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This article is a continuation of our previous works (see Yukhnovskii I.R. et al., J. Stat. Phys, 1995, 80, 405 and

references therein), where we have described the behavior of a simple system of interacting particles in the

region of temperatures at and about the critical point, T Ê Tc. Now we present a description of the behavior of

the system at the critical point (Tc,ηc) and in the region below the critical point. The calculation is carried out

from the first principles. The expression for the grand canonical partition function is brought to the functional

integrals defined on the set of collective variables. The Ising-like form is singled out. Below Tc, when a gas-

liquid system undergoes a phase transition of the first order, i.e., boiling, a “jump” occurs from the “extreme”

high probability gas state to the “extreme” high probability liquid state, releasing or absorbing the latent heat

of the transition. The phase equilibria conditions are also derived.
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1. Introduction

In this work we complete the first stage of the study of a system at the gas-liquid critical point by

means of the collective variables method.

The research in this direction started in the early 1980s with work [1]. By that time, the collective

variables method had already been developed in the approach proposed by D. M. Zubarev [2, 3], as well

as in the Hubbard transformation approach [4, 5]. The application of this method has been successful

with respect to a number of physical problems in the theory of condensed particle systems interacting via

long-range as well as short-range potentials. An effective approximate solution to the three-dimensional

Ising model was achieved and applied to describe phase transitions of the second order in a variety of

systems [6–10]. A whole bunch of brilliant papers and monographs on the phase transition theory has

emerged [11–14].

The transformation from the real space of Cartesian coordinates to the set of collective variables

defined in the space of wave vectors k provided an obvious advantage in the description of systems of

the interacting particles that attract one another at large separations. Exactly this attraction, which is

usually given by a long-range “tail” of a Van der Waals attraction type, is the source of liquid-gas phase

transitions. In the k-space, such attraction is described by the behaviour of the Fourier transform of the

interaction potential at small k ’s, and, more importantly, in the close vicinity of k = 0. This is one gain

of the passing from the Cartesian space to the wave vector k space. Another gain comes from the set of

collective variables. This set contains one variable (in the gas-liquid system case, it is ρk for k = 0) which
is directly linked to the order parameter that characterizes the phase transition.

Therefore, the system of collective variables (CV) ρk [2, 3] or their conjugates ωk [4, 5] can be thought
of as the most suitable one for the description of the gas-liquid phase transition.

The results of the CVmethod application to a variety of Ising-like systems, obtained with the precision
up to quartic and even sextic measure density, are presented with a large bibliography inmonograph [15].
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Initial expressions for the partition function, given here in equations (2.17) and (2.18), and for the
quartic measure density in equation (3.2), were obtained in [16–24]. Similar expressions were obtained in
the works of Hubbard, Hubbard and Scofield [25], and in the work of Vouse and Sac [26]. In the latter, the
contribution from the transformation Jacobian was counted as addition of some entropic term. In [17, 18],
the values of the cumulants Mn(k1 . . . kn ) in the vicinity of ki = 0 were found. It was shown that for all
Mn(k1 . . . kn) at small k near the points ki = 0, i = 1, . . . ,n, there exist plateaus wide enough for the values
of the Fourier transform of the attractive potential for the regions k < B where Φ̃(k) < 0 and Φ̃(B) = 0

to lie entirely within the span of those plateaus of Mn(k1 . . . kn ). Moreover, it turns out that the values
Mn(0. . . 0) can be expressed through the compressibility of the reference system and its derivatives.

The nature itself granted us a possibility to bring the problem of the liquid-gas phase transition to a
solvable form.

In the works [19–21], expressions for the equation of state for T Ê Tc were obtained. A formula for
the critical temperature of a liquid-gas system was found. The calculations were carried out in the critical
region of temperatures close to Tc. The region T É Tc has not received a proper treatment in [20–23].With
this work we renew the endeavor to reveal the processes that take place at T É Tc in the critical region.
The critical region means a region where a renormalization-group symmetry characterizes the relations
between the coefficients of the block Hamiltonians.

Before the present work started, a number of authors had produced a huge amount of immensely
interesting works [27–33].

In the section 2, the starting form of the partition function in the grand canonical distribution is given
in terms of collective variables ρk. The long-range attraction of a Van der Waals type is described by the
set ρk, whereas the short-range repulsion of an hard-spheres type is described as a reference system in
the phase-space of the Cartesian coordinates of the particles. We start with a quartic measure density,
instead of a Gaussian one. The curves for the cumulants of the transformation Jacobian are presented
in [22]. Their form allows us to reduce the problem to the Ising model in an external field. The role of the
latter is played by the generalized chemical potential µ∗. A lot of brilliant works by M.Kozlovskii were
devoted to the research of the Ising model in an external field (see review [34]).

The displacement transformation, applied to the macroscopic variables ρ0 and ω0 in order to achieve
a proper Ising-like form, has a profound meaning.

We suppose here that the main events, connected with the phase transition in the vicinity of the
critical point, occur in the region ki É B, such that Φ̃(k) < 0 and Φ̃(B) = 0.

Integration in the partition function at T É Tc is performed in three regimes. In the renormalization
group regime for thewave vectors Bmτ É k É B, theWilson linear approximation [35–38] in the expansion
of the recursive equations around the fixed point and the Kadanoff ’s hypothesis of scale invariance [39]
are used. Further, for 0 < k É Bmτ , the integration is carried out in the inverse Gaussian regime (IGR), just
like it is done in the Ising model at T É Tc [9]. Let us note that without integration in the IGR, one would
not be able to obtain the correct behaviour of the system entropy [9, 10], even in the limit T → Tc, T = Tc.

And finally, we come to the integration over the variable ρ0. The corresponding “Hamiltonian”would
be somewhat an analogue of the Landau problem [40]. However, herein everything is done in a coherent
manner and the “Hamiltonian’s” coefficients are obtained as well as their non-analytic dependence on
the temperature.

The most significant part of the work concerns the part of the partition function, connected with
the generalized chemical potential µ∗ and the integral over ρ0. The integration over ρ0 is done by the
steepest-descent method. In a way, we are “traveling” along the ridge of the integrand’s maxima.

