. 6.

The design employs three tunnel junctions connected

in series in a superconducting loop. The inductive energy

of the loop is chosen to be much smaller than the

Josephson energy of the junctions. The two junctions are

identical while the third junction has smaller area, and

therefore smaller Josephson and larger charging energy.

The Hamiltonian has the form,

H E n n
n

/
C� � �

�

!

"
#
#

$

%
&
&
�1

2
2
2 3

2

1 2 �

� � � � � � �E /J [cos cos ( ) cos ]1 2 31 2 � . (15)

To explain the idea, let us consider the potential energy.

The three phases are not independent and satisfy the rela-

tion � � � � � � �1 2 3 e . Let us suppose that the qubit is bi-

ased at half integer flux quantum, � �e 
. Then introduc-

ing new variables, � � � � �� ( )1 2 2/ , we have
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lines): it results from hybridization of the flux states (dashed

lines).

Fig. 6. Persistent current flux qubit with 3 junctions (bold line)

connected inductively (left), and galvanically (right) to a mea-

surement dc-SQUID.



U E /J( , [ cos cos ( ) cos ])� � � � � � � � �� � � � �2 1 2 2� .

(16)

The two-dimensional periodic potential landscape of

this circuit contains the double well structures near the

points ( , ( , ))� � �� � 0 0 2mod 
. An approximate form of the

potential energy structures is given by

U EJ( , )� 
 � � �
��

�

�
�

�

�

�
�� �

�0 2
4

2
4

� . (17)

Each well in this structure corresponds to clock- and coun-

terclockwise currents circulating in the loop. The ampli-

tude of the structure is given by the parameter �EJ , and for

� �� 1 the tunneling between these wells dominates. Thus

this qubit is qualitatively similar to the single-junction

qubit described above, but the quantitative parameters are

different and can be significantly optimized.

Charge qubit — SCB

An elementary charge qubit can be made with the SCB

operating in the charge regime, E EC J�� . Neglecting the

Josephson coupling implies the complete isolation of the

island of the SCB, with a specific number of Cooper pairs

trapped on the island. Correspondingly, the eigenfunc-

tions,

E n n n E nC g n( ) | |� � � �2 , (18)

correspond to the charge states n � 0 1 2, , ... , with the en-

ergy spectrum E E n nn C g� �( ) 2, as shown in Fig. 7. The

ground state energy oscillates with the gate voltage, and

the number of Cooper pairs in the ground state increases.

There are, however, specific values of the gate voltage,

e.g. n /g �1 2 where the charge states |0� and |1� become de-

generate. Switching on a small Josephson coupling will

then lift the degeneracy, forming a tight two-level system.

The qubit Hamiltonian is derived by projecting the full

Hamiltonian (4) on the two charge states, |0�, |1�, leading to

H SCB z x� � �
1

2
( )�� �� , (19)

where � � �E nC g( )1 2 , and � � EJ . The qubit level ener-

gies are then given by the equation

E E n EC g J1 2
2 2 21

2
1 2, ( )� � �� , (20)

the interlevel distance being controlled by the gate voltage.

At the degeneracy point, n /g �1 2, the diagonal part of the

qubit Hamiltonian vanishes, the levels being separated by

the Josephson energy, EJ , and the qubit eigenstates corre-

sponding to the cat states, | , | | |E E1 2 0 1� � � � �� . For theses

states, the average charge on the island is zero, while it

changes to � 2e far from the degeneracy point, where the

qubit eigen states approach pure charge states.

The SCB was first experimentally realized by Lafarge

et al. [19], observing the Coulomb staircase with steps of

2e and the superposition of the charge states, see also

[20]. Realization of the first charge qubit by manipulation

of the SCB and observation of Rabi oscillations was done

by Nakamura et al. [6,61,62], and further investigated

theoretically by Choi et al. [63].

Charge-phase qubit SCT

In the SCB, the charge fluctuation on the island gener-

ates fluctuating current between the island and bulk elec-

trode. In the two-junction setup, Fig. 2, an interesting

question concerns how the current is distributed between

the two junctions. The answer to this question is appar-

ently equivalent to evaluating the persistent current circu-

lating in the SCT loop. For small but non-zero inductance

of the loop, the amplitude of the induced phase is small,
~
� � �� � ���2 1e , and the cosine term in Eq. (5) contain-

ing �� can be expanded, yielding the equation

H H H HSCT SCB� � � ��( ) (
~

) intosc � . (21)

H SCB ( )�� is the SCB Hamiltonian (4) with the flux

dependent Josephson energy, E E /J e J e( ) cos ( )� � �2 2 .

Hosc (
~

)� describes the linear oscillator associated with the

variable, H E n E /C Losc (
~

) ~ ~
� � � �4 22 2 and the interaction

term reads, ' (H E /J eint sin cos ( )
~

.� � � ��2 Thus, the cir-

cuit consists of the non-linear oscillator of the SCB lin-

early coupled to the linear oscillator of the SQUID loop.

This coupling gives the possibility to measure the charge

state of the SCB by measuring the persistent currents and

the induced flux.

Truncating Eq. (21) we finally arrive at the Hamil-

tonian which is formally equivalent to the spin-oscillator

Hamiltonian,

H HSCT z e x x� � � � � � �
1

2
( ( ) )

~
�� � ) �� osc , (22)

In th i s equa t ion , �( ) cos ( ),� � �e J eE /2 2 and ) �
� �E /J esin ( )2 .
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from hybridization of the charge states (dashed) due to Joseph-

son tunneling; level anticrossings occur at n n /g � �1 2 .



Potential superconducting qubits

The superconducting qubits that have been discussed

in previous Sections exploit the fundamental quantum un-

certainty between electric charge and magnetic flux.

There are, however, other possibilities. One of them is to

delocalize quantum information in a JJ network by choos-

ing global quantum states of the network as a computa-

tional basis. Recently, some rather complicated JJ net-

works have been discussed, which have the unusual

property of degenerate ground state, which might be em-

ployed for efficient qubit protection against decoherence

[64,65].

An alternative possibility is to replace macroscopic

tunnel Josephson junction with a single-mode quantum

point contact (QPC), and to take advantage of quantum

fluctuation of microscopic bound Andreev states control-

ling the Josephson current [66,67].

Andreev level qubit

To explain the physics of this type of device, let us

consider an rf SQUID, Fig. 1,c, with a point contact junc-

tion that has such a small cross section that the

quantization of electronic modes in the direction perpen-

dicular to the current flow becomes pronounced. In such a

junction, QPC the Josephson current is carried by a num-

ber of independent conducting electronic modes, each of

which can be considered an elementary microscopic

Josephson junction characterized by its own transpar-

ency. The number of modes is roughly proportional to the

ratio of the junction cross section and the area of the

atomic cell (determined by the Fermi wave length) of the

junction material. In atomic-size QPC with only a few

conducting modes, the Josephson current can be appre-

ciable if the conducting modes are transparent open

modes. If the junction reflectivity is zero (R � 0) then cur-

rent is a well defined quantity. This will correspond to a

persistent current with certain direction circulating in the

qubit loop. On the other hand, for a finite reflectivity,

R � 0, the electronic back scattering will induce hybrid-

ization of the persistent current states giving rise to strong

quantum fluctuation of the current.

Such a quantum regime is distinctly different from the

macroscopic quantum coherence regime of the flux qubit,

where the quantum hybridization of the persistent current

states is provided by the charge fluctuation on the junc-

tion capacitor. In QPC the leading role belongs to the mi-

croscopic mechanism of electron back scattering, while

charging effects do not play any essential role. On the

other hand, in large area junctions of the macroscopic

qubits, the microscopic quantum fluctuation of the

Josephson current is negligibly small since the current

here is carried by a large number (� 10 4) of statistically

independent conducting modes.

