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A possibility of nondissipative transmission of electrical current from the source to the load using

superfluid electron-hole pairs in bilayers is studied. The problem is considered with reference to quantum

Hall bilayers with the total filling factor �T �1. At nonzero interlayer tunneling the current pattern looks as a

sum of uniform planar counterflow currents and Josephson vortices. The difference of electrochemical po-

tentials of the layers (that is required to support the current in the load circuit) causes the motion of the

Josephson vortices. In such a situation the second superfluid viscosity comes into play and results in dissipa-

tion of energy. It is found that the power of losses is proportional to the square of the matrix element of the

interlayer tunneling and depends nonlinearly on the load resistance.

PACS: 73.43.Jn Tunneling;
74.90.+n Other topics in superconductivity.
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Thirty years ago in the papers [1,2] the idea of unusual

mechanism of superconductivity that can be realized in

electron-hole bilayers was proposed. The idea is based on

the fact that in such systems an electron and a hole may

form a bound state that can be considered as a composite

boson. Superfluid motion of such pairs is equivalent to

two nondissipative electrical currents (of opposite direc-

tion) in the layers. Using the contacts that allows one

to access the layers separately one can realize the counter-

flow setup and use the bilayer for the transmission of the

current from the source to the load. One can expect that

such a bilayer will work as a double-wire superconduct-

ing transmission line.

The specifics of the electron-hole superfluidity is that

the layers should be situated rather close to each other and

the interlayer tunneling cannot be neglected. In the pres-

ence of tunneling the bilayer system cannot support the

uniform planar supercurrent, and the current state be-

comes a soliton-like [3–5]. This state is similar to the

Josephson vortex state in long contacts between two su-

perconductors. The aim of this study is to clarify whether

the soliton current state in bilayers remains nondissi-

pative. Our consideration is based on the statement that in

the counterflow setup the soliton-like current state be-

comes nonstationary one. The reason is the following.

Nonzero current in the load circuit can appear only if the

electrochemical potentials of the layers differ from each

other, and in the presence of the electrochemical potential

difference the solitons (Josephson vortices) begin to

move. We find that such motion results in dissipation of

energy.

In this paper the electron-hole superfluidity is studied

with reference to a bilayer quantum Hall system. As was

pointed out in [6,7] in bilayer systems with the same type

of conductivity of the layer subjected by a quantizing

magnetic field one can realize the electron-hole super-

fluidity. The condition is that the sum of filling factors of

the layers is equal to unity. The idea [6,7] greatly in-

creases the interest to the experimental and theoretical

study of the electron-hole superfluidity. The results of re-

cent experimental investigations of quantum Hall bilay-

ers [8–14] support the theoretical prediction on Bose-Ein-
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s te in condensa t ion (BEC) and super f lu id i ty of

electron-hole pairs. In particular, in the counterflow ex-

periments a huge increase of longitudinal conductivity

was observed [13,14]. Other important observations are a

strong low bias tunnel conductivity [8,12], a Godstone

collective mode [9], and a quantized Hall drag between

the layers [10,11]. Nevertheless, genuine nondissipative

counterflow state was not achieved in the experiments.

The BEC of electron-hole pairs in quantum Hall bi-

layers can be interpreted as the development of the spon-

taneous phase coherence between electrons belonging to

adjacent layers. The coherent phase � is the phase of the

order parameter that describes the electron-hole pairing.

The superflow of the pairs is associated with nonzero gra-

dient of the phase. In the continuous approximation the

energy of the system can be written as:
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where we assume that the system is uniform in y direction

(direction perpendicular to the current) and neglect the

variations of the modulus of the order parameter. In (1) E0

is the energy of the ground state,
~
t t� 2 0� , the tunneling

energy (t is the matrix element of the interlayer tunnel-

ing),
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the superfluid stiffness, � 0 1� �� �( ), the modulus of

the order parameter (the filling factors of the layers are

� �1 � and � �2 1� � ), d is the interlayer distance, � is the

magnetic length. Eq. (1) is obtained from the equation

E H� � �� �| | , where H is the Hamiltonian of the

bilayer system in the lowest Landau level approximation,

| ( )|�� � � �� � �u v e h vacX

X

X X X2 1

is the BCS-like many particle wave function, X is the

guiding center of the orbit, eiX
� (hiX

� ), the creation opera-

tors for the electron (hole) in the ith layer, the vacuum

state | vac� is defined as the state with empty layer 2 and

completely filled (�1 1� ) layer 1.

Varying the energy (1) with respect to the phase and

equating the result to zero one obtains the stationary con-

tinuity equation
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where the first term is the divergence of the planar super-

current density

j j
e d

dx

s s s
1 2
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�
, (4)

and the second term is the density of interlayer super-

current, flowing from the layer 1 to the layer 2.

I
e tT

1 2 22
� �( )

~

sin .
� �

�
�

(5)

Equation (3) coincides in form with the equation of mo-

tion of nonlinear pendulum. At given input current (cur-

rent from the source) the solution of (3) should satisfy the

boundary condition j j
s

1
0

( )
( ) � in , and it should corre-

spond the conditional minimum of energy (1). Note that

in difference with the pendulum problem, energy (1) does

not coincide with the integral of motion of (3). Using the

known solutions for the pendulum problem we find that

there is a critical input current j e /c s� 2 � �� (where

� ��� � 2 s /t
~

is the Josephson length) that separates two

regimes.

1 . A t j j cin � t h e p l a n a r c u r r e n t j
s

1
( ) �

� �j x x /csech(( ) )0 � ( x j /jc0
1� �� cosh ( )in ) decreases

exponentially with distance from the source edge, and for

long systems Lx �� � the current at the load edge will be

exponentially small. Therefore, at small input current the

bilayer system cannot work as the transmission line.

