Влияние микроволнового излучения на ток возникновения процессов проскальзывания фазы в широких пленках олова

В.М. Дмитриев^{1,2}, И.В. Золочевский¹

¹Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Ленина, 47, г. Харьков, 61103, Украина ²International Laboratory of High Magnetic Fields and Low Temperatures 95 Gajowicka Str., 53-421, Wroclaw, Poland E-mail: dmitriev@ilt.kharkov.ua

Статья поступила в редакцию 5 октября 2006 г.

Экспериментально исследованы и проанализированы температурные зависимости стимулированного микроволновым полем максимального тока существования вихревого резистивного состояния широких и тонких оловянных пленок $I_m^P(T)$. Показано, что экспериментально полученные температурные зависимости тока $I_m^P(T)$ хорошо аппроксимируются формулами, аналогичными формуле для равновесного случая теории Асламазова–Лемпицкого, в которой критическая температура T_c заменена стимулированной критической температурой T_c^P , причем это справедливо для всей температурной области существования режима широкой пленки. Обнаружено, что с увеличением частоты облучения абсолютная величина $I_m^P(T)$ растет, а температурная область стимуляции $I_m^P(T)$ расширяется в направлении более низких температур.

Експериментально досліджено та проаналізовано температурні залежності стимульованого мікрохвильовим полем максимального струму існування вихорового резистивного стану широких і тонких олов'яних плівок $I_m^P(T)$. Показано, що експериментально одержані температурні залежності струму $I_m^P(T)$ добре апроксимуються формулами, аналогічними формулі для рівноважного випадку теорії Асламазова–Лемпицького, де критичну температуру T_c замінено стимульованою критичною температурою T_c^P , до речі це справедливо для всієї температурної області існування режиму широкої плівки. Виявлено, що зі збільшенням частоти опромінення абсолютна величина $I_m^P(T)$ зростає, а температурна область стимуляції $I_m^P(T)$ розширюється в напрямку більш низьких температур.

РАСS: **74.40.+k** Флуктуации (шумы, хаос, неравновесная сверхпроводимость, локализация и т.д.); 74.25.Nf Отклик на воздействие электромагнитных полей;

Ключевые слова: линии проскальзывания фазы, широкие сверхпроводящие пленки, стимуляция сверхпроводимости.

Введение

Явление стимуляции сверхпроводимости микроволновым излучением в квазиодномерных пленках (узких каналах) уже относится к числу классических эффектов в физике твердого тела. Экспериментальным проявлением этого эффекта в узком канале является увеличение его критической температуры T_c и критического тока или тока распаривания Гинзбурга–Ландау $I_c^{GL}(T)$. При протекании через канал тока больше, чем $I_c^{GL}(T)$, узкий канал переходит в резистивное токовое состояние, обусловленное исключительно возникновением центров проскальзывания фазы (ЦПФ). Поэтому в узком канале критический ток и ток возникновения первого ЦПФ являются тождественными понятиями [1]. В отличие от этого, в качественных [2] сверхпроводящих широких пленках ($w >> \xi(T), \lambda_{\perp}(T)$, где w — ширина пленки; $\xi(T)$ — длина когерентности; $\lambda_{\perp}(T)$ — глубина проникновения перпендикулярного магнитного поля в пленку) при превышении критического тока $I_c(T)$ возникает вихревое состояние, т.е. наблюдается однородное течение вихрей, так называемый flux flow режим. Широкая пленка находится в этом режиме до достижения транспортным током значения I_m — максимального тока, при котором в широкой пленке исчезает вихревая структура резистивного состояния [3] и возникает первая линия проскальзывания фазы (ЛПФ) [2]. В работе [4] впервые сообщено об обнаружении явления стимуляции сверхпроводимости внешним электромагнитным полем в широких оловянных пленках с неоднородным распределением транспортного тока по ширине образца. Экспериментально было обнаружено, что под действием микроволнового поля возрастает не только критический ток $I_{c}(T)$, но и максимальный ток $I_{m}(T)$. В этой связи проблема стимуляции сверхпроводимости в широких пленках становится особенно интересной, так как она требует рассмотрения поведения в микроволновом поле и критического тока, и максимального тока существования вихревого резистивного состояния. Поведение критического тока в микроволновом поле рассмотрено в работе [5]. Цель настоящей работы экспериментальное исследование эффекта стимуляции тока образования первой ЛПФ $I_m(T)$ в широком температурном интервале при воздействии внешнего микроволнового излучения различных частот.