In QPC, the Josephson effect is associated with micro-

scopic Andreev levels, localized in the junction area,

which transport Cooper pairs from one junction electrode

to the other [68,69]. As shown in Fig. 8, the Andreev lev-

els lie within the superconducting gap and have the

phase-dependent energy spectrum,

E / R /a � � � �� cos ( ) sin ( )2 22 2 , (23)

(here � is the superconducting order parameter in the

junction electrodes). For very small reflectivity, R �� 1,

and phase close to 
 (half integer flux bias) the Andreev

two-level system is well isolated from the continuum

states. The expectation value for the Josephson current

carried by the level is determined by the Andreev level

spectrum,

I
e dE

d
a

a

e

�
�

2

�
, (24)

and it has different sign for the upper and lower level.

Since the state of the Andreev two-level system is deter-

mined by the phase difference and related to the

Josephson current, the state can be manipulated by driv-

ing magnetic flux through the SQUID loop, and read out

by measuring circulating persistent current[70,71].

This microscopic physics underlines a proposal for

Andreev level qubit [66,67]. The qubit is similar to the

macroscopic flux qubits with respect to how it is manipu-

lated and measured, but the great difference is that the

quantum information is stored in the microscopic quan-

tum states. This difference is reflected in the more com-

plex form of the qubit Hamiltonian, which consists of the

two-level Hamiltonian of the Andreev levels strongly

coupled to the quantum oscillator describing phase fluc-

tuations,

H R H
i R

z y
x�

�
�

��

�
�

�

�
� �� ��e osc

� � � �/
cos sin [ ]

2

2 2
,

(25)
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Fig. 8. Energy spectrum of microscopic bound Andreev levels;

the level splitting is determined by the contact reflectivity.



H E n E /C L eosc [ ] ( ) ( )� � � � ��2 2. Comparing this equa-

tion with e.g. the SCT Hamiltonian (21), we find that the

truncated Hamiltonian of the SCB is replaced here by the

Andreev level Hamiltonian.

Bound Andreev levels in QPC offer yet another inter-

esting possibility for the qubit [72]. In the presence of

Zeeman magnetic field, Andreev levels may undergo spin

polarization, which gives the possibility to excite the spin

dynamics using NMR-type technique. Similar to the

Andreev level qubit, transitions between the spin polar-

ized Andreev states induce oscillation of the Josephson

current, and thus can be detected.

4. Qubit operation and decoherence

Qubit operation

Quantum computation basically means allowing the

N -qubit state to develop in a fully coherent fashion

through unitary transformations acting on all N qubits

[1]. The difference from the conventional many-body

problem is that this evolution must be controlled accord-

ing to the prescriptions of a quantum algorithm. Arbitrary

quantum algorithm can be implemented through a set of

elementary operations — universal gates — with single

qubits and coupled qubit pairs [2]. Therefore a universal

quantum computer is represented with a Hamiltonian of a

pseudospin 1/2 array with controllable spin-spin interac-

tions subject to a variable local «magnetic» field,

H t t ti iz i ix i iy

i

� � � * � ** �	1

2
[ ( ) ( ) ( ) ]� � � �� �

� 	1

2
) � �+

+ +ij

ij

i jt( ); . (26)

A set of universal single qubit gates include qubit rota-

tions around 3 axes, x y z, , , allowing the pseudospin to reach

any point on the Bloch sphere, see Fig. 9. For superconduct-

ing qubits, such rotations can be achieved by pulsing the

controlling physical parameters: applied current for the JJ

phase qubits, applied magnetic flux for the flux qubits, and

electrostatic gate potential for the charge qubits. Defining

z-axis pointing along the energy eigenstate direction, we

find that the z-rotation is simply realized by free qubit

evolution. Rotations around perpendicular axes are usually

performed by applying rf pulses with small amplitudes and

resonance frequency with respect to the free qubit rotation,

inducing Rabi oscillation between the qubit eigenstates

(NMR-type operation) [73].

Decoherence of qubit systems

Ideally, a quantum computer is supposed to evolve

maintaining a pure entangled state of N qubits under a

unitary transformation. However, in practice, the quan-

tum coherence is destroyed by qubit environment. For

macroscopic superconducting qubits, the environment

basically consists of various dissipative elements in ex-

ternal circuits which provide bias, control, and measure-

ment of the qubit. The «off-chip» parts of these circuits

are usually kept at room temperature and produce signifi-

cant noise. Examples are the fluctuations in the current

source producing magnetic field to bias flux qubits and,

similarly, fluctuations of the voltage source to bias gate of

the charge qubits. Electromagnetic radiation from the

qubit during operation is another dissipative mechanism.

There are also intrinsic microscopic mechanisms of

decoherence, such as fluctuating trapped charges in the

substrate of the charge qubits, and fluctuating trapped

magnetic flux in the flux qubits, believed to produce dan-

gerous 1/f noise. Another intrinsic mechanisms concern

the losses in the dielectric layer of the tunnel junction

[35,74–76].

Various kinds of environment are commonly modelled

with an infinite set of linear oscillators in thermal equi-

librium (thermal bath), linearly coupled to the qubit

(Caldeira–Leggett model [7,10]). The extended qubit-

plus-environment Hamiltonian has the form in the qubit

energy eigenbasis [60],

H E Xz

i

iz z i i� � � � �	 , ,
1

2
� ) � ) �( )

� �
�

�

�
�

�

�

�
�	 P

m

m Xi i i

i

2 2 2

2 2

�
. (27)

The physical effects of the two coupling terms in Eq. (27)

are quite different. The «transverse» coupling term pro-

portional to ), induces interlevel transitions and eventu-

ally leads to the relaxation. The «longitudinal» coupling

term proportional to ) z commutes with the qubit Ha-

miltonian and thus does not induce interlevel transitions.

However, it randomly changes the level spacing, which

eventually leads to the loss of phase coherence, de-

phasing. The effect of both processes, relaxation and

dephasing, are referred to as decoherence. The time evo-
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Fig. 9. The Bloch sphere: the Bloch vector S represents the states

of the two-level system; the vector H represents the two-level

Hamiltonian; the Bloch vector of the energy eigenstate is parallel

(antiparallel) to the vector H (a); free evolution of the Bloch vec-

tor (precession) (b); rotation of the Bloch vector under a time de-

pendent perturbation — Rabi oscillation (c).



lution of a qubit coupled to a bath is given, in the simplest

approximation, by the Bloch-Redfield equations [73,77]:

� � � � � � �t z z z t
T

i
E

T
- - - - - -

1 1

1

0
12 12

2
12( ),( )

�
. (28)

The first equation describes relaxation of the level popu-

lation to the equilibrium form, - z / E/ kT( ) ( ) ( )0 1 2 2� � tanh ,

T1 being the relaxation time. The second equation de-

scribes disappearance of the off-diagonal matrix element

during characteristic time T2, dephasing. The relaxation

time is determined by the spectral density of the envi-

ronmental fluctuations at the qubit frequency,1 1/T �
� �, �( ) ( ).) �2 2/ S E The particular form of the spectral

density depends on the properties of the environment,

which are frequently expressed via the impedance (re-

sponse function) of the environment. The most common

environment consists of a pure resistance, in this case,

S �  ( )� �, at low frequencies. The dephasing time con-

sists of two parts, 1 1 2 12 1/T / T /T� � �. The first part is

generated by the relaxation process, while the second

part results from the pure dephasing due to the longitudi-

nal coupling to the environment. This pure dephasing

part is proportional to the spectral density of the fluctua-

tion at zero frequency. 1 2 02/T / Sz� �� �( ) ( ).) � There is

already a vast recent literature on decoherence and noise

in superconducting circuits, qubits and detectors, and

how to engineer the qubits and environment to minimize

decoherence and relaxation [44,67,76–100].

5. Qubit readout

In this Section we present a number of proposed, and

realized, schemes for measuring quantum states of vari-

ous superconducting qubits. The ultimate objective of a

qubit readout device is to distinguish the eigenstates of a

qubit in a single measurement «without destroying the

qubit», a so called «single-shot» quantum non-demolition

(QND) projective measurement. This objective is essen-

tial for several reasons: state preparation for computation,

readout for error correction during the calculation, and

readout of results at the end of the calculation. Strictly

speaking, the QND property is only needed if the qubit

must be left in an eigenstate after the readout. In a broader

sense, readout of a specific qubit must of course not de-

stroy any other qubits in the system.