2. At j j cin � the planar current j j /
s

c1
( )

( )� �� dn

�( / , )x � � � (� � j /jc
2 2

in , dn( , )x k is the Jacobi elliptic

function) contains the constant part and spatially oscillat-

ing part. The total current is a sum of the uniform current

and the current of Josephson vortices. The planar current

reaches the load edge and the bilayer system works as the

transmission line.

In the counterflow setup the current withdrawn from

one layer should be redirected into the other layer through

the load circuit. To support the current in the load circuit

the difference of electrochemical potential of the layer is

required. At such difference the phase of the order para-

meter changes in time and the current state becomes non-

stationary.

We describe the nonstationary state by the set of two

equations for the phase and for the local difference of the

electrochemical potentials V . The first equation is the

nonstationary continuity equation
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where ~n is the excess local density of the electron-hole

pairs that corresponds to the excess local charge densities

in the layers. It is connected with V by the capacitor equa-

tion en CV~ � with
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the effective capacity of the bilayer system per unit area.

In Eq. (6) and below we neglect the normal component of

the gas of electron-hole pairs.

The second equation is the generalized Josephson

equation in which dissipative terms are taken into ac-

count. Without derivation this equation was given in [15].

One can justify this equation basing on general argu-

ments. In the superfluid hydrodynamics [16] the equation

for the superfluid velocity (in linear approximation) with

dissipative terms has the following form:

( ) 

 
� �* � * * +

v
v

s
m s s

t
n, - 3 , (7)

where,m is the chemical potential per unit mass , ,m /m�
(m is the mass of the Bose particle), ns is the superfluid

density, - 3 is the second viscosity for the superfluid com-

ponent.

To apply Eq. (7) for a description of the bilayer elec-

tron-hole superfluidity we should replace the 3D diver-

gence of the density of the flow with the 2D divergence

of the planar supercurrent plus the term accounted for

the leakage caused by the the tunnel supercurrent:

* . �   � �( ) ( )( )
( )

,n /e j / x Is s
s

Tv 1
1 1 2 . The chemical po-

tential should be replaced with the difference of electro-

chemical potentials ,. �eV . Using Eqs. (4), (5) and the

definition of the superfluid velocity v s /m� *� � (m is the

mass of the electron-hole pairs) we obtain from (7) the

following equation
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where / � is dimensional less parameter proportional to

the second viscosity. It is just the equation given in [15].

Equation for the phase that coincides in form with (8) was

also derived in [17] for the electron-hole bilayers in zero

magnetic field.

Note that nonzero second viscosity does not yield au-

tomatically the dissipation. In particular, one can see from

Eq. (8) that the viscosity term is equal to zero if the sta-

tionary continuity equation (3) is fulfilled. We will show

that under motion of Josephson vortices the second vis-

cosity results in dissipation.

We consider the case of small dissipation when the

power of losses is much smaller than the input power. We

restrict our consideration to the case of large input current

(much larger than j c). At large input current the approxi-

mate solution of Eqs. (6), (8) can be presented in the form

� 0 0 0� �( , ) sin ( ) cos ( )x t t kx A t kx B t kx� � � � � � ,

(9)

V x t V A t kx B t kxV V( , ) [ sin ( ) cos ( )]� � � � �0 1 0 0 ,

(10)

where V0 is the average difference of the electrochemical

potentials of the layers, 0 � eV /0 �, and k is wave number

connected with the average planar supercurrent by the re-

lation j e k/s0 � � �. The presence of oscillating terms in

(9), (10) is caused by the interlayer tunneling: all the coef-

ficients A� , B� , AV , BV are proportional to
~
t . The explicit

form of these coefficient can be obtained by substituting

of (9), (10) into (6), (8) and taking into account the term

linear in
~
t . The solution (9), (10) corresponds the vortex

structure that moves with the velocity v /kv � �0
� e R L /s l y

2 2� � (V0 and j jout 1 0 satisfy the Ohm’s law

V j L Ry l0 � out , where Rl is the load resistance).

The power of losses for the transmission line is deter-

mined as the difference between the input and the output

power P j j L Vl y� �( )in out 0. The difference j jin out�
emerges if the average interlayer current IT becomes non-

zero: j j I LT xin out� � . Thus, the power of losses per unit

area is proportional to the average interlayer current:

p P L L I Ll l x y T x� �/ (for the case of small dissipation).

One can see from Eq. (4) that the average interlayer cur-

rent is proportional to B� : I et B /T � ~
� �4 2

� �. The explicit

expression for B� reads as
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where 2 �2
0
2 2�CV / ks and V e/ CC � 2 2�� . As follows

from (11) B� 3 0 and pl 3 0 due to nonzero second vis-

cosity / -� 4 3. We emphasize that our analysis is not

valid for 2 that corresponds R R / eL Cl c y s� � � ( )� . At

such Rl the dissipation is large. At Rl not very close to Rc

the power of losses is given by the equation
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Thus, the power of losses is proportional to the square of

the tunneling amplitude and depends nonlinearly on the

load resistance.

In conclusion, we have shown that in bilayer systems

with interlayer phase coherence the dissipation may ap-

pear under the transmission of the current from the source

to the load in the counterflow regime. The dissipation is

caused by joint action of two factors. The first factor is

nonzero interlayer tunneling. The tunneling results in a

formation of the vortex current state. The second factor is

the motion of vortices. They begin to move due to the dif-

ference of electrochemical potentials between the layers.

The dissipation emerges due to second viscosity that co-

mes into play only for moving vortices. Since one of the

factors is the motion of vortices, one can hope that the

dissipation can be eliminated by vortex pinning.
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