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Structural phase transition in two-dimensional
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Using Raman scattering and optical birefringence we have investigated a low-temperature phase transi-

tion in single crystal of the two-dimensional Na5RbCu4(AsO4)4Cl2. Phonon anomalies point to a first order

nature of the transition. The observed transition is most probably related to a order-disorder transition of the

Rb ion positions along the z axis within the ionic framework of mixed alkali metal chloride lattices.

PACS: 64.60.–i General studies of phase transitions;
63.20.–e Phonons in crystal lattices;
78.20.Fm Birefringence;
78.30.–j Infrared and Raman spectra (for vibrational states in crystals and disordered systems).
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A large part of the motivation to search and study

new families of materials with small spin and low di-

mensionality is based on the discovery of high-tempe-

rature superconductivity in the cuprates. Following this

line two-dimensional systems with pronounced mag-

netic fluctuations, competing interactions and structu-

ral instabilities have been discovered and investigat-

ed [1,2]. Recently a new salt-inclusion copper arsenate

Na5RbCu4(AsO4)4Cl2 with a remarkable crystal structure

was synthesized using a conventional solid-state reaction

[3]. This compound exhibits a composite structure of al-

ternating magnetic and insulating layers. The magnetic

layer contains [Cu4O12]
16–

tetrameric units with Cu4O4

magnetic cores, which are connected by AsO4 bridging

units. The copper valence state is 2+, so the Cu ions are

magnetic with spin 1
2

. The insulating layer consists of an

ionic framework of mixed alkali metal chloride lattices

and rarely seen Na6O8 clusters. Also the room tempera-

ture crystal structure of Na5RbCu4(AsO4)4Cl2 was re-

ported as orthorhombic (space group Fmmm, Z = 2) [4].

The low-temperature crystal structure, which may have

crucial implications for the distinct magnetic order, has

not been determined until now. In the Ref. 5 two struc-

tural phase transitions around 74 and 110 K seen by
87

Rb

nuclear magnetic resonance were reported but their na-

ture was not clarified.

To get more insight into the structural phase transi-

tions in Na5RbCu4(AsO4)4Cl2 we performed Raman scat-

tering (RS) and birefringence experiments. Experiments

on the visual observations of the domain structure formed

in the vicinity of the structural phase transition were

carried in parallel.

RS measurements were performed in quasi-backscat-

tering geometry with the excitation line � = 514.5 nm of

an Ar
+

laser. The laser power of 5 mW was focused to a

0.1 mm diameter spot on the sample surface. Raman spec-
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tra measured with different laser powers showed that the

chosen power is sufficiently small to ensure a negligible

heating of the sample. Spectra of the scattered radiation

were collected by a DILOR-XY triple spectrometer and

recorded by a nitrogen cooled charge-coupled device de-

tector with a spectral resolution of ~1 cm
–1

. Single crys-

tals are transparent, blue, and plate like with plate surface

perpendicular to b axis. Typical crystal dimensions are

3 mm � 1 mm � 200 �m.

The linear optical birefringence

�n = �����t, (1)

where � is the phase shift between the linearly polarized

optical eigenmodes of the crystal, and t is the thickness of

the crystal, was measured in an optical helium cryostat. In

the experiments a quarterwave plate was used as the com-

pensator to measure the birefringence. In this case, � was

defined accurate to 2�k where k = 0, 1, 2,… A filament

lamp and an interference filter with a pass band of 11 nm

width were used as a light source. Measurements were

carried out with the wavelength of � = 515 nm.

For the visual observations of the domain structure

formed in the vicinity of the structural phase transition a

polarizing optical microscope was used.

The group-theoretical analysis of the Ã-point

Raman-active phonon modes for the orthorhombic

Na5RbCu4(AsO4)4Cl2 is presented in Table 1. Of the total

186 Ã-point phonon modes, 99 modes (29Ag + 25B1g +

+ 21B2g + 24B3g) are Raman-active. In Fig. 1, we show

the polarized Raman spectra of Na5RbCu4(AsO4)4Cl2 at

room temperature. The sharpness of observed lines is evi-

dence for the high quality of the studied samples. Experi-

mental values of the Raman frequencies are summarized

in Table 2. The number of Raman-allowed modes (99) is

three times larger than the number of experimentally ob-

served lines (33) in the frequency region of 0–1000 cm
–1

.