It must be carefully noted that one cannot «read out the

state of a qubit» in a single measurement — this is prohib-

ited by quantum mechanics. It takes repeated measure-

ments on a large number of replicas of the quantum state

to characterize the state of the qubit — «quantum tomog-

raphy» [101].

The measurement connects the qubit with the open

system of the detector, which collapses the combined sys-

tem of qubit and measurement device to one of its com-

mon eigenstates. If the coupling between the qubit and the

detector is weak, the eigenstates are approximately those

of the qubit. In general however, one must consider the

eigenstates of the total qubit-detector system and manipu-

late gate voltages and fluxes such that the readout mea-

surement is performed in a convenient energy eigenbasis

(see e.g. [44,102]).

Even under ideal conditions, a single-shot measure-

ment can only determine the population of an eigenstate if

the system is prepared in an eigenstate: then the answer

will always be either «0» or «1». If an ideal single-shot

measurement is used to read out a qubit superposition

state, e.g. during Rabi oscillation, then again the answer

can only be «0» or «1». To determine the qubit population

(i.e. the | |a1
2 and | |a2

2 probabilities) requires repetition

of the measurement to obtain the expectation value. Dur-

ing the intermediate stages of quantum computation one

must therefore not perform a measurement on a qubit un-

less one knows, because of the design and timing of the

algorithm, that this qubit is in an energy eigenstate. Then

the value is predetermined and the qubit left in the

eigenstate (Stern–Gerlach-style).

On the other hand, to extract the desired final result it

may be necessary to create an ensemble of calculations to

be able to perform a complete measurement to determine

the expectation values of variables of interest, performing

quantum state tomography [101].

Direct qubit measurement

Direct destructive measurement of the qubit can be il-

lustrated with the example of a single JJ phase qubit. Af-

ter the manipulation has been performed (e.g. Rabi oscil-

lation), the qubit is left in a superposition of the upper and

lower energy states. To determine the probability of the

upper state, one slowly increases the bias current until it

reaches such a value that the upper energy level equals (or

gets close to) the top of the potential barrier (see Fig. 3).

Then the junction, being at the upper energy level, will

switch from the Josephson branch to the dissipative

branch, and this can be detected by measuring the finite

average voltage appearing across the junction (voltage

state). If the qubit is in the lower energy state the qubit

will remain on the Josephson branch and a finite voltage

will not be detected (zero-voltage state). An alternative

method to activate switching [14] is to apply an rf signal

with resonant frequency (instead of tilting the junction

potential) in order to excite the upper energy level and to

induce the switching event, see Fig. 3 (also illustrating a

standard readout method in atomic physics).

It is obvious that, in this example, the qubit upper en-

ergy state is always destroyed by the measurement. Sin-

gle-shot measurement is possible provided the MQT rate

for the lower energy level is sufficiently small to prevent

the junction switching during the measurement time. It is

also essential to keep a sufficiently small rate of interlevel
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transitions induced by fluctuations of the bias current and

by the current ramping.

A similar kind of direct destructive measurement was

performed by Nakamura et al. [6] to detect the state of the

charge qubit. The qubit operation was performed at the

charge degeneracy point, u g �1, where the level splitting

is minimal. An applied gate voltage then shifted the SCB

working point (Fig. 5), inducing a large level splitting of

the pure charge states |0� and |1� (the measurement prepa-

ration stage). In this process the upper |1� charge state

went above the threshold for Cooper pair decay, creating

two quasiparticles which immediately tunnel out via the

probe junction into the leads. These quasiparticles were

measured as a contribution to the classical charge current

by repeating the experiment many times. Obviously, this

type of measurement is also destructive.

Measurement of charge qubit with SET

Non-destructive measurement of the charge qubit has

been implemented by connecting the qubit capacitively to

a SET electrometer [103]. The idea of this method is to

use a qubit island as an additional SET gate (Fig. 10), con-

trolling the dc current through the SET depending on the

state of the qubit. When the measurement is to be per-

formed, a driving voltage is applied to the SET, and the dc

current is measured. Another version of the measurement

procedure is to apply rf bias to the SET (rf-SET

[103–106]) in Fig. 10, and to measure the dissipative or

inductive response. In both cases the transmissivity will

show two distinct values correlated with the two states of

the qubit. Yet another version has recently been devel-

oped by the NEC group [107] to perform single-shot read-

out: the Cooper pair on the SCB island then tunnels out

onto a trap island (instead of the leads) used as a gate to

control the current through the SET.

The physics of the SET-based readout has been exten-

sively studied theoretically (see [44,108–109] and refer-

ences therein). A similar idea of controlling the transmis-

sion of a QPC (instead of an SET) capacitively coupled to

a charge qubit has also been extensively discussed in lit-

erature [110–114].

The induced charge on the SET gate depends on the

state of the qubit, affecting the SET working point and de-

termining the conductivity and the average current. The

development of the probability distributions of counted

electrons with time is shown in Fig. 11.

As the number of counted electrons grows, the distribu-

tions separate and become distinguishable, the distance be-

tween the peaks developing as . N and the width . N .

Detailed investigations [114] show that the two elec-

tron-number probability distributions correlate with the

probability of finding the qubit in either of two energy lev-

els. The long-time development depends on the intensity

and frequency distribution of the back-action noise from

the electron current. With very weak detector back action,

the qubit can relax to during the natural relaxation time T1.

With very strong back-action noise at the qubit frequency,

the qubit may become saturated in a 50/50 mixed state.

Measurement via coupled oscillator

Another method of qubit read out that has attracted

much attention concerns the measurement of the proper-

ties of a linear or nonlinear oscillator coupled to a qubit.

This method is employed for the measurement of induced

magnetic flux and persistent current in the loop of flux

qubits and charge-phase qubits, as well as for charge mea-

surement on charge qubits. With this method, the qubit af-

fects the characteristics of the coupled oscillator, e.g.

changes the shape of the oscillator potential, after which

the oscillator can be probed to detect the changes. There

are two versions of the method: resonant spectroscopy of

a linear tank circuit/cavity, and threshold detection using

biased JJ or SQUID magnetometer.

The first method uses the fact that the resonance fre-

quency of a linear oscillator weakly coupled to the qubit

undergoes a shift depending on the qubit state. The effect

is most easily explained by considering the SCT Hamil-

tonian, Eq. (5),

H SCT z e x� � � � �
1

2
[ ( ) ]�� ��

� � � � � �) �( )
~ ~ ~

e x C LE n E4
1

2

2 2 . (29)
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Fig. 10. Single electron transistor (SET) capacitively coupled

to an SCB.
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Fig. 11. Probability distributions P of counted electrons as

functions of time after the turning on the measurement beam of

electrons. Courtesy of G. Johansson, Chalmers.



Let us proceed to the qubit energy basis, in which case the

qubit Hamiltonian takes the form �( ) ,E/ z2 � E �
� �( )� 2 2 1 2� / . The interaction term in the qubit eigenbasis

will consist of two parts, the longitudinal part, ) �z z
~
� ,

) )z /E� ( )� , and the transverse part, ) �x x
~
� , ) � )x /E� ( ) .

In the limit of weak coupling the transverse part of interaction

is the most essential. In the absence of interaction (� �e 0),

the energy spectrum of the qubit � oscillator system is

E
E

nn� �� � � �
2

1

2
�( ) , (30)

where �� � 8E EC L is the plasma frequency of the oscil-

lator. The effect of weak coupling is enhanced in the vicin-

ity of the resonance, when the oscillator plasma frequency

is close to the qubit level spacing, �� 
 E. Let us assume,

however, that the coupling energy is smaller than the devi-

ation from the resonance, ) �x E�� �| |� . Then the spec-

trum of the interacting system in the lowest perturbative

order will acquire a shift,

�
) �

�
E n

E E
n

x

L
� � � �

�
( )

( )
1

2
�

�
. (31)

This shift is proportional to the first power of the oscil-

lator quantum number n, which implies that the oscillator

frequency acquires a shift (the frequency of the qubit is

also shifted [115–119]). Since the sign of the oscillator

frequency shift is different for the different qubit states, it

is possible to distinguish the state of the qubit by probing

this frequency shift.