Экспериментальные результаты и их обсуждение

В качестве объектов исследования использованы тонкие ($d \ll \xi(T), \lambda_{\perp}(T)$, где d — толщина пленки) оловянные пленки, методика получения которых описана в работе [2]. При измерении вольт-амперных характеристик (BAX) четырехзондовым методом образцы помещали в двойной экран из отожженного пермаллоя. Электрическая компонента микроволнового поля была направлена параллельно транспортному току в образце. Параметры некоторых исследованных пленок приведены в табл. 1.

На рис. 1 представлена ВАХ одного из исследованных образцов, типичная для качественных широких пленок. Токовое (dc) резистивное состояние пленки, обусловленное движением решетки собственных абрикосовских вихрей, существует в интервале токов $I_c < I < I_m$ (вихревой участок ВАХ). Теория такого токового резистивного состояния, вызванного движением вихрей, предложена в работе [3]. Согласно этой

Рис. 1. Вольт-амперная характеристика широкой сверхпроводящей пленки SnW13 при температуре T = 3,798 К.

теории, при достижении плотности тока на краях пленки величины порядка плотности тока распаривания Гинзбурга–Ландау исчезает краевой барьер для вхождения вихрей в пленку. С увеличением транспортного тока ($I > I_c$) в пленке растет плотность вихрей и распределение тока становится все более равномерным. При $I = I_m$ плотность тока становится равной критической не только у краев, где зарождаются вихри, но и в середине пленки. При этом токе вихревое резистивное состояние становится неустойчивым [3] и пленка скачком переходит в резистивное состояние, обусловленное возникновением ЛПФ. Такая картина резистивного токового (dc) состояния широкой пленки нашла свое экспериментальное подтверждение в работах [2,6].

Как уже отмечалось, в случае равномерного распределения тока по сечению пленки ее критический ток является током распаривания Гинзбурга–Ландау $I_c^{GL}(T)$, величина и температурная зависимость которого для пленки шириной w и толщиной d в окрестности критической температуры определяются выражением [7]

$$I_c^{GL}(T) = \frac{c\Phi_0 w}{6\sqrt{3}\pi^2 \xi(0)\lambda_{\perp}(0)} (1 - T/T_c)^{3/2} = I_c^{GL}(0)(1 - T/T_c)^{3/2}$$
(1)

Таблица 1. Параметры пленочных образцов

Образец	<i>L</i> , мкм	<i>w</i> , мкм	<i>d</i> , нм	<i>R</i> 4,2, Ом	R^{\Box} , Ом	<i>Т</i> _{<i>c</i>} , К	<i>li</i> , нм	<i>R</i> 300, Ом
SnW5	92	42	120	0,14	0,064	3,789	145	2,27
SnW13	90	18	332	0,038	0,008	3,836	466	1,88

П р и м е ч а н и е: *L* — длина, *w* — ширина, *d* — толщина образца, *l_i* — длина свободного пробега электрона.

Здесь Φ_0 — квант магнитного потока, $\lambda_{\perp}(0) = 2\lambda^2(0)/d$, $\xi(0)$ — длина когерентности и $\lambda_{\perp}(0)$ — глубина проникновения магнитного поля в пленку при температуре T = 0.

Выражение для максимального тока существования вихревого резистивного состояния имеет вид [3]

$$I_m(T) = I_c^{GL}(T)C\ln^{(-1/2)}(2w\lambda_{\perp}(T)).$$
 (2)

Здесь *С* — численный (подгоночный) коэффициент порядка единицы.