It is practically impossible to further analyze the vibra-

tions in such a low-symmetry structure with a large num-

ber of partially overlapping Raman-active modes at room

temperature.

The most characteristic Raman features related to the

structural phase transition with decreasing temperature

are the sudden splitting of some phonon modes and the

appearance of new modes. In Fig. 2 an examples of ob-

served changes in the Raman spectra with temperature are

shown. Intuitively the character of changes allows us

to suggest a first order nature of the phase transition.

Earlier the structural phase transition at T = 74 K in

Na5RbCu4(AsO4)4Cl2 was related to a change of the local

symmetry at the Rb sites [5].
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Table 1. Wyckoff notations and Raman irreducible representations for the atoms in orthorhombic Na5RbCu4(AsO4)4Cl2 (space group at

room temperature is Fmmm N69 [3])

Atom
Wyckoff

notation
ÃRaman

Rb(1)* 8 g 1Ag(xx, yy, zz) + 1B1g(xy) + 1B2g(xz) + 0B3g(yz)

Rb(2)* 16 n 2Ag(xx, yy, zz) + 1B1g(xy) + 2B2g(xz) + 1B3g(yz)

As(1), O(3), O(4) 16 o 2Ag(xx, yy, zz) + 2B1g(xy) + 1B2g(xz) + 1B3g(yz)

As(2), O(1), O(2) 16 m 2Ag(xx, yy, zz) + 1B1g(xy) + 1B2g(xz) + 2B3g(yz)

Cu, O(5), O(6) 32 p 3Ag(xx, yy, zz) + 3B1g(xy) + 3B2g(xz) + 3B3g(yz)

Na(1), Cl(1) 8 h 1Ag(xx, yy, zz) + 1B1g(xy) + 0B2g(xz) + 1B3g(yz)

Na(2) 16 n 2Ag(xx, yy, zz) + 1B1g(xy) + 2B2g(xz) + 1B3g(yz)

Na(3) 16 k 1Ag(xx, yy, zz) + 2B1g(xy) + 1B2g(xz) + 2B3g(yz)

Cl(2) 8 d 0Ag(xx, yy, zz) + 0B1g(xy) + 0B2g(xz) + 0B3g(yz)

* According to the data [1] the refined occupancies for Rb(1) and Rb(2) are 45 and 27.5%, respectively, to have a total of 100% occupancy with two Rb

ions per primitive cell. Total: ÃRaman = 29Ag(xx, yy, zz) + 25B1g(xy) + 21B2g(xz) + 24B3g(yz).
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Fig. 1. Polarized room temperature Raman spectra of a

Na5RbCu4(AsO4)4Cl2 single crystal.



Visual studies and investigation of temperature de-

pendence of birefringence allows us to define more pre-

cisely the order of the structural phase transition in

Na5RbCu4(AsO4)4Cl2. In Fig. 3 the temperature de-

pendence of birefringence is presented. Our experiments

point to a small increase of � with decreasing temperature

up to 174 K. A further decreasing of temperature lead to �

decreasing and at Ò = 73 K there is a sharp increase of �

which corresponds to a first order structural phase transi-

tion. In the low-temperature phase the axes of optical

indicatrix of the crystal (inset b in Fig. 3) are turned by an

angle of 45° relative to axes of optical indicatrix before

the phase transition (inset a in Fig. 3). At temperatures be-

low the phase transition the value of � changes weakly.