The study of the maxima reveals the behaviour of the generalized chemical potential µ∗. There was
shown the existence of a region µ∗ = 0 within which the system experiences a “jump” of the density. It is
here that the parameter ∆ appears when going from the dependence of P = p(µ,τ,η) to the dependence
of P = p(τ,η). The quantity ∆ is a function of the cumulants that characterize the reference system. Here-
after, the variable ρ0 is replaced with ∆. This way, the reference system characterized by the potential
ψ(ri j ) of hard spheres system [see (2.5)] “intrudes” into the function E (ρ0) obtained from the integration
corresponding to the long-range attractive potential φ(ri j ).
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2. The grand partition function in collective variables representation

2.1. Model

We consider an equilibrium system of interacting equivalent particles. All its thermodynamical prop-
erties are described by the grand partition function Ξ:

Ξ=
∞
∑

N=0

1

N !
zN ZN , (2.1)

where N is the number of particles, z is the system activity,

zN =





√

mkBT

2π
3 1

ħ3





N

exp(βµN ), (2.2)

m is the mass of a particle, kB is the Boltzmann constant, T is the temperature, ħ is the Planck constant,
β= (kBT )−1, µ is chemical potential of the system, ZN is the configurational integral of N particles:

ZN =
∫

exp(−βΨN )dΓN , (2.3)

dΓN is the volume element in a phase space of coordinates of particles, ΨN is the potential interaction
energy. It is equal to a sum of interactions of two kinds:

ΨN = 1

2

∑

iÉ j , jÉN
i, j

ψ(ri j )+Φ(ri j ), (2.4)

where

ψ(ri j ) =
{

∞, ri j Éσ,

0, ri j >σ
(2.5)

is the potential interaction energy of two equivalent hard spheres with a diameter σ.
In the present paper we adopt for Φ(ri j ) the “attractive” branch of the Lennard-Jones potential

ΨLJ(r )= 4ε

[

(σ0

r

)12
−

(σ0

r

)6
]

, (2.6)

assuming

Φ(r )=
{

ΨLJ(r ), r Êσ0 ,

0, r <σ0 .
(2.7)

Values of the parameters ε, σ0 in (2.6) for Ar, Xe, Kr, O2, CO borrowed from [41, 42] are adduced in
table 4.

Other functions might be used asΦ(r ) as well. The necessary feature for each of them is the availabil-
ity of the Fourieur-image

Φ̃(k) =
∫

V

Φ(r )e−ikrdr, (2.8)

and condition
minΦ̃(k) = Φ̃(0) < 0. (2.9)

Plots of ΨLJ(r ),Φ(r ), Φ̃(k) ≡ Φ̃(k) for argon are shown in figure 1.
The phenomena occurring on long scales are of long-wave character. They are described in k-space by

a region of low values of wave vectors k. Thus, we split the space {k̄} into two subspaces. Let B correspond
to the value Φ̃(B) = 0, and Φ̃(k) < 0 for all k < B .

We consider that the main phenomena related to a phase transition occur in the region k < B .
We pass on to an extended phase spacewhich consists of space of Cartesian coordinates of particles {r }

and of space of density oscillations, collective variables {ρk }. Overfilling of the phase space is eliminated
by introducing the “identity condition” in the form of a Jacobian.
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Figure 1. (a) The fullΨLJ potential; (b) the hard spheres potential (for the values of σ and σ0 see table 4);

(c) the “attractive” long-range potential Φ(r ); (d) the Fourieur-image Φ̃(k)/ε for the potential Φ(r ).

2.2. Reference expressions for the partition function

a) Collective variables. We introduce the notation:

∑

iÉ j , jÉN
i, j

Φ(ri j ) =
〈N〉
V

∑

k

Φ̃(k)
[

ρ̂N (k)ρ̂N (−k)
]

−
〈N〉
V

∑

k

Φ̃(k), (2.10)

where 〈N〉 is the mean number of particles, and we also consider that

1

V

∑

k

Φ̃(k)eikr|r→0 =Φ(0) = 0,

ρ̂N (k) =
1

p
〈N〉

N
∑

i=1

exp(−ikri) .

We define the collective variables system ρc
k
, ρs

k
, ρk = ρc

k
− iρs

k
; ρ0 by the following relations

ρ̂c
N (k) = 1

p
〈N〉

N
∑

i=1

cos(kri ) =
∫

ρc
k

JN (ρ− ρ̂N )(dρ),

ρ̂s
N (k) = 1

p
〈N〉

N
∑

i=1

sin(kri ) =
∫

ρs
k

JN (ρ− ρ̂N )(dρ),

ρ̂N (0) = N
p
〈N〉

=
∫

ρ0 JN (ρ− ρ̂N )(dρ). (2.11)

Here,

JN (ρ− ρ̂N ) = δ[ρ0 − ρ̂N (0)]
∑

k

′
δ
[

ρc
k
− ρ̂c

N (k)
]

δ
[

ρs
k
− ρ̂s

N (k)
]

,

(dρ) = dρ0

∏

k

′
dρc

k
dρs

k
.

Prime means restriction of k only to the values from the upper subspace.
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b) Our reference system is a system of hard spheres with diameterσ, and interaction potential, defined
by equation (2.5), with chemical potential µ0 and partition function Ξ0,

Ξ0 =
∞
∑

N=0

1

N !
zN

0 exp(βµ0N )

∫

exp[−βψN (r )]dΓN , (2.12)

where ψN (r ) = 1
2

∑

i j
ψ(ri j ), zN

0 = (
√

2mπkBT /2πħ)3N , dΓN = dr1dr2 . . . drN , µ0 is the reference sys-

tem chemical potential.

c) Expression for the partition function in an extended phase space.

According to the definitions (2.1), (2.11) and (2.12):

Ξ=Ξ0

∞
∑

N=0

zN
0

N !
exp(βµ0N )

Ï

exp(−βψN )

Ξ0
JN (ρ− ρ̂N )exp

[

h
p

Nρ0 −
1

2

∑

k

α(k)ρkρ−k

]

(dρ)dΓN ,

(2.13)

where

h =β(µ−µ0); α(k) = 〈N〉
V

βΦ̃(k); Φ(r )= 1

V

∑

k

Φ̃(k)e−ikr.