In the case of the SCT, the LC oscillator is a generic

part of the circuit. It is equally possible to use an addi-

tional LC oscillator inductively coupled to a qubit. This

type of device has been described by Zorin [120] for SCT

readout, and recently implemented for flux qubits by

Il’ichev et al. [33,41].

Figure 12 illustrates another case, namely a charge

qubit capacitively coupled to an oscillator, again provid-

ing energy resolution for discriminating the two qubit lev-

els [121]. Analysis of this circuit is similar to the one dis-

cussed below in the context of qubit coupling via

oscillators, Section 7. The resulting Hamiltonian is simi-

lar to Eq. (50), namely,

H H HSCB y� � � �)� osc . (32)

In comparison with the case of the SCT, Eq. (32) has a

different form of the coupling term, which does not

change during rotation to the qubit eigenbasis. Therefore

the coupling constant ) directly enters Eq. (31). Recently,

this type of read out has been implemented for a charge

qubit by capacitively coupling the SCB of the qubit to a

superconducting strip resonator [122–124].

The described measurement method turned out to be

particularly useful for the charge qubits. The experimen-

tal data demonstrate clear advantage of the degeneracy

point, n /g �1 2, from the point of decoherence: the coher-

ence time drastically decreases while departing from this

operating point [125], presumably due to fluctuating

off-set charges. On the other hand, the measurement of

the charge at the degeneracy is not efficient because the

charge expectation values are the same for the both qubit

states. The measurement via oscillator is efficient at the

degeneracy since it distinguishes the qubit energy levels.

At small oscillator frequencies, the qubit adiabatically

follows the oscillation of the gate voltage, and the qubit

response can be expressed through the second derivative

of the qubit energy with respect to the gate voltage,

d E/d u g
2 2 [126,127]. The corresponding measured quan-

tity can be thus interpreted as a quantum capacitance of

the qubit. The measurement of the quantum capacitance

was proven to be a quantum limited measurement [128].

Threshold detection

To illustrate the threshold-detection method, let us

consider an SCT qubit with a third Josephson junction in-

serted in the qubit loop, as shown in Fig. 13.

When the measurement of the qubit state is to be per-

formed, a bias current is sent through the additional junc-

tion. This current is then added to the qubit-state depend-

ent persistent current circulating in the qubit loop. If the

qubit and readout currents flow in the same direction, the

critical current of the readout JJ is exceeded, which in-

duces the junction switching to the resistive branch, send-

ing out a voltage pulse. This effect is used to distinguish

the qubit states. The method has been extensively used

experimentally by Vion et al.[27–29,129].

To describe the circuit, we add the Hamiltonian of a

biased JJ, Eq. (1), to the SCT Hamiltonian (5). The phase

quantization condition will now read: 2� � � � � � �� e
~

. The

measurement junction will be assumed in the phase re-
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V (t)out u(t)

Fig. 12. SCT qubit coupled to a readout oscillator. The qubit is

operated by input pulses u t( ). The readout oscillator is con-

trolled and driven by ac microwave pulses V tg ( ). The output sig-

nal will be ac voltage pulses V tout ( ), the amplitude or phase of

which may discriminate between the qubit «0» and «1» states..



gime, E EJ
m

C
m�� , and moreover, the inductive energy will

be the largest energy in the circuit, E EL J
m�� . The latter

implies that the induced phase is negligibly small and can

be dropped from the phase quantization condition. We also

assume that � �e 0, thus 2 0� � � �� . Then, after having

omitted the variable�� , the kinetic energy term of the qubit

can be combined with the much larger kinetic energy of the

measurement junction leading to insignificant renor-

malization of the measurement junction capacitance. As a

result, the total Hamiltonian of the circuit will take the

form,

H E n n EC g J� � �
��

�
�
�

�
� � �� �( ) cos cos2 2

2

� � � � �E n E
e

IC
m

J
m

e
2

2
cos

�
. (33)

Since the measurement junction is supposed to be al-

most classical, its phase is fairly close to the minimum of

the junction potential. During qubit operation, the bias

current is zero; hence the phase of the measurement junc-

tion is zero. When the measurement is made, the current is

ramped to a large value close to the critical current of the

measurement junction, I e/ E Ie J
m� �( )2 � � , tilting the

junction potential and shifting the minimum towards 
/2.

Introducing a new variable � � �
 /, we expand the po-

tential with respect to small / �� 1 and, truncating the

qubit part, we obtain

H z x� � � ��

�
�

�

�
� �

�
�

/
�

2 2
1

2

�

� � �E n E
e

IC
m

J
m2

3

6 2

/
� /

�
, (34)

where � � 2 EJ . The ramping is supposed to be adia-

batic so that the phase remains at the minimum point. Let

us analyze the behavior of the potential minimum by

omitting a small kinetic term and diagonalizing the

Hamiltonian (34). The corresponding eigenenergies de-

pend on /,

E
E

E
e

I
E

J
m

� � � � �
�

�
�
�

�

�
�
�

( )/
/

� /�
�

2 6 2 4

3 2�
, (35)

as shown in Fig.14. Then within the interval of the bias

currents, | | ( )( )�I e/ / E0 � 2 42
� � , the potential energy cor-

responding to the ground state has a local minimum,

while for the excited state it does not. This implies that

when the junction is in the ground state, no voltage will be

generated. However, if the junction is in the excited state,

it will switch to the resistive branch, generating a voltage

pulse that can be detected.

With the discussed setup the direction of the persistent

current is measured. It is also possible to arrange the mea-

surement of the flux by using a dc SQUID as a threshold

detector. Such a setup is suitable for the measurement of

flux qubits. Let us consider, for example, the three junction

flux qubit inductively coupled to a dc SQUID (Fig. 6).

Then, under certain assumptions, the Hamiltonian of the

system can be reduced to the following form:

H E nz x C
s� � � � �

1

2

2( )�� ��

� � � � �( ) cosE
e

IJ
s

z)� �
�

2
, (36)

where EJ
s is an effective (bias flux dependent) Josephson

energy of the SQUID, and ) is an effective coupling con-

stant proportional to the mutual inductance of the qubit

and the SQUID loops.

6. Experiments with single qubits

and readout devices

In this Section we shall describe a few experiments with

single-qubits that represent the current state-of-the-art and

quite likely will be central components in the development

of multi-qubit systems during the next five to ten years.

The first experiment presents Rabi oscillations induced
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Vg
Vg

Ib

Fig. 13. SCT qubit coupled to a JJ readout quantum oscillator.

The JJ oscillator is controlled by dc/ac current pulses I tb( )

adding to the circulating currents in the loop due to the SCT

qubit. The output will be dc/ac voltage pulses V tout ( ) discrimi-

nating between the qubit «0» and «1» states.

2� eV

IU

/

Ic

Fig. 14. Josephson potential energy of the measurement junc-

tion during the measurement (left): for the «0» qubit eigenstate

there is a well (full line) confining a level, while for the «1»

qubit state there is no well (dashed line). Switching event on

the current-voltage characteristic (right).



and observed in the elementary phase qubit and readout os-

cillator formed by a single JJ [14–16,35.36]. The next ex-

ample describes a series of recent experiments with a flux

qubit [30] coupled to different kinds of SQUID oscillator

readout devices [31,32,130]. A further example will dis-

cuss the charge-phase qubit coupled to a JJ-junction oscil-

lator [27] and the recent demonstration of extensive

NMR-style operation of this qubit [29]. The last example

will present the case of a charge qubit (SCB) coupled to a

microwave stripline oscillator [117,118,122,123], repre-

senting a solid-state analogue of «cavity QED».

Before describing experiments and results, however,

we will discuss in some detail the measurement proce-

dures that give information about resonance line profiles,

Rabi oscillations, and relaxation and decoherence times.