By substituting t = 200 �m, � = 70.4°, � = 515 nm into

Eq. (1), we obtain �n � 10
–3

at Ò = 32 K. On heating the

phase transition occurs at T = 83 K. Thus, the temperature

hysteresis of birefringence by value of about 10 K is ob-

served at the first order phase transition in the crystal of

Na5RbCu4(AsO4)4Cl2.
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Table 2. Energy of the measured Raman modes in

Na5RbCu4(AsO4)4Cl2 at room temperature in wave numbers (cm–1)
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Fig. 2. Temperature dependence of Raman spectra of

Na5RbCu4(AsO4)4Cl2 and temperature dependence of phonon

energies.
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Fig. 3. Temperature dependence of 	 in the Na5RbCu4(AsO4)4Cl2
single crystal. Insets show sections of the optical indicatrix of

the crystal before (a) and after (b) structural phase transition.



As it is mentioned above the first order phase transi-

tion in Na5RbCu4(AsO4)4Cl2 is related to a sharp in-

crease of birefringence and to a rotation of the optical

indicatrix axes by 45
. Due to this it is possible to investi-

gate the two-phase crystal domain structure formed at the

phase transition visually in polarized light. In Fig. 4,a the

image of the investigated sample before phase transition

(T = 82.5 K) is presented. In this photo dark areas are due

to defects of the sample. With decreasing temperatures

the new crystal phase forms in the crystal (Fig. 4,b). In

this photo the boundary between crystal phases is shown

by a light line. With further decreasing of temperature the

area of a new phase increases (Fig. 4,c). And at last, at

Ò = 72.5 K, the phase transition is completed (Fig. 4,d).

In order to discuss the possible symmetry of the new

phase one should mentioned that due to the large size of

the primitive cell with a large number of ions we can not

expect a drastic change in the primitive cell volume under

structural phase transition. The minor change of Raman

spectra evidences also that not so much lattice degrees of

freedom are affected by structural phase transition. More-

over, due to this reason the space group of low-tempera-

ture phase should demonstrate a subgroup connection

with Fmmm space group of the high-temperature phase.

The 45
 rotation of the optic indicatrix and the absence of

optical activity in low-temperature phase give some hints

about this connection.

Some candidate for the driving force of the structural

phase transition can be an uncertainty in the Rb ions po-

sitions which is defined at room temperature [3]. Inte-

restingly, that high symmetry 8g Rb(1) position with

occupancy 45% and main representative coordinates

(0.1521(5),0,0) is refined isotropically, while the low

symmetry 16n Rb(2) position with occupancy 27.5% and

main representative coordinates (0.1492(3), 0, 0.0443(4))

is refined anisotropically [3]. The last one demonstrates

the tendency for Rb ions to be shifted along z axis. How-

ever, the complete occupancy of the 16n position is im-

possible because it violates the allowed number of Rb

ions per primitive cell. While the shift of Rb ions in the

fully occupied 8g position along z or y directions leads to

the lowering of symmetry from orthorhombic to

monoclinic. Supposing a first order structural phase tran-

sition from low-temperature to high-temperatures as a

transition from order to disorder at the Rb sites one can

chose the highest subgroup of the space group Fmmm that

conserves inversion center, number of structural units per

cell, and includes the shift of Rb ions along z axis. This

subgroup is C2/m space group with unique axis along b

direction of the high-temperature phase space group

Fmmm [6]. One of the in-plane C2/m axes coincides with

x axis of the Fmmm group, while another one should be

directed along (–1,0,1). In the absence of monoclinic dis-

tortions, due to small rhombicity, it rotates on 45.36°

from z axis of the high-temperature phase. This angle

slightly deviates from 45.36° in the presence of mono-

clinic distortions.

Raman data also support the proposed model. The ap-

parent changes of spectra occur in the low-frequency re-

gion, to which the heaviest ions (Rb and As) mainly con-

tribution. Whereas, the high-frequency region which is

formed by the vibrations of light complexes like Na6O8

and others does not demonstrate anomalies.

In conclusion, using Raman scattering and optical bi-

refringence we have shown that first-order phase transi-

tion in Na5RbCu4(AsO4)4Cl2 can be related to a order-

disorder transition of the Rb ion positions along the z

axis.
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ture varies from 82.5 K (a) up to Ò = 72.5 K (d). Light line shows the border between crystal phases (b,c).
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