We introduce the Jacobian function

J (ρ) =
∞
∑

N=0

zN
0

N !
exp(βµ0N )

∫

1

Ξ0
exp(−βψN )JN (ρ− ρ̂N )dΓN . (2.14)

After its substitution into (2.13) we obtain:

Ξ=Ξ0

∫

exp

{

√

〈N〉hρ0 −
1

2

∑

k

α(k)ρkρ−k

}

J (ρ)(dρ). (2.15)

2.3. Jacobian

Instead of Dirac delta-functions of expression JN (ρ− ρ̂N ) given by (2.11) we use their integral repre-
sentation of the type

δ
[

ρc
k
− ρ̂c

N (k)
]

=
∞
∫

−∞

exp
{

i2π
[

ρc
k
− ρ̂c

N (k)
]

ωc
k

}

dωc
k

.

Then,

J (ρ) =
∫

exp
(

i2π
∑

k

ωkρk

)

J̃ (ω)(dω), (2.16)

where ρk = ρc
k
− iρs

k
, ωk = 1

2
(ωc

k
+ iωs

k
), (dω)= dω0

∏

k

′dωc
k

dωs
k
, J̃ (ω) is “the Fourier transform” of J (ρ),

J̃ (ω)=
∞
∑

N=0

zN
0

N !
exp(βµ0N )Ξ−1

0

∫

exp(−βψN )exp
[

−i2π
∑

k

ωkρ̂N (k)
]

dΓN .

After integration and summation we get J̃ (ω) in an exponential form:

J̃ (ω) = exp

{

−i2πM1
1

p
〈N〉

ω0 −
(2π)2

2

1

〈N〉
∑

k

M2(k)ωkω−k

}

×exp

{

∑

mÊ3

(−i 2π)m

m!

1
p
〈N〉m

∑

k1,...,km

Mm(k1, . . . ,km )ωk1
. . .ωkm

}

. (2.17)

Here,M1,M2, . . . ,Mm are cumulants of the reference system.
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We substitute the expression for J (ω) into (2.16). Then, we substitute the obtained result into (2.15)
and get

Ξ = Ξ0

∫

exp

[

√

〈N〉hρ0 −
1

2

∑

k

α(k)ρkρ−k

]

exp

(

i2π
∑

k

ωkρk

)

J̃ (ω)(dρ)(dω). (2.18)

All expressions entering (2.18), h, α(k) and cumulantsMn are the functions of density, temperature. This
is the starting formula for the study of the grand partition function.

3. Integration of the grand partition function: the phase transition in-

vestigation at and below Tc

3.1. Separation of an integration region in k space

Let us compare the form of the curves of Φ̃(k) with that ofM2(k). As it follows from figure 1 and as it
was agreed upon, Φ̃(k) at k = 0 is a negative and finite quantity, Φ̃(k) is going to zero with an increasing
k and at k →∞. Curve ofM2(k) is given in figure 2.

Figure 2. Curves of cumulantsM2(k,−k),M3(k,−k,0),M4(k,−k,0,0) for different densities: 1 – η= 0.05,

2 – η= 0.1, 3 – η= 0.2, 4 – η= 0.15. Vertical line indicates the value |k| = B for whichΦ(B) = 0; η= N
V

π
6 σ

3.

We suppose that the main attraction effects created by potential Φ(r ) are concentrated in the ex-
pression for Φ̃(k) in the narrow region of k between the values 0 and B . For these values of k, the
curves for cumulant M2(k) and for all cumulants Mn(k) have wide plateaus (see figure 2) that begin
for k1, . . . ,kn = 0 [22]. Thus, for all cumulants Mn(k1 . . . kn) in the region ki < B we are able to choose
their values for ki = 0 (see table 1). This means that

Mn(k1, . . . ,kn ) =Mn(0, . . . ,0) for ki < B .
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Table 1. The reference system cumulants at zero values of the wave vectors and the coefficients a2 , a4 for

argon at different densities η [20].

η M2(0,η) M3(0,η) M4(0,η) a2 a4

0.08 0.589 0.108 –0.216 1.38 0.53
0.10 0.471 0.048 –0.137 1.73 0.82
0.12 0.329 0.012 –0.079 2.13 1.13
0.14 0.337 –0.008 –0.043 2.57 1.39
0.16 0.296 –0.019 –0.022 3.05 1.50
0.18 0.272 –0.023 –0.010 3.47 1.24
0.20 0.277 –0.024 –0.004 3.53 0.54

These quantities are macroscopic. Their values are equal to the corresponding fluctuations in the
number of particles of the reference system.

We have an equation

Mn(0. . . 0) = ∂n lnΞ0

∂(βµ0)n
= ∂n−1〈N〉0

∂(βµ0)n−1
.

Therefore,

M1(0) = 〈N〉0 ; M2(0) = 1

〈N〉

〈

(

N −〈N〉
)2

〉

0

;

M3(0) =
〈

(

N −〈〈N〉〉
)3

〉

0

1
p

N 3
; M4(0) =

〈

(

N −〈N〉
)4

〉

0

−3

〈

(

N −〈N〉
)2

〉2

0

〈N〉2
,

and so on.
The cumulantsMn(0. . . 0) are functions of the chemical potential µ0 and of the density. One can per-

form the elimination of the dependence on µ0 either in the standard way extracting the value of µ0 from

the equation ∂ lnΞ0

∂µ0
= 〈N〉, or using for fluctuations 〈(N −〈N〉)n〉 their values for canonical ensemble.

(

∂〈N〉
∂µ0

)

T V

= N

V
κ.

We suppose that 〈N〉0 coincides with 〈N〉 and we put here and then N ≡ 〈N〉 = 〈N〉0 . Then,

M2(0) = N kBT
1

v
κ, M3(0) = N (kBT )2

[

2

(

1

v
κ

)2

− κ

v

∂κ

∂v

]

,

M4(0) = N (kBT )3 κ

v

[

6
(κ

v

)2
−6

(

κ

v

∂κ

∂v

)

+
(

∂κ

∂v

)2

+κ
∂2κ

∂v2

]

,

where v = V
N , κ = − 1

V

(

∂V
∂P

)

T N
is compressibility in the reference system. Here, we should refer to an

equivalency of the results for compressibility and its derivatives obtained for canonic and grand canoni-
cal ensembles.