The illustrations will be chosen from Vion et al. [27] for

the case of the charge-phase qubit, but the examples are

relevant for all types of qubits, representing fundamental

procedures for studying quantum system.

Readout detectors

Before discussing some of the actual experiments, it is

convenient to describe some of basic readout-detector

principles which more or less the same for the SET,

rf-SET, JJ and SQUID devices. A typical pulse scheme for

exciting a qubit and reading out the response is shown in

Fig.15: the readout control pulse can be a dc pulse (DCP)

or ac pulse (ACP). A DCP readout most often leads to an

output voltage pulse, which may be quite destructive for

the quantum system. An ACP readout presents a much

weaker perturbation by probing the ac-response of an os-

cillator coupled to the qubit, creating much less back ac-

tion, at best representing QND readout.

Spectroscopic detection of Rabi oscillation

In the simplest use of the classical oscillator, it does

not discriminate between the two different qubit states,

but only between energies of radiation emitted by a lossy

resonator coupled to the qubit. In this way it is possible to

detect the «low-frequency» Rabi oscillation of a qubit

driven by continuous (i.e. not pulsed) high-frequency ra-

diation tuned in the vicinity of the qubit transition energy.

If the oscillator is tunable, the resonance window can be

swept past the Rabi line. Alternatively, the Rabi fre-

quency can be tuned and swept past the oscillator window

by changing the qubit pumping power [33].

Charge qubit energy level occupation from counting

electrons: rf-SET

In this case, the charge qubit is interacting with a beam

of electrons passing through a single-electron transistor

(SET) coupled to a charge qubit (e.g. the rf-SET, [103]),

as discussed in Section 4 and illustrated in Fig. 10. In

these cases the transmissivity of the electrons will show

two distinct values correlated with the two states of the

qubit.

Coupled qubit-classical-oscillator system: switching

detectors with dc-pulse output

In Section 4 we analyzed the case of an SCT qubit cur-

rent-coupled to a JJ-oscillator (Fig. 13) and discussed the

Hamiltonian of the coupled qubit-JJ-oscillator system.

The effect of the qubit was to deform the oscillator poten-

tial in different ways depending on the state of the qubit.

The effect can then be probed in a number of ways, by in-

put and output dc and ac voltage and current pulses, to de-

termine the occupation of the qubit energy levels.

Using non-linear oscillators like single JJs or SQUIDS

one can achieve threshold and switching behavior where

the JJ/SQUID switches out of the zero-voltage state, re-

sulting in an output dc-voltage pulse.

Switching JJ

The method is based on the dependence of the critical

current of the JJ on the state of the qubit, and consists of

applying a short current DCP to the JJ at a value I b during

a time �t, so that the JJ will switch out of its zero-voltage

state with a probability P I bsw ( ). For well-chosen parame-

ters, the detection efficiency can approach unity. The

switching probability then directly measures the qubit’s

energy level population.

Switching SQUID

In the experiments on flux qubits by the Delft group, two

kinds of physical coupling of the SQUID to the qubit have

been implemented, namely inductive coupling (Fig. 6 (left))

[12,130] and direct coupling (Fig. 6 (right)): [30–32] The
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Fig. 15. Control pulse sequences involved in quantum state ma-

nipulations and measurement. Top: microwave voltage pulses

u t( ) are applied to the control gate for state manipulation. Mid-

dle: a readout dc pulse (DCP) or ac pulse (ACP) I tb( ) is applied

to the threshold detector/discriminator a time td after the last

microwave pulse. Bottom: output signal V t( ) from the detector.

The occurence of a output pulse depends on the occupation

probabilities of the energy eigenstates. A discriminator with

threshold Vth converts V t( ) into a boolean 0/1 output for statisti-

cal analysis.



critical current of the SQUID depends on the flux threading

the loop, and therefore is different for different qubit states.

The problem is to detect a two percent variation in the

SQUID critical current associated with a transition between

the qubit states in a time shorter than the qubit energy relax-

ation time T1. The SQUID behaves as an oscillator with a

characteristic plasma frequency � p JL L C� � �[( ) ] /
sh

1 2.

This frequency depends on the bias current I b and on the cri-

tical current IC via the Josephson inductance LJ �

� ��0
2 22 1/ I I /IC b c
 (the shunt capacitor with capacitance

Csh and lead inductance L is used to «tune» � p ). Thus, the

plasma frequency takes different values�

'1( or�


'2( depend-

ing on the state of qubit, representing two different shapes of

the SQUID oscillator potential.

In the dc-pulse-triggered switching SQUID [12,30,31], a

dc-current readout-pulse is applied after the operation

pulse(s) (Fig. 15), setting a switching threshold for the critical

current. The circulating qubit current for one qubit state will

then add to the critical current and make the SQUID switch to

the voltage state, while the other qubit state will reduce the

current and leave the SQUID in the zero-voltage state.

In an application of ac-pulse-triggered switching

SQUID [32], readout relies on resonant activation by a

microwave pulse at a frequency close to� p , adjusting the

power so that the SQUID switches to the finite voltage

state by resonant activation if the qubit is in state |0�,
whereas it stays in the zero-voltage state if it is in state |1�.
The resonant activation scheme is similar to the readout

scheme used by Martinis et al. [14,15,35,36].

Coupled qubit-classical-oscillator system: ac-pulse

non-switching detectors

This implementation of ACP readout uses the

qubit-SQUID combination [12] shown in Fig. 6 (left),

but with ACP instead of DCP readout, implementing a

nondestructive dispersive method for the readout of the

flux qubit [130]. The detection is based on the measure-

ment of the Josephson inductance of a dc-SQUID induc-

tively coupled to the qubit. Using this method, Lupascu et

al. [130] measured the spectrum of the qubit resonance

line and obtained relaxation times around 80 �s, much

longer than observed with DCP.

A related readout scheme was recently implemented

by Siddiqi et al. [131] using two different oscillation

states of the non-linear JJ in the zero-voltage state.

6.1. Operation and measurement procedures

A number of operation and readout pulses can be ap-

plied to a qubit circuit in order to measure various proper-

ties. The number of applied microwave pulses can vary

depending on what quantities are to be measured: reso-

nance line profile, relaxation time, Rabi oscillation,

Ramsey interference or Spin Echo, as discussed below.

Resonance line profiles and T2 decoherence times

To study the resonance line profile, one applies a sin-

gle long weak microwave pulse with given frequency, fol-
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the detuned microwave excitation (a). Population of the upper level as a function of the detuning; the inverse of the half width of

the resonance line gives the total decoherence time T2 (b).
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Fig. 17. Decay of the switching probability of the charge-qubit

readout junction as a function of the delay time td between the

excitation and readout pulses. Courtesy of D. Esteve,

CEA-Saclay.



lowed by a readout pulse (Fig. 16). The procedure is then

repeated for a spectrum of frequencies. The Rabi oscilla-

tion amplitude, the upper state population, and the detec-

tor switching probability p t( ) will depend on the detuning

and will grow towards resonance. The linewidth gives di-

r e c t l y t h e t o t a l i n v e r s e d e c o h e r e n c e l i f e t i me

1 1 2 12 1/T / T /T� � �. The decoherence-time contributions

from relaxation (1 1/T ) and dephasing (1/T�) can be (ap-

proximately) separately measured, as discussed below.

T1 relaxation times

To determine the T1 relaxation time one measures the

decay of the population of the upper |1� state after a long

microwave pulse saturating the transition, varying the de-

lay time t d of the detector readout pulse (Figs. 17,18).

The measured T1 1 8� . microseconds is so far the best

value for the Quantronium charge-phase qubit.

Rabi oscillations and T2,Rabi decoherence time.

To study Rabi oscillations (frequency � . u, the am-

plitude of driving field) one turns on a resonant micro-

wave pulse for a given time t w� and measures the upper |1�
state population (probability) p t1( ) after a given (short)

delay time t d . If the systems is perfectly coherent, the

state vector will develop as cos | sin |� �t t0 1� � �, and the

population of the upper state will then oscillate as sin 2�t

between 0 and 1. In the presence of decoherence, the am-

plitude of the oscillation of p t1( ) will decay on a time

scale TRabi towards the average value p t1 0 5( ) .�3 � . This

corresponds to incoherent saturation of the 0 to 1 transi-

tion.