Видно, что ток $I_m(T)$ близок к $I_c^{GL}(T)$ и отличается от него подгоночным параметром С и зависящим от температуры логарифмическим множителем, который положителен лишь при $2w > \lambda_{\perp}(T)$. Следует также учитывать следующее обстоятельство. Поскольку параметры $\xi(T)$ и $\lambda_{\perp}(T)$ неограниченно возрастают при приближении к температуре сверхпроводящего перехода, то пленка любой ширины в непосредственной близости от Т_с находится в режиме узкого канала, а ее критический ток обнаруживает температурную зависимость, типичную для тока распаривания Гинзбурга–Ландау $I_c^{GL}(T) \propto (1 - T/T_c)^{3/2}$. В работе [2] был найден количественный критерий перехода между режимами широкой и узкой пленки. Было показано, что при выполнении условия $w > 4\lambda_{\perp}(T)$ пленка становится широкой: при переходе в токовое (dc) резистивное состояние ($I > I_c(T)$) в ней возникают не ЦПФ, а появляются собственные вихри тока, а при $I > I_m(T)$ в пленке наблюдаются только ЛПФ. Однако, как отмечено в работе [2], при переходе в режим широкой пленки зависимость критического тока $I_c(T) \propto (1 - T/T_c)^{3/2}$ еще сохраняется в определенном интервале температур, хотя его абсолютное значение меньше $I_{c}^{GL}(T)$. Переход к линейной температурной зависимости критического тока [3] происходит лишь при достаточно низких температурах *T* < *T*_{cros2}, когда ширина пленки в 10–20 раз превышает $\lambda_{\perp}(T)$ [2].

При исследовании стимуляции критического тока в сверхпроводящих пленках различной ширины были установлены следующие экспериментальные факты. В узких каналах $I_c^{GL}(T)$ пропорционален $(1-T/T_c)^{3/2}$. В то же время стимулированный критический ток $I_c^P(T)$, прекрасно описываемый теорией Элиашберга [8–10], может быть хорошо аппроксимирован зависимостью $I_c^P(T) \propto (1-T/T_c^P)^{3/2}$ [11]. Здесь T_c^P — стимулированная критическая температура. В широкой (вихревой) пленке вблизи T_c температурная зависимость равновесного критического тока имеет вид $I_c(T) \propto (1-T/T_c)^{3/2}$ [2]. Оказывается, что и стимулированный микроволновым полем критический ток в этом случае может быть хорошо аппроксимирован аналогичной зависимостью: $I_c^P(T) \propto (1-T/T_c^P)^{3/2}$ [5]. При $T < T_{cros2}$ в широкой пленке наблюдается линейная температурная зависимость равновесного крити-

ческого тока [2]. Практически при этих же температурах стимулированный критический ток также может быть аппроксимирован линейной зависимостью: $I_c^P(T) \propto (1 - T/T_c^P)$ [5]. Исходя из приведенных выше экспериментальных фактов в настоящей работе мы попытались температурные зависимости стимулированного микроволновым полем тока $I_m^P(T)$ аппроксимировать зависимостью, аналогичной формуле (2) для равновесного случая.

На рис. 2 для образца SnW5 представлены экспериментальные температурные зависимости токов $I_m^P(T)$ в микроволновом поле и токов $I_m(T)$ в отсутствие поля. Для наглядности на рис. 2,6 представлены результаты исследований в более узком температурном интервале вблизи T_c , чем на рис. 2,*a*. Ширина пленки SnW5 достаточно большая (w = 42 мкм), поэтому уже для температур $T < T_{cros2} = 3,740$ К наблюдается линейная температурная зависимость критического тока [2], что достаточно близко от T_c .

Вначале рассмотрим поведение тока возникновения первой ЛПФ $I_m(T)$ в отсутствие внешнего электромагнитного поля (см. рис. 2 (\bullet)). Сплошные кривые l на рисунках представляют собой расчеты $I_m(T)$ по формуле (2) с учетом параметров пленки (см. таблицу):

$$I_m(T) = 2,867 \cdot 10^3 (1 - T/T_c)^{3/2} \times$$

1,35[ln(2 \cdot 42(1 - T/T_c)/0,02532]^{-1/2} [MA]. (3)

Как видно на рис. 2, экспериментальная зависимость $I_m(T)$ хорошо согласуется с расчетной (см. кривая 1).

X

×

Экспериментальная зависимость тока $I_m^P(T)$ при частоте облучения f = 9,2 ГГц (см. рис. 2,a (\mathbf{V})) хорошо аппроксимируется зависимостью

$$I_m^P(T) = 2,869 \cdot 10^3 (1 - T/T_{c1}^P)^{3/2} \times$$

\$1,44 [ln(2 \cdot 42(1 - T/T_{c1}^P)/0,02531]^{-1/2} [mA], (4)

аналогичной формуле (2) (рис. 2, кривая 2). Здесь использовано значение стимулированной критической температуры $T_{c1}^{P} = 3,791$ К, в том числе и при расчете тока распариваниия Гинзбурга–Ландау.

Экспериментальная зависимость тока $I_m^P(T)$ при частоте внешнего электромагнитного поля 12,9 ГГц (на рисунках не показана из-за ограниченности места) хорошо аппроксимируется зависимостью

$$I_m(T) = 2,875 \cdot 10^3 (1 - T/T_{c3}^P)^{3/2} \times (1,28) [\ln(2 \cdot 42) (1 - T/T_{c3}^P)/0,02529]^{(-1/2)} [\text{MA}].$$
(5)

Здесь использовано значение стимулированной критической температуры $T_{c3}^P = 3,797$ К.

Рис. 2. Экспериментальные температурные зависимости максимального тока I_m существования стационарного однородного течения собственных вихрей транспортного тока поперек пленки SnW5: $I_m(T,P=0)$ (●), $I_m^P(T,f=9,2)$ ГГц) (●), $I_m^P(T,f=9,2)$ ГГц) (●), $I_m^P(T,f=15,2)$ ГГц) (●). Кривая I — теоретическая зависимость $I_m^{AL}(T,P=0) = (2,867\cdot10^3(1 - T/3,789)^{3/2} \times 1,35(\ln(42\cdot2(1 - T/3,789)/0,02532)^{-1/2})$ мА (см. формулу (3)); кривая 2 — расчетная зависимость $I_m^P(T,f=9,2)$ ГГц) = $(2,869\cdot10^3(1 - T/3,791)^3/21,44$ $\ln(42\cdot2(1 - T/3,791)/0,02531)^{-1/2})$ мА (см. формулу (4)); кривая 3 — расчетная зависимость $I_m^P(T,f=15,2)$ ГГц) = $(2,877\cdot10^3(1 - T/3,799)^{3/2}1,28 \ln(42\cdot2(1 - T/3,799)/0,02528)^{-1/2})$ мА (см. формулу (6)).

Экспериментальная зависимость тока $I_m^P(T)$ при частоте микроволнового поля f = 15,2 ГГц (см. рис. 2 (\blacktriangle)) хорошо аппроксимируется зависимостью

$$I_m^P(T) = 2,877 \cdot 10^3 (1 - T/T_{c2}^P)^{3/2} \times$$

×1,28 [ln(2 · 42(1 - T/T_{c2}^P)/0,02528]^{-1/2} [MA], (6)

аналогичной формуле (2) (рис. 2,*a*, кривая 3). Здесь использовано значение стимулированной критичес-кой температуры $T_{c2}^{P} = 3,799$ К. При проведении измерений тока $I_{m}^{P}(T)$ пленок в

При проведении измерений тока $I_m^P(T)$ пленок в микроволновом поле мощность излучения подбиралась из условия достижения максимального значения критического тока $I_c^P(T)$, при этом значение тока $I_m^P(T)$ так же было наибольшим вследствие определенной корреляции этих величин [12].

Поскольку теория [3], в которой вводится определение $I_m(T)$, предполагает линейную зависимость критического тока $I_c(T)$, то, строго говоря, формула (2) должна быть применима лишь в области температур $T < T_{cros2}$, где наблюдается такая зависимость критического тока. Однако, как легко видеть на рис. 2, формула (2) для равновесной зависимости $I_m(T)$ и формулы (4)–(6) для случая стимуляции $I_m^P(T)$ электромагнитным полем достаточно хорошо описывают экспериментальные зависимости и в случае $T > T_{cros2}$. Это, очевидно, связано с тем, что и при $T < T_{cros2}$, и при $T > T_{cros2}$ резистивные токовые состояния при $I \approx I_m$ принципиально мало отличаются: оба эти состояния характеризуются достаточно равномерным распределением тока по ширине образца вследствие достаточно плотного заполнения пленки решеткой вихрей.

Таким образом, экспериментальные температурные зависимости стимулированного тока $I_m^P(T)$ хорошо аппроксимируются формулами (4)–(6), аналогичными формуле (2) для равновесного случая теории Асламазова–Лемпицкого [3], где T_c заменена стимулированной критической температурой T_c^P . Рассмотрим поведение $I_m^P(T)$ образца SnW5 в микро-

Рассмотрим поведение $I_m^r(T)$ образца SnW5 в микроволновом поле частотой f = 9,2 ГГц (рис. 2 ($\mathbf{\nabla}$)). Видно, что при облучении пленки микроволновой мощностью наблюдается эффект стимуляции $I_m^P(T, f = 9,2$ ГГц) вплоть до T = 3,708 К. При температурах меньше 3,708 К стимуляция $I_m^P(T)$ не наблюдалась.

При облучении образца SnW5 микроволновым полем частотой, равной 12,9 ГГц, наблюдается эффект стимуляции $I_m^P(T, f = 12,9 \Gamma \Gamma \mu)$ вплоть до T = 3,690 К. При более низких температурах стимуляция $I_m^P(T)$ не наблюдалась.

При облучении образца SnW5 микроволновым полем частотой 15,2 ГГц (рис. 2 (\blacktriangle)) эффект стимуляции $I_m^P(T, f = 15,2$ ГГц) наблюдается вплоть до 3,655 К. При T < 3,655 К стимуляция $I_m^P(T)$ не наблюдалась. Видно, что $I_m^P(T, f = 15,2$ ГГц) > $I_m^P(T, f =$ = 12,9 ГГц) > $I_m^P(T, f = 9,2$ ГГц).

Таким образом, с увеличением частоты облучения абсолютная величина $I_m^P(T)$ растет, а температурная область стимуляции $I_m^P(T)$ расширяется в направлении более низких температур. Кстати, таким же образом ведет себя и критический ток $I_c^P(T)$ [5]. Попытаемся найти этому объяснение. Учтем два обстоятельства. Во-первых, как уже отмечалось, в широких пленках при $I \approx I_m$ распределение тока по ширине пленки близко к равномерному. При этом разумно воспользоваться теми знаниями, которые накоплены для узких каналов. Во-вторых, источником стимулированных критических параметров сверхпроводника является неравновесная функция распределения квазичастиц по энергиям. При этом прежде всего возрастает значение энергетической щели [8–10].

С учетом названных выше аргументов, на рис. З кривой *I* представлена температурная зависимость равновесной щели $\Delta_0(T)$ (в единицах частоты), а кривыми *2* и *3* показаны температурные зависимости стимулированной щели $\Delta_m^P(T)$ для образца SnW5 при частотах облучения 9,2 и 15,2 ГГц соответственно в предположении однородного распределения плотности транспортного тока по сечению. На рисунке видно, что верхняя ветвь температурной зависимости стимулированной энергетической щели сверхпроводника $\Delta_m^P(T)$ пересекается с аналогичной зависимостью равновесной щели $\Delta_0(T)$. При этом чем выше частота облучения, тем ниже по температуре лежит точка пересечения зависимостей $\Delta_m^P(T)$ и $\Delta_0(T)(T_{02} = 3,762$ K < $T_{01} = 3,782$ K), в которой стимуляция энергетической щели прекращается.

Температурные интервалы превышения неравновесными значениями равновесных значений энергетической щели и токов не совпадают. Причина этого кроется в существенном различии между кривыми распаривания $I_s(\Delta)$ в равновесном и неравновесном случаях [5,13].

Важно отметить, что оптимально стимулированные температуры $T_{c1}^{P} = 3,791$ К при частоте облучения 9,2 ГГц и $T_{c2}^{P} = 3,799$ К при f = 15,2 ГГц, полученные из теоретических кривых 2 и 3 на рис. 3, хорошо со-

Рис. 3. Расчетные зависимости равновесной (кривая 1) и стимулированной микроволновым полем щели образца SnW5 (кривая 2, f = 9,2 ГГц, кривая 3, f = 15,2 ГГц,).

впадают с величинами T_c^P , полученными при аппроксимации экспериментальных кривых (см. рис. 2).

Заключение

Таким образом, полученные экспериментальные результаты исследования максимального тока $I_m^P(T)$ существования вихревого токового резистивного состояния показывают, что механизм стимуляции сверхпроводимости микроволновым полем в широких пленках такой же, как в узких каналах — это механизм Элиашберга. Однако в широкой пленке распределение сверхпроводящего тока по сечению образца отличается от однородного распределения в узком канале, что, естественно, требует обобщения теории в целом и конечных формул, в частности. Основные результаты работы можно сформулировать следующим образом.

1. Экспериментальные температурные зависимости стимулированного тока $I_m^P(T)$ хорошо аппроксимируются формулами, аналогичными формуле для равновесного случая теории Асламазова–Лемпицкого [3], где критическая температура T_c заменена стимулированной критической температурой T_c^P , причем это справедливо для всей температурной области существования режима широкой пленки.

2. С увеличением частоты облучения абсолютная величина $I_m^P(T)$ растет, а температурная область стимуляции $I_m^P(T)$ расширяется в направлении более низких температур.

Авторы выражают благодарность Т.В. Саленковой за изготовление образцов, Е.В. Безуглому и Е.В. Христенко за полезные обсуждения материалов работы.

- 1. R. Tidecks, *Current-Induced Nonequilibrium Phenomena in Quasi-One-Dimensional Superconductors*, Springer, Berlin (1990).
- В.М. Дмитриев, И.В. Золочевский, Т.В. Саленкова, Е.В. Христенко, ФНТ **31**, 169 (2005); V.М. Dmitriev and I.V. Zolochevskii, *Supercond. Sci. Technol.* **19**, 342 (2006).
- 3. Л.Г. Асламазов, С.В. Лемпицкий, ЖЭТФ 84, 2216 (1983).
- 4. А.Б. Агафонов, В.М. Дмитриев, И.В. Золочевский, Е.В. Христенко, *ФНТ* **27**, 928 (2001).
- Б.М. Дмитриев, И.В. Золочевский, Е.В. Безуглый, ФНТ 33, 406 (2007).
- A.G. Sivakov, A.P. Zhuravel, O.G. Turutanov, and I.M. Dmitrenko, *Proc. 21 Intern. Conf. Low Temp. Phys.*, Prague, August 8–14, (1996), *Czech. J. Phys.* 46, 877 (1996).
- П. де Жен, Сверхпроводимость металлов и сплавов, Мир, Москва (1968).
- 8. Г.М. Элиашберг, Письма в ЖЭТФ 11, 186 (1970).
- 9. Г.М. Элиашберг, ЖЭТФ 61, 1254 (1971).
- B.I. Ivlev, S.G. Lisitsyn, and G.M. Eliashberg, J. Low Temp. Phys. 10, 449 (1973).
- 11. T.M. Klapwijk, J.N. van den Bergh, and J.E. Moij, *J. Low Temp. Phys.* **26**, 385 (1977).

- В.М. Дмитриев, И.В. Золочевский, Т.В. Саленкова, Е.В. Христенко, ФНТ **31**, 1258 (2005).
- 13. В.М. Дмитриев, Е.В. Христенко, ФНТ 4, 821 (1978).

Microwave radiation effect on current inducing phase-slip processes in wide tin films

V.M. Dmitriev and I.V. Zolochevskii

The temperature dependences of the microwave field-enhanced highest current $I_m^P(T)$ at which the resistive vortex state exists in wide and thin tin films have been investigated experimentally and analyzed. It is shown that the experimental temperature dependences of the current $I_m^P(T)$. are fairly well approximated by formulas similar to those de-

scribing the equilibrium case in the Aslamazov-Lempitskiy theory in which the critical temperature T_c is replaced by the enhanced critical temperature T_c^P , which is valid for the whole temperature region of the existence of the wide film regime. It has been found that the magnitude of $I_m^P(T)$. increases with the irradiation frequency, while the temperature region of $I_m^P(T)$ enhancement extends towards lower temperatures.

PACS: **74.40.+k** Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.); 74.25.Nf Response to electromagnetic fields.

Keywords: phase-slip lines, wide superconducting films, enhancement of superconductivity.