As concerns the dependence of the cumulants Mn(k1, . . . ,kn ) on ki , as it was shown in [16], the fol-
lowing expansion is valid

Mn(k1, . . . ,kn ) =Mn(0, . . . ,0)+C 2
nMn−2(0. . . 0)µ2(k)k2 + . . . ,

where µ2(k) is the pair correlation function of the reference system and Cn = n(n−1)
2

.
The above described situation for the cumulant values for ki < B and for k = 0 has become a real key

to the solution of a problem of the liquid-gas critical point as well as to the description of the phenomena
related to a liquid-gas phase transition, that is to the boiling processes occurring at temperatures below
T = Tc. The graphs for the cumulantsMn(k1 . . . kn) were obtained in [17, 18].
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As concerns the integration of the mixed terms, in particular, the integration of the expression

(2πi)4

2

∑

k1>B

k<B

M4(k1,−k1,k,−k)ωk1
ω−k1

ωkω−k ,

the correction to
∑

k<B
M2(0,0)ωkω−k is less than one percent of the valueM2(0,0).

As a result, we have the following reference expression for Ξ:

Ξ=Ξ0ΞGΞL , (3.1)

where Ξ0 is the partition function of the reference system, ΞG is the result of integration over ρk and
over ωk for the values k > B . We also suppose that the integration over ρk for k> B can be fulfilled in the
well-known way. The expression for ΞG with the accuracy up to the fourth virial coefficient is presented
in [22] in Appendix A. Note, that this quantity does not affect the critical behavior.

The quantity ΞL is the partition function in the region k < B .

ΞL =
∫

w4(ρω)(dρ)NB (dω)NB . (3.2)

Integrals over ρk and ωk in the region k < B are taken with quartic basic measure density1:

w4(ωρ) = exp











h
p

Nρ0 −
1

2

∑

k<B

α(k)ρkρ−k + i2π
∑

k<B

ωkρk

+
4

∑

n=1

(−i2π)n

n!
N 1−n/2Mn

∑

k1...kn
ki <B

ωk1
. . .ωkn

δk1+···+kn











. (3.3)

We want to exclude the cubic term from the expression in the exponent function (3.3). This can be per-
formed by two substitutions

ω0 =ω′
0 +

p
NM3

(2πi)M4
and ρ0 = ρ′

0 +M̃1 , (3.4)

where

M̃1 =
p

N
(

1+M2ξ+
1

3
M3ξ

2
)

, ξ=
M3

|M4|
.

From now on, we omit the argument (0) in the notations of cumulants and write down M2(0) ≡ M2,
M3(0) ≡M3,M4(0) ≡M4, etc. (see table 1). After some tedious transformations we get ΞL in the following
form2:

ΞL = Υ

∫

exp

{

p
Nµ∗(ρ0 +M̃1)− 1

2

∑

k<B

α(k)ρkρ−k+ i2π
∑

k<B

ωkρk −
1

2
(2π)2

∑

k<B

M̃2ωkω−k

− (2π)4

4!

1

NB

∑

k<B

|M̃4|ωk1
. . .ωk4

δk1+···+k4

}

(dω)NB (dρ)NB , (3.5)

where Υ=Υ0 exp
{

1
2 |α(0)|M̃2

1

}

,

Υ0 = exp

{

N
(

ξ+
1

2
M2ξ

2 +
1

3
M3ξ

3 +
1

4!
M4ξ

4
)

}

,

1To be correct, with quartic measure density for integration over ωk , ifM4(0. . . 0) < 0 and with sextic measure density, ifM4(0)

> 0 and (i )6M6 < 0.
2Primes at ω′

0 and ρ′0 are omitted.

23604-8



Liquid-gas phase transition

µ∗ = h−ξ+|α(0)| M̃1p
N

,

M̃2 =M2 +
1

2

M2
3

|M4|
, M̃4 =

NB

N
M4 ,

M̃1 =
p

N [1−∆], ξ= M3

|M4|
, ∆=−

(

M2ξ+
1

3!
M3ξ

2
)

.

We have obtained the first fundamental result. We bring the expression for ΞL into the form which is
analogous to the form of the partition function of three-dimensional Ising model in a field of generalized
chemical potential µ∗. This means that we have built a mathematical framework for the study of a phase
transition.

It seems useful for every physical system that undergoes the phase transition to introduce some ana-
logue of a crystal lattice, on which this transition can be effectively described. Therefore, we treat the
quantity B as a border of the Brillouin zone for a simple cubic lattice with the spacing c = π

B
. The number

of lattice sites in a volume V is equal to NB = V
c3 =V

(

B
π

)3
, V = π

6
σ3 N

η .

In the case of potential (2.4), we have

1 É NB

N
É 4, when 0.06 É ηÉ 0.22; NB = N

(Bσ)3

6π2η
. (3.6)

Two essential points should be emphasized in our formulations:

1) The existence of plateaus for cumulant values Mn(k1 . . . kn) in the region of negative values of
Fourier-image of attraction potential;

2) The possibility to introduce the crystal lattice in order to study the problem of a liquid-gas critical
point and to reduce this problem to the Ising model in an external field.

Integration in expression (3.5) is taken over ωk. Since the coefficientsMn do not depend on k , passing
from ωk to ω̃l

ω̃k =
NB
∑

l=1

ω̃le
−ikl

and replacing

δk1+···+k4
= 1

NB

∑

l

ei(k1+···+k4)l

we factorize the integrals over ω̃l in (3.5) and get a reference expression for integration over ρk [9]

ΞL =
(

Z (M̃2M̃4)
)NB

ΥΞ
(1)
L

, (3.7)

where

Ξ
(1)
L

=
∫

exp

{

p
Nµ∗(ρ0 +M̃1)− 1

2

∑

k<B

d2(k)ρkρ−k −
a4

4!NB

∑

ρk1
. . .ρk4

δk1+···+k4

}

(dρ)NB , (3.8)

d2(k) = a2 +α(k), α(k) = N

V
βΦ̃(k),

a2 =
(

3

|M̃4|

)− 1
2

U (y), a4 =
3

|M̃4|
ϕ(y), y =

p
3M̃2|M̃4|−

1
2 ,

U (y)=
U (1, y)

U (0, y)
> 0, ϕ(y)= 3U 2(y)+2yU (y)−2> 0, (3.9)
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U (a, y) is the Veber parabolic cylinder function for order a and argument y ,

U (a, y) = 2

Γ

(

a + 1
2

)e−
y2

4

∞
∫

0

exp
(

−y t 2 − 1

2
t 4

)

dt ,

(

Z (M2,M4)
)Nb = 2Nb

p
2Nb−1

[

(2π)−
1
2

(

3

|M4|

) 1
4

exp

(

y2

4

)

U (0, y)

]Nb

.