Ramsey interference, dephasing and T2,Ramsey

decoherence time

The Ramsey interference experiment measures the

decoherence time of the non-driven, freely precessing,

qubit. In this experiment a 
/2 microwave pulse around

the x-axis induces Rabi oscillation that tips the spin from

the north pole down to the equator. The spin vector rotates

in the xy plane, and after a given time �t, another 
/2 mi-

crowave pulse is applied, immediately followed by a

readout pulse (Fig. 19).

Since the 
/2 pulses are detuned by � from the qubit

| |0 1� � � transition frequency, the qubit will precess with

frequency � relative to the rotating frame of the driving

field. Since the second microwave pulse will be applied in

the plane of the rotating frame, it will have a projection

cos �t on the qubit vector and will drive the qubit towards

the north or south poles, resulting in a specific time-inde-

pendent final superposition state cos | sin |� �t t0 1� � � of

the qubit at the end of the last 
/2 pulse. The readout pulse

then catches the qubit in this superposition state and

forces it to decay if the qubit is in the upper |1� state. The

probability will oscillate with the detuning frequency, and

a single-shot experiment will then detect the upper state

with this probability. Repeating the experiment many

times for different 
/2 pulse separation �t will then give

|0� or |1� with probabilities cos 2 �t and sin 2 �t. Taking the

average, and then varying the pulse separation, will trace

out the Ramsey interference oscillatory signal. Dephasing

will make the signa decay on the timescale T�.

Spin-echo

The spin-echo and Ramsey pulse sequences differ in

that a 
-pulse around the x-axis is added in between the

two 
/2-pulses in the spin-echo experiment. As in the
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Ramsey experiment, the first 
/2-pulse makes the Bloch

vector start rotating in the equatorial xy plane with fre-

quency E/� � +01. The effect of the 
-pulse is now to flip

the entire xy plane with the rotating Bloch vector around

the x-axis, reflecting the Boch vector in the xz plane. The

Bloch vector then continues to rotate in the xy plane in the

same direction. Finally a second 
/2-pulse is applied to

project the state on the z-axis.

If two Bloch vectors with slightly different frequency

start rotating at the same time in the xy plane, they will

move with different angular speeds. The effect of the


-pulse at time �t will be to permute the Bloch vectors,

and then let the motion continue in the same direction.

This is similar to reversing the motion and letting the

Bloch vectors back-trace. The net result is that the two

Bloch vectors re-align after time 2�t.

In NMR experiments, the different Bloch vectors cor-

respond to different spins in the ensemble. In the case of a

single qubit, the implication is that in a series of repeated

experiments, the result will be insensitive to small varia-

tions �E of the qubit energy between measurements, as

long as the energy (rotation frequency) is constant during

one and the same measurement. If fluctuations occur dur-

ing one measurement, then this cannot be corrected for.

The spin-echo procedure can therefore remove the mea-

surement-related line-broadening associated with slow

fluctuations of the qubit precession, and allow observa-

tion of the intrinsic coherence time of the qubit.

7. Physical coupling schemes for two qubits

General principles

A generic scheme for coupling qubits is based on the

physical interaction of linear and non-linear oscillators

constituting a superconducting circuit. In a multi-qubit

system the induced gate charge in the SCB, or the flux

through the SQUID loop, or the phase in the Josephson

energy, will be a sum of contributions from several (in

principle, all) qubits. The energy of the system can there-

fore not be described as the sum of two independent

qubits because of the quadratic dependence, and the cross

terms represent interaction energies of different kinds: ca-

pacitive, inductive and phase/current. Moreover, using JJ

circuits as non-linear coupling elements we have the ad-

vantage that the direct physical coupling strength may be

controlled, e.g tuning the inductance via current biased

JJs, or tuning the capacitance by a voltage biased SCB.

Inductive coupling of flux qubits

A common way of coupling flux qubits is the inductive

coupling: magnetic flux induced by one qubit threads the

loop of another qubit, changing the effective external flux

(Fig. 20). This effect is taken into account by introducing

the inductance matrix Lik , which connects flux in the ith

loop with the current circulating in the kth loop

� i ik

k

kL I�	 . (37)

The off-diagonal element of this matrix, L12, is the mu-

tual inductance which is responsible for the interaction.

By using the inductance matrix, the magnetic part of the

potential energy in Eq. (2) can be generalized to the case

of two coupled qubits,

1

2 2

2
1�

e
L

ik

ik ei k ek
�

�
�

�

�
� � �� � ���	( ) ( ) ( ) . (38)

Then following the truncation procedure leading to the

flux qubit we calculate the matrix elements,

� � � � � � � � � � � �l f l r f r l f r|
~

| , |
~

| , | | , (39)

for each qubit. The last matrix element is exponentially

small, while the first two ones are approximately equal

to the minimum points of the potential energy, �l and �r ,

respectively. This implies that the truncated interaction

basically has the zz-form,

H z zint ,� )� �1 2

) � �

�
�

�

�
� � �� � ���1

8 2

2
1

12 1 2
�

e
L l r l r( ) ( ) ( ) . (40)
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Fig. 21. Fixed capacitive coupling of charge qubits.



Capacitive coupling of charge qubits

One of the simplest coupling schemes is the capacitive

coupling of charge qubits. Such a coupling is realized by

connecting the islands of two SCBs via a small capacitor,

as illustrated in Fig. 21.

This will introduce an additional term in the Lagrangian

of the two non-interacting SCBs, namely the charging en-

ergy of the capacitor C 3, �L C V /� 3 3
2 2.The voltage dropV3

over the capacitor is expressed via the phase differences

across the qubit junctions, V / e3 1 22� � ��( ) ( � � )� , and thus

the kinetic part of the Lagrangian will take the form,

K
e

C
e

C Vik

i k

i k gi

i

gi( � , � ) � �.

,

� � � �

�
�

�

�
� � � �	 	1 2

2 2
1

2 2 2

� � ��i , (41)

where the capacitance matrix elements are C C Cii i� �4 3,

and C C12 3� . Then proceeding to the circuit Hamiltonian,

we find the interaction term,

H e C n nint ( )� �2 2 1
12 1 2 . (42)

This interaction term is diagonal in the charge basis,

and therefore leads to the zz-interaction after truncation,

H
e

Cz zint , ( )� � �)� � )1 2

2
1

12
2

. (43)

The qubit Hamiltonians are given by Eq. (19) with

charging energies renormalized by the coupling capacitor.

JJ phase coupling of charge qubits

Instead of the capacitor, the charge qubits can be con-

nected via a Josephson junction [132]. In this case, the

Josephson energy of the coupling junction EJ 3 1 2cos ( )� ��
must be added to the Lagrangian in addition to the charging

energy. This interaction term is apparently off-diagonal in

the charge basis and, after truncation, gives rise to the so

cold xy-coupling,

H
E

x x y y
J

int ( ),� � �) � � � � )1 2 1 2
3

4
. (44)

Capacitive coupling of single JJs

Capacitive coupling of JJ qubits, illustrated in Fig. 22 is

described in a way similar to the charge qubit, and the result-

ing interaction Hamiltonian has the form given in Eq. (42).

Generally, in the qubit eigenbasis, |0� and |1�, all matrix

elements of the interaction Hamiltonian are non-zero.

However, if we adopt a parabolic approximation for the

Josephson potential, then the diagonal matrix elements

turn to zero, n n00 11 0� � , while the off-diagonal matrix

elements remain finite, n n i E /EJ C01 10
1 4� � � � ( ) / . Then,

after truncation, the charge number operator n turns to � y ,

and the qubit-qubit interaction takes the yy-form,

H e
E E

Cy y
p p

C C
int , ( )� � �)� � )

� �
1 2

2
2

1 2

1 2

1
122

�
. (45)

7.1. Coupling via oscillators

Besides the direct coupling schemes described above,

several schemes of coupling qubits via auxiliary oscillators

have been considered [44]. Such schemes provide more

flexibility, e.g. to control qubit interaction, to couple two

remote qubits, and to connect several qubits. Moreover, in

many advanced qubits, the qubit variables are generically

connected to the outside world via an oscillator (e.g. the

Delft and Saclay qubits). To explain the principles of such

a coupling, we consider the coupling scheme for charge

qubits suggested by Shnirman et al. [21].