It is important to have d2(B) > 0 and d2(0) < 0. We are working in the narrow temperature region
containing the critical point T = Tc.

The integral (3.8) describes the phenomena in the critical point T = Tc, as well as in the critical region
T > Tc and T < Tc. |T −Tc| É 0.01Tc.

After integrating over ρk, apart from integration over ρ0, the form of the integral (3.8) completely
coincideswith the corresponding expression for the Isingmodel. For the purpose of its integration, we use
Kadanoff ’s idea concerning the scale invariance of the phenomena on block lattices as well as Wisons’s
idea concerning the use of a linear approximation for the expansions around the fixed point in recurrent
relations [35–38].

Integration is performed in the real three-dimensional space without any a priori statements about
the temperature dependence of the appearing coefficients. It is described inmore detail in [6–10] and [15,
17–22]. Performing step-wise integration in (3.8) on the layers of ρk, |k| ∈ (B1,B], . . . , |k| ∈ (Bn+1,Bn ], . . .

produces a sequence of effective block Hamiltonians with different types of evolution at T > Tc and
T < Tc of coefficients d (n)

2 (k) and a(n)
4 (see figure 3).

Figure 3. Step-wise integration of the partition function ΞL on the collective variables. (a) T = Tc :

d
( j )
2 (0) < 0 and d

( j )
2 (B j ) > 0 after integration on every layer of the ρk space, B j+1 < k É B j , j = 1,2, ...

(the critical regime, CR); (b) T > Tc : after integration on variables ρk, Bnτ < k É B (the critical regime

interval), coefficient d
(nτ)
2 (k) is positive at 0 É k É Bnτ (the limiting Gaussian regime); (c) T < Tc : after

integration on variables ρk, Bmτ < k É B (the critical regime interval), here d
(mτ)
2 (k) < 0 at 0 É k É Bmτ

(the inverse Gaussian regime).

Resuming these results we come to the following expression for the partition function:

Ξ=Ξ0ΞGΞ
(ρ0)

L
Ξρ0 . (3.10)

Here, Ξ0 is a partition function of the reference system; ΞG is the result of integrating over variables ρk ,

ωk for k > B ; Ξ
(ρ0)

L
is the result of integration in (3.8), not including the integration over ρ0 ;

Ξρ0 = exp
[p

Nµ∗M̃1

]

∫

exp

[p
Nµ∗ρ0 +Dρ2

0 −
1

N
Gρ4

0

]

dρ0 . (3.11)

Coefficients D and G arise as a result of the integration in (3.10) over ρk. This integration was fulfilled in
two different ways: with quartic density measure for k in the interval Bmτ É k É B, where the renormal-
ization group symmetry is valid, and with Gaussian density measure for k in the interval 0 < k É Bmτ .

Here, Bmτ = B/smτ , s being the parameter of dividing the phase space into layers. The most convenient
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value for s is s = s∗ = 3.58. In such a case, we have the values for mτ presented in table 2, and coefficients
D and G are D = D0|τ|2ν, G = G0|τ|ν with D0 = 1.19 and G0 = 1.67, ν = ln s∗/ln E1 = 0.605, where E1 is
the greater of the two eigenvalues for the matrix of linear recursion equations. Note, that s < E1 < s2, and
s > 1.

Table 2. Values of the quantity mτ.

τ 0.01 10−3 10−4 10−6 10−10

mτ 1.83 2.91 4.01 6.19 10.55

We assume that in (2.18) and in (3.11), the complete integration in space ρk is performed in the parti-
tion function Ξ, with the exception of integration over the variable ρ0 in Ξρ0 .

3.2. The generalized chemical potential µ∗

Our task here is to study the integral over ρ0 in the expression (3.11). After substitution ρ0 =
p

Nρ′
0,

omitting the terms proportional to ln N ,

∫

exp
[

N
(

µ∗ρ′
0 +Dρ2′

0 −Gρ4′
0

)]

dρ′
0 =

∫

exp[N E (ρ0)]dρ0 , (3.12)

where
E (ρ0) =µ∗ρ0 +Dρ2

0 −Gρ4
0 . (3.13)

Hereafter, we omit the primes.
Values D and G are now specified and they turn out to be positive. Coefficient at ρ2

0 in (3.13) is positive
and the integrand increases at small ρ0, whereas at ρ0 →∞ the function exp{N E0(ρ0)} tends to zero due
to the term Gρ4

0.
Integral (3.12) is a function of the generalized chemical potential µ∗, density η and temperature τ.
In the thermodynamical limit N →∞, V →∞, N

V
= const, the maxima of the integrand in (3.12) are

very high. Therefore, the integral should be calculated by the steepest-descent method.
To do this, first we find the maximum of E (ρ0):

∂E

∂ρ0
= 0;

∂2E

∂ρ2
0

< 0 or µ∗+2Dρ0 −4Gρ3
0 = 0, 2D −12Gρ2

0|ρ0=ρ0max < 0. (3.14)

Thus, we have got an important result, the value for µ∗:

µ∗ =
(

−2Dρ0 +4Gρ3
0

)

ρ0=ρmax
0

, (3.15)

where for ρ0 we have to take its value in the point of the absolute maximum of the integrand in (3.12).
Continuing our consideration, we shall write the equation (3.14) in a standard form:

ρ3
0 +V ρ0 +W = 0. (3.16)

Here,

V = −D

2G
, W =−1

4

µ∗

G

and 3ρ2
0 +V > 0, which corresponds to (3.14). Equation (3.16) has three solutions, that may be found by

Cardano formula:

ρ0 =
3

√

−
W

2
+

√

Q + 3

√

−
W

2
−

√

Q , (3.17)

Q is a discriminant of the equation:

Q = W 2

4
+ V 3

27
. (3.18)
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The first term in the discriminant is always positive, the second one is always negative. Thus, three pos-
sibilities may be observed: Q > 0, Q < 0 and Q = 0. Depending on the sign of Q , we have one real (Q > 0)
or three real solutions (Q < 0) 3.

Let us start with the limiting case Q = 0. This equality describes the intermediate surface between
two regions Q > 0 and Q < 0. Equation (3.16) has three real roots:

ρ1 = u+ v, ρ2 = ρ3 =−1

2
(u+ v), (3.19)

where u =
[

−W
2
+

√

Q
]1/3

, v =
[

−W
2
−

√

Q
]1/3

. But only for the root ρ1 we get a maximum for E (ρ)

E ′′(ρ1) =−GD < 0, E ′′(ρ2) = E ′′(ρ3) = 0.