Coupling of charge (SCB, SCT) qubits

In this circuit the island of each SCB is connected to

ground via a common LC-oscillator, as illustrated in

Fig. 23. The kinetic energy of a single qubit should now

be modified taking into account the additional phase dif-

ference � across the oscillator,

K
e

C C Vi i g gi( � , � ) [ ( � �.
,

.
,

.
,� � � �

�
�

�

�
� � � �� ��� � �

1

2 2
2

2
2�

i ) ]2 . (46)
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Fig. 22. Capacitive coupling of single JJ qubits.

SCB SCB
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VgVg

Fig. 23. Two charge qubits coupled to a common LC-oscillator.



The cross term in this equation can be made to vanish by a

change of qubit variable,

� � � � � ��, ,i i
g

a a
C

C 4
. (47)

The kinetic energy will then split into two independent

parts, the kinetic energy of the qubit, and an additional

quadratic term,

1

2 2

2
2�

e

CC

C

g�

�
�

�

�
� �

4

.

� , (48)

which should be combined with the kinetic energy of the

oscillator, leading to renormalization of oscillator capaci-

tance.

Expanding the Josephson energy, after the change of

variable, gives

E a E E aJi i Ji i Ji icos ( ) cos sin .� � � 
 � � � � (49)

provided the amplitude of the oscillations of � is small.

The last term in this equation describes the linear cou-

pling of the qubit to the LC-oscillator.

Collecting all the terms in the Lagrangian and per-

forming quantization and truncation procedures, we ar-

rive at the following Hamiltonian of the qubits coupled to

the oscillator (this is similar to Eq. (32) for the SCT),

H H HSCB i i yi

i

� � �
�
	( ),

,

) � � osc

1 2

, (50)

where H
SCB
i( )

is given by Eq. (19), and

) i
Ji gE C

C
�

4
, (51)

is the coupling strength.

The physics of the qubit coupling in this scheme is the

following: quantum fluctuation of the charge of one qubit

produces a displacement of the oscillator, which perturbs

the other qubit. If the plasma frequency of the LC oscilla-

tor is much larger than the frequencies of all qubits, then

virtual excitation of the oscillator will produce a direct ef-

fective qubit-qubit coupling, the oscillator staying in the

ground state during all qubit operations. To provide a

small amplitude of the zero-point fluctuations, the oscil-

lator plasma frequency should be small compared to the

inductive energy, or E EC Losc �� . Then the fast fluctua-

tions can be averaged out. Noticing that the displacement

does not change the oscillator ground state energy, which

then drops out after the averaging, we finally arrive at the

Hamiltonian of the direct effective qubit coupling,

H
EL

y yint � �
) )

� �1 2
1 2 (52)

for the oscillator-coupled charge qubits in Fig. 23.

Current coupling of SCT qubits

Charge qubits based on SCTs can be coupled by connect-

ing loops of neighboring qubits by a large Josephson junc-

tion in the common link [133–139], as illustrated in Fig. 24.

The idea is similar to the previous one: to couple qubit

variables to a new variable, the phase of the coupling

Josephson junction, then to arrange the phase regime for the

junction with large plasma frequency (E ECcoupl Jcoupl�� ),

and then to average out the additional phase. Technically,

the circuit is described using the SCT Hamiltonian, Eqs. (5),

(21), for each qubit,

H E n n E nSCT C g C� � � �� �( ) 2 2

� � � � �
� � �

�
�

2
2

2

2

E EJ L

e
cos cos

( )
, (53)

and adding the Hamiltonian of the coupling junction,

H E n Ec C c c J c c� � �, , cos2 . (54)

The phase �c across the coupling junction must be added

to the flux quantization condition in each qubit loop; e.g.,

for the first qubit 2 1 1 1� � � � � � �� , ,
~

c e (for the second

qubit the sign of �c will be minus). Assuming small induc-

tive energy, E EL J c�� , , we may neglect
~
� ; then assuming

the flux regime for the coupling Josephson junction we

adopt a parabolic approximation for the junction poten-

tial, E /J c c, �
2 2.

With these approximations, the Hamiltonian of the

first qubit plus coupling junction will a take form similar

to Eq. (53) where EJ c, will substitute for EL, and �c will

substitute for 2� � �� e . Finally assuming the amplitude of

the �c-oscillations to be small, we proceed as in the previ-

ous subsection, i.e. expand the cosine term obtaining lin-

ear coupling between the SCB and the oscillator, truncate

the full Hamiltonian, and average out the oscillator. This

will yield the following interaction term,
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Fig. 24. Charge (charge-phase) qubits coupled via a common

Josephson junction providing phase coupling of the two circuits.



H
E

E
J c

x x i J
i

int
,

, sin� �
�) )

� � )1 2
1 2

2
, (55)

This coupling scheme also applies to flux qubits: in this

case, the coupling will have the same form as in Eq. (40),

but the strength will be determined by the Josephson en-

ergy of the coupling junction, cf. Eq. (55), rather than by

the mutual inductance.

7.2. Variable coupling schemes

Computing with quantum gate networks basically as-

sumes that one-and two-qubit gates can be turned on and

off at will. This can be achieved by tuning qubits with

fixed, finite coupling in and out of resonance, in

NMR-style computing [140].

Here we shall discuss an alternative way, namely to

vary the strength of the physical coupling between near-

est-neighbor qubits, as discussed in a number of recent

papers [133,134,136–138,141–144].

Variable inductive coupling

To achieve variable inductive coupling of flux qubits

one has to be able to the control the mutual inductance of

the qubit loops. This can be done by different kinds of

controllable switches (SQUIDS, transistors) [141] in the

circuit. In a recent experiment, a variable flux transformer

was implemented as a coupling element (see Fig. 25) by

controlling the transforming ratio [145]. The flux trans-

former is a superconducting loop strongly inductively

coupled to the qubit loops, which are distant from each

other so that the direct mutual qubit inductance is negligi-

bly small. Because of the effect of quantization of mag-

netic flux in the transformer loop [146], the local varia-

tion of magnetic flux�1 induced by one qubit will affect a

local magnetic flux �2 in the vicinity of the other qubit

creating effective qubit-qubit coupling. When a dc

SQUID is inserted in the transformer loop, as shown in

Fig. 25, it will shortcircuit the transformer loop, and the

transformer ratio � �2 1/ will change. The effect depends

on the current flowing through the SQUID, and is propor-

tional to the critical current of the SQUID. The latter is

controlled by applying a magnetic flux�cx to the SQUID

loop, as shown in Fig. 25. Quantitatively, the dependence

of the transformer ratio on the controlling flux is given by

the equation [145],

�

�

�

�
2

1 0

1

1� �
�

�
��

�

�
��

�
E

E

J

L

cxcos ,



(56)

where EJ is the Josephson energy of the SQUID junction,

and EL is the inductive energy of the transformer.

Variable Josephson coupling

A variable Josephson coupling is obtained when a sin-

gle Josephson junction is substituted by a symmetric dc

SQUID whose effective Josephson energy 2 2E /J ecos ( )�
depends on the magnetic flux threading the SQUID loop.

This property is commonly used to control level spacing

in both flux and charge qubits, and it can also be used to

switch on and off qubit-qubit couplings. For example, the

coupling of the charge-phase qubits via Josephson junc-

tion in Fig. 24 can be made variable by substituting the

single coupling junction with a dc SQUID [133,134].

The coupling scheme shown in Fig. 23 is made con-

trollable by using a dc SQUID design for the SCB. In-

deed, since the coupling strength depends on the

Josephson energy of the qubit junction, Equatich (51),

this solution provides variable coupling of the qubits.

Similarly, the coupling of the SCTs shown in Fig. 24 can

be made controllable by employing a dc SQUID as a cou-

pling element. A disadvantage of this solution is that the

qubit parameters will vary simultaneously with varying

of the coupling strength. A more general drawback of the

dc SQUID-based controllable coupling is the necessity to

apply magnetic field locally, which might be difficult to

achieve without disturbing other elements of the circuit.
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Fig. 25. Flux transformer with variable coupling controlled by

a SQUID.
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Fig. 26. Coupled charge qubits with current-controlled phase

coupling: the arrow indicates the direction of the controlling

bias current.



This is however an experimental question, and what are

practical solutions in the long run remains to be seen.

Variable phase coupling

An alternative solution for varying the coupling is

based on the idea of controlling the properties of the

Josephson junction by applying external dc current

[136–138], as illustrated in Fig. 26. The coupling strength

here depends on the plasma frequency of the coupling

Josephson junction, which in turn depends on the form of

the local minimum of the junction potential energy. This

form can be changed by tilting the junction potential by

applying external bias current. The role of the external

phase bias, �e , will now be played by the minimum point

�0 of the tilted potential determined by the applied bias

current, E / e IJ c e, sin ( )� �0 2� . Then the interaction term

will read,

H
E /

E
x x

J

J c
int

,

,
sin ( )

cos
� �

�

�
)� � )1 2

2 2
0

0

2
, (57)

and local magnetic field biasing is not required.

Variable capacitive couplin

Variable capacitive coupling of charge qubits based on

a quite different physical mechanism of interacting SCB

charges has been proposed in Ref. [143]. The SCBs are

then connected via the circuit presented in Fig. 27.

The Hamiltonian of this circuit, including the charge

qubits, has the form

H H E n q n n ESCB i

i

C J� � � � � �	 , ( ( )) cos ,1 2
2 (58)

where EC and E EJ c. are the charging and Josephson

energies of the coupling junction, and n and � are the

charge and the phase of the coupling junction. The func-

tion q is a linear function of the qubit charges, n1, and n2,

and it also depends on the gate voltages of the qubits and

the coupling junction. In contrast to the previous scheme,

here the coupling junction is not supposed to be in the

phase regime; however, it is still supposed to be fast,

E EJ Ji�� . Then the energy gap in the spectrum of the

coupling junction is much bigger than the qubit energy,

and the junction will stay in the ground state during qubit

operations. Then after truncation, and averaging out the

coupling junction, the Hamiltonian of the circuit will take

the form,

H H SCB i

i

z z� � �	 , ( )� � �0 1 2 , (59)

where the qubit Hamiltonian is given by Eq. (19), and the

function � 0 is the ground state energy of the coupling

junction. The latter can be generally presented as a linear

combination of terms proportional to � �z z1 2 and

� �z z1 2� ,

� � � 5 +� � 6 � �0 1 2 1 2 1 2( ) ( )z z z z z z� � � � � , (60)

with coefficients depending on the gate potentials. The

second term in this expression gives the zz-coupling (in

the charge basis), and the coupling constant + may, ac-

cording to the analysis of Ref. [143], take on both positive

and negative values depending on the coupling junction

gate voltage. In particular it may turn to zero, implying

qubit decoupling.

Two qubits coupled via a resonator

In the previous discussion, the coupling oscillator

plays a passive role, being enslaved by the qubit dynam-

ics. However, if the oscillator is tuned into resonance with

a qubit, then the oscillator dynamics will become essen-

tial, leading to qubit-oscillator entanglement. In this case,

the approximation of direct qubit-qubit coupling is not

appropriate; instead, manipulations explicitly involving

the oscillator must be considered.

Let us consider, as an example, operations with two

charge qubits capacitively coupled to the oscillator. As-

suming the qubits to be biased at the degeneracy point and

proceeding to the qubit eigenbasis (phase basis in this

case), we write the Hamiltonian on the form,

H Hi
zi i x i� � � �

�

�
�

�

�
� � �	 �

2
� ) � osc [ ] . (61)

Let us consider the following manipulation involving the

variation of the oscillator frequency [142]: at time t � 0,

the oscillator frequency is off-resonance with both qubits,

��( ) .0 1 2� �� � Then the frequency is rapidly ramped so

that the oscillator becomes resonant with the first qubit,

��( ) ,t1 1� � the frequency remaining constant for a

while. Then the frequency is ramped again and brought

into resonance with the second qubit, ��( ) .t 2 2� � Fi-

nally, after a certain time it is ramped further so that the

oscillator gets out of resonance with both qubits at the

end, ��( )t t� �3 2� .
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When passing through the resonance, the oscillator is

hybridized with the corresponding qubit, and after pass-

ing the resonance, the oscillator and qubit have become

entangled. For example, let us prepare our system at t � 0

in the excited state �( ) | | | |0 100 1 0 0� � � � � �, where the first

number denotes the state of the oscillator (first excited

level), and the last numbers denote the (ground) states of

the first and second qubits, respectively. After the first

operation, the oscillator will be entangled with the first

qubit, �( )t t t1 2� � � (cos | sin | ) |/ / 5
1 110 01 0� � � �e i . Af-

ter the second manipulation, the state |100� will be entan-

gled with state |001�,

� / / / 6( ) cos (cos | sin | )t t i� � � � � �3 1 2 2100 001e

� �sin |/ 5
1 010e i .

To ensure that there are no more resonances during the de-

scribed manipulations, it is sufficient to require

��( )0 2 1� �� � .

If the controlling pulses are chosen so that / 
2 2� / ,

then the initial excited state will be eliminated form the fi-

nal superposition, and we’ll get entangled states of the

qubits, while the oscillator will return to the ground state

� / /6 5( ) | (cos | sin | )t t i i� � � � � �3 1 10 01 10e e (62)

The manipulation should not necessarily be step-like,

it is sufficient to pass the resonance rapidly enough to

provide the Landau-Zener transition, i.e. the speed of the

frequency ramping should be comparable to the qubit

level splittings.

A somewhat more complex pulse sequence is required

to realize a universal entangling two-qubit gate; the way

to do it is explained, e.g. in [147].

8. Conclusion and perspectives

Within 5 years, engineered JJ quantum systems with

5–10 qubits will most likely begin seriously to test the

scalability of solid state QI processors.

For this to happen, a few decisive initial steps and

breakthroughs are needed and expected: The first essen-

tial step is to develop JJ-hardware with long coherence

time to study the quantum dynamics of a two-qubit circuit

and to perform a «test» of Bell’s inequalities (or rather the

JJ-circuitry) by creating entangled two-qubit Bell states

and performing simultaneous projective measurements

on the two qubits.

A first breakthrough would be to perform a significant

number of single- and two-qubit gates on a 3-qubit cluster

to entangle three qubits. Combined with simultaneous

projective readout of individual qubits, not disturbing un-

measured qubits, this would form a basis for the first

solid-state experiments with teleportation, quantum error

correction (QEC), and elementary quantum algorithms.

This will provide a platform for scaling up the system to

10 qubits.

This may not look very impressive but nevertheless

would be an achievement far beyond expectations only a

decade back. The NMR successes, e.g. running Shor-type

algorithms using a molecule with 7 qubits [148], are ba-

sed on technologies developed during 50 years using nat-

ural systems with naturally long coherence times. Simi-

larly, semiconductor technologies have developed for 50

years to reach today’s scale and performance of classical

computers. It is therefore to be expected that QI technolo-

gies will need several decades to develop truly significant

potential. Moreover, in the same way as for the classical

technologies, QI technologies will most probably develop

slowly step by step, «qubit by qubit», which in itself will

be an exponential development.

Morover, in future scalable information processors,

different physical realizations and technologies might be

combined into hybrid systems to achieve fast processing

in one system and long coherence and long-time informa-

tion storage in another system. In this way, solid state

technologies might be combined with ion trap physics to

build large microtrap systems [149], which in turn might

be coupled to superconducting Josephson junctions pro-

cessors via microwave transmission lines [150].
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