Therefore, we take for ρ0 = ρmax
0 in (3.12)

ρmax
0 = ρ1 = 2

3

√

−
W

2
= 3

√

µ∗

G
. (3.20)

Written explicitly, the condition Q = 0 takes on the form:

(

W

2

)2

=−
(

V

3

)3

and µ∗ =±a =±G

(

2

3

D

G

)3/2

. (3.21)

So, when the discriminant Q equals zero, we receive the value of generalized chemical potential of
the system. From equation (3.17)

ρ1 =
3

√

−±a

G
=±b, b =

√

2D

3G
, (3.22)

and, consequently, for ρ1 we have two values ρ1 = b for µ∗ = a, and ρ1 =−b for µ∗ =−a.
From the condition Q = 0 we also receive:

ρ1 = b0|τ|ν/2, b0 =
√

2

3

D0

G0

and

µ∗ =±µ∗
0 |τ|

5/2ν, µ∗
0 =G0

(

2

3

D0

G0

)3/2

.

Here we have two mutually reciprocal parabolic cylinder surfaces. The intersection with the plain τ =
const is a rectangle with the vertices (−a,b), (−a,−b), (a,−b), (a,b) as it is shown in figure 4.

For ρ2 and ρ3 we have ρ2 =−b/2, ρ3 = b/2, and E ′′(ρ2) = 12Gb; E ′′′(ρ3) =−12Gb.
In the case Q > 0, equation (3.15) has one real and two complex solutions. Q > 0 means that

W 2

4
> V 3

27
and

W

2
>

√

Q.

Thus,

ρ(1)
0 = 3

√

−W

2

{[

1−
2

√

Q

W

]1/3

+
[

1+
2

√

Q

W

]1/3}

.

Expanding in powers of γ, where γ=
(

V
3

)3
/

(

W
2

)2
, |γ| < 1 we receive:

ρ(1)
0 =

(

µ∗

4G

)1/3
[

1+
( |γ|

4

)1/3

− 1

12
|γ|+

3p
2

24
|γ|4/3 −0

(

γ2
)

]

, (3.23)

3At T >Tc the discriminant Q is always positive, Q > 0.
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Figure 4. The generalized chemical potential isotherm as a function of ρmax
0 . Here, a = G

√

2
3

D
G

3 ∼

τ(5/2)ν, b =
√

2
3

D
G ∼ τν/2, d =

√

1
2

D
G ∼ τν/2, f =

√

1
3

D
G ∼ τν/2.

µ∗ = q ′G
(

ρ(1)
0

)3
, q ′ = 4

[

1+
( |γ|

4

)1/3

− 1

12
|γ|+ . . .

]−3

.

The sign of ρ(1)
0 is determined by the sign of µ∗. At |γ| = 1, Q = 0, ρ(1)

0 = 3
√

µ∗/G , ρ(1)
0 =±b because

(

1

4

)1/3
[

1+
(

1

4

)1/3

− 1

12
+

3p
2

24
− . . .

]

= 1.

So, at Q = 0, |γ| = 1, the root ρ(1)
0 coincides with the root ρ1 from (3.22).

Thus, at Q > 0, both µ∗ and ρ(1)
0 vary within

|µ∗| Ê a, where a =G

(

2

3

D

G

)3/2

,

|ρ(1)
0 | Ê b, where b =

(

2

3

D

G

)1/2

. (3.24)

In such a way, for ρ(1)
0 we have two branches one for ρ(1)

0 É−b and negative values for µ∗ É−a and the

second for ρ(1)
0 Ê b and µ∗ Ê a.

In the region Q < 0, the equation (3.14) has three real solutions. It is more convenient to write them
in trigonometrical form:

µ∗ = a cosϕ, ρ01 = b cos
ϕ

3
, ρ02 = b cos

ϕ+2π

3
, ρ03 = b cos

ϕ+4π

3
,

ϕ= arccos t , t =−
W

2
(

−V
3

)3/2
=

µ∗

a
. (3.25)

In the vicinity of the point µ∗ =−a we have cosϕ=−1, ϕ= π. Substituting the values ϕ= π into the
solution, we obtain

ρ01 = b cos
π

3
= b

2
, ρ02 = b cos

3π

3
=−b, ρ03 = b cos

5π

3
= b

2
.

As we see, only the solution ρ02 coincides with the solution ρ(1)
0 at the point (−a −b).

In the vicinity µ∗ = 0, ϕ= π
2
and ρ02 = b cos

(

π− π
6

)

=−
p

3
2

b. Thus, the generalized chemical potential

µ∗ and the solution ρmax
0 = ρ02 varies within the intervals:

−a Éµ∗ É 0, −b É ρ(2)
0 É−d and πÊϕÊ π

2
,
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where we denote d =
p

3
2

b =
√

1
2

D
G
. At the point (−a,−b) on the plane

(

µ∗ρmax
0

)

solutions ρ(1)
0 and ρ02

smoothly flow together.
For the case µ∗ = a, cosϕ= 1, ϕ= 0 we have

ρ01 = b cos0 = b, ρ02 = b cos
2π

3
=−1

2
b, ρ03 = b cos

4π

3
= b cos

(

π+ π

3

)

=−1

2
b.

Now we have to take the solution ρ01. It coincides with the solution ρ(1)
0 at the point µ∗ = a, ρ01 = b,

ϕ = 0. At the point µ∗ = 0 ϕ = π
2
, the solution ρ01 is ρ01 = b cos π

6
=

p
3

2
b, or ρ01 = d . So, in the interval

0Éµ∗ É a, the solution ρ01 varies inside the interval d É ρ01 É b.

We have got some significant result: on the axis µ∗ = 0, the solution ρmax
0 varies jumping from the

value ρmax
0 = ρ02 =−d to the value ρmax

0 = ρ01 = d .
The plot of the generalized chemical potential isotherm as a function of ρmax

0 has the form shown in

figure 4. Here, we have a smooth continuation of curves ρ(1)
0 to ρ02 at the point (−a,−b) and ρ(1)

0 to ρ01 at
the point (a,b).

It is very important to note here that among the solutions (3.25), only solution ρ02 in the region −b <
ρ0 <−d and only solution ρ01 in the region d < ρ0 < b obey conditions for an absolute maximum of the
function E (ρ0). For all other values of ρ01, ρ02, ρ03, the absolute maximum of E (ρ0) in (3.12) cannot be
realized.

Let us now find the slops of the generalized chemical potential isotherms µ∗(T,ρmax
0 ) at the points

µ∗ =∓a, ρmax
0 =∓b, and at the points µ∗ =∓0, ρmax

0 =∓
p

3
2

b =∓d . From (3.14) we have

dµ∗

∂ρmax
0

=−2D +12G(ρmax
0 )2 .

Thus, at the point µ∗ =−a, ρmax
0 =−b, from the left, and At the point µ∗ = a, ρmax

0 = b from the right,

dµ∗

∂ρmax
0

= 6D ∼ τ2ν

and at the points µ∗ =∓0, ρmax
0 =∓d

dµ∗

∂ρmax
0

= 4D ∼ τ2ν.

As we see, the slope of the tangents tend to zero proportionally to τ2ν. We have completed investiga-
tions of the generalized chemical potential µ∗.

Having studied the integral (3.12),
∫

exp[N E (ρ0)]dρ0, and the function E (ρ0), presented in (3.13), we
revealed the most essential changes in the behavior of the partition function as well as in the behavior of
thermodynamic functions.

In order to describe the scenario of the phase transition at T É Tc, we have to extract from the en-
tire set of integration results those that correspond to the integration the variables ρ0 and ω0. This will
automatically concern the events connected with the generalized chemical potential µ∗.

Our main goal in this study is to describe what exactly is happening at T É Tc. Here, in accordance
with [22], we restrict ourselves to the narrow region around the critical point. The scenario of the phase
transition is connected with the behavior of the generalized chemical potential µ∗. As it follows from
equation (3.11), the plane µ∗ = 0 contains the coordinates of the critical point Tc,ηc.

3.3. The partition function in the grand canonical ensemble at T É Tc

Bringing together the obtained results, and taking the terms containing µ∗, let us write the initial
partition function Ξ, according to equations (3.10), in the form of a product of two partition functions:

Ξ=Ξ
(2)
Ξρ0 , (3.26)

where in Ξ
(2) we included the results

Ξ
(2) =Ξ0ΞGΞ

ρ0

L
.
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Expression Ξ
(2) does not depend on µ∗. All terms and effects connected with the behavior of µ∗, are

gathered in the part Ξρ0 .

Partition function Ξρ0 is of most interest to us. From (3.11)

Ξρ0 = exp
[

µ∗(1−∆)N
]

∫

eNE (ρ0)dρ0 , (3.27)

where

(1−∆)N =
p

NM̃1 , ∆=−
(

M2ξ+
1

3
M3ξ

2
)

, E (ρ0) =µ∗ρ0 +Dρ2
0 −Gρ4

0 .

The dependence of ∆ and ξ on the density η is shown in figure 5.

η
ξ

1−∆

∆

 

−3

0.2

0

0.1 0.3

1

0.25

3

0.15

2

−4

−1
0.05

−5

0.0

4

−2

5

 

Figure 5. The dependence of ∆ (solid line),1−∆ (dashed line), and ξ (dash-dotted line) on the density η. In

the present work, the system is considered within the range 0.05 < η< 0.2. In this interval, the values of

cumulantM4 are finite and negative.

Our consideration is related with the thermodynamical limit N →∞, V →∞, N
V
= const. As a conse-

quence, in the integral (3.27) we have to use the steepest-descent method, and regard only the point of
the absolute maximum of the function exp

{

N E (ρ0)
}

. Then,

∞
∫

−∞

exp
{

N E (ρ0)
}

dρ0 = exp
{

N E (ρ0)
}

∣

∣

∣

∣

∣

∣

ρ0=ρmax
0

. (3.28)

In the thermodynamical limit, the value of ρmax
0 coincides with the average value of ρ0:

〈ρ0〉 =

∫

ρ0 exp
{

N E (ρ0)
}

dρ0

∫

exp
{

N E (ρ0)
}

dρ0

= 1

N

∂

∂µ∗ ln

∫

exp
{

N E (ρ0)
}

dρ0 ,

lim
N→∞

〈ρ0〉 = ρmax
0 .

Illustration for this at τ=−10−3 for argon is shown in figure 6.
Hence, for expression (3.27) we can write:

Ξρ0 = exp
{

N
[

µ∗ (1−∆)+µ∗ρmax
0 +D

(

ρmax
0

)2 −G
(

ρmax
0

)4
]}

, (3.29)

where

ρmax
0 = ρ1 from (3.20), when Q = 0 and |ρ1| = b, |µ∗| = a,

ρmax
0 = ρ(1)

0 from (3.23), when Q > 0 and |ρ(1)
0 | > b, |µ∗| > a,

ρmax
0 = ρ02, −b É ρ02 É−d , µ∗ = a cosϕ,

π

2
ÉϕÉπ from (3.25),

ρmax
0 = ρ01, d < ρ01 < b, µ∗ = a cosϕ, 0 ÉϕÉ π

2
from (3.25), (3.30)
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Figure 6. The average (solid line) 〈ρ0〉 and the most probable (dashed line) ρmax
0 values of ρ0 at N →∞.

The arcs 1–2 and 3–4 (dashed lines) correspond to absolute maxima of exp[NE(ρ0)]. Here, (a) N = 1000;

(b) N = 5000; (c) N = 10000; d) N = 100000.

here, Q < 0. In all cases µ∗ =−2Dρmax
0 +4G(ρmax

0 )3.

Now we need to know the explicit values of ρmax
0 as function of density η. We use the condition

∂ lnΞ

∂βµ
=

∂ lnΞρ0

∂µ∗ = N . (3.31)

From (3.26), (3.27) and (3.28) we have

N
(

1−∆+ρmax
0

)

∣

∣

∣

ρ0=ρmax
0

= N .

Hence,

ρmax
0 =∆. (3.32)

Here, ∆ = −
(

M2ξ+ 1
3
M3ξ

2
)

, ξ = M3

|M4| ; cumulants M2, M3, M4 are the known functions of a density (see
table 1).

Finally, we obtain

Ξρ0 = exp
{

N
[

µ∗+D∆
2 −G∆

4
]}

(3.33)

and

µ∗ =−2D∆+4G(∆)3 . (3.34)

All components in expression (3.26) and (3.27) are defined. Thus, all principal problems in calculating
the partition function of the system with Lennard-Jones type interaction are solved.

4. The main results

Now we are going to determine the expression for the critical point, the critical region on the whole,
the events inside the region −d É ∆ É d where the boiling process occurs, the notion about the over-
cooled gas and overheated liquid, and the equality of the chemical potentials at ∆ = ±d , and finally the
comparison with the experimental data for some substances.

The rectilinear diameter. The expression ∆(η) = 0 gives us a starting point for the rectilinear diameter.
The equation ∆= 0 reads

M2(η)
M3(η)

|M4(η)|
− 1

3
M3(η)

(

M3(η)

M4(η)

)2

= 0 (4.1)

and µ∗(∆) =−2D∆+4G∆
3 = 0.

In the initial expression (3.8) for the partition function, this equation means that we consider the
Ising-like case and that we are looking for the critical point of the phase transition of the second order.
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Taking into account formulas for Mn(0), the plots for cumulants in figure 2 and the dates from table 1,
we get from (4.1) some universal quantity for the critical density

ηc = 0.13044. (4.2)

This is the very localization of the rectilinear diameter on the axis η.
The critical temperature expression follows from the whole solution to our problem. At the critical

temperature integration of the partition functionΞL in (3.8) is connected with the existence of the Dyson’s
hierarchical symmetry between the block Hamiltonians, and with making use of the Wilson’s lineariza-
tion method for solving the recursion equations. The integration in (3.8) should be fulfilled in the system
of the block Hamiltonians. At the critical point, it is made completely in the critical regime for the whole
interval 0É k É B . For the sequence of coefficients d (n)(k) and a(n)

4 at the critical point, we have situation
pictured in figure 3 (a). It is scrupulously described in [7–10] and we shall take the ready made formula
for Tc therefrom

Tc(η) = |ᾱ(0)|
kB

·
2
[

1− r̄ +R0
12

p
ū

/

(R11 −E2)
]

a2 +
{

a2
2 +

[

4a4R0
12

p
ū

/

(R11 −E2)
][

1− r̄ +R0
12

p
ū

/

(R11 −E2)
]} , (4.3)

α(0) =βcᾱ(0), a2 and a4 are the initial coefficients from the expression (3.8), all other values are given in
table 3.

Table 3. Values of some coefficients of the solution of recursion relations for s = 3.58.

E1 E2 r̄ ū R(0)
12 R(0)

21 q R11

8.235 0.377 0.612 0.889 3.837 1.174 0.612 7.613

Figure 7. Coordinates of the liquid-gas critical point on the µ∗ = 0 plane for argon.

This formula is valid for the Ising model with the fixed initial coefficients a2, a4, α(0). In our case,
they are functions of density 〈N〉

V
. Therefore, formula (4.3) describes the surface of critical temperatures.

Its intersection with the plane µ∗ = 0 gives us the curve of critical temperatures and the intersection with
the rectilinear diameter ∆= 0 or ηc = 0.130443 gives us the critical point, as it is demonstrated in figure 7.
In the case of argon equation (4.1), conditions µ∗ = 0, and ∆= 0 gives us:

ηc = 0.130443,
kBTc

ε
= 1.25, Tc = 123.27 K.

Finishing the consideration about the critical point T = Tc, η = ηc we shall gather together all three
conditions determining the critical point

Tc =
|ᾱ(0)|

kB

2R1

a2 + {a2
2 +R2R1}

,

µ∗ =β(µ−µ0)−ξ+|α(0)|(1−∆) = 0,

∆=−
(

M2ξ−
1

3
M3ξ

2
)

= 0. (4.4)
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We note here

R1 = 1− r̄ +R0
12

p
ū(R11 −E2)−1, R2 = 4a4R0

12

[p
ū(R11 −E2)

]−1
.

In table 4 we present the results of calculation of the effective hard sphere diameter and the values
of the critical temperatures. The values of the coefficient a2 and a4 from table 1 are taken into account.
As may be seen, the accordance with the experiments data is quite satisfactory.

Critical region. At the critical point τ= 0, η= ηc, the linear approximation for the recursion equations,
using the fixed point as a particular solution to them, is valid in the whole region of k, 0 É k É B . When τ is
different from zero, the linear approximation is valid only for some interval k , Bmτ < k < B , where Bmτ =
B/smτ . This means that only in this interval of k the renormalization-group type solutions are valid. Only
these solutions reflect the renormalization-group symmetry. Here we refer to the interval Bmτ É k É
B as a critical-regime-interval, and the cyclic semigroup symmetry between coefficients d (n)(Bn+1Bn),
d (n−1)(BnBn−1) and a(n)

4 , a(n−1)
4 as a critical regime (CR). In [9,14], there were found the quantities mτ

determining Bmτ and the interval of temperatures τ, τ∗ Ê τÊ 0 and τ∗ É τÉ 0, containing the CR.
For τ< 0 we have [9]

(τ∗)ν
(

C̃1

r ∗+α(0)

)ν

=
√

1− a2

α(0)
(4.5)

for the s = s∗, τ∗ ≃ 0.02. In the l.h.s. of (4.5), there is a quantity inversely proportional to the correlation
radius in the critical regime. In the r.h.s. of (4.5), there is a quantity inversely proportional to the cor-
relation radius in the limit Gaussian regime. At n = mτ the both of them are equal. At k < B/smτ , after
performing the shift ρ0 = ρ′

0 +σ in expression for ΞL, the Gaussian density measure is the basic one, and
at B/smτ É k É B the fourfold density measure is the basic measure.

Partition function consists of two parts, one belonging to the CR and another one to the inverse-
Gaussian-regime. From the equation (4.4) we can get the temperature boundary of the CR. The density-
size of the critical regime at T < Tc is closely linked with the temperature τ∗. The magnitude of η∗ as the
boundary of density of the CR may be taken from the expression:

∆(η∗) = b(τ∗) (4.6)

or in the explicit form:

−
[

M2
M3

|M4|
+ 1

3
M3

(

M3

M4

)2]

η=η∗=η(τ∗)

=
√

2

3

D0

G0
(τ∗)ν/2

at τ= 0, η= ηc = 0.13044. η∗ = η(τ∗) is the solution of the equation (4.1).

The overheated liquid and the overcooled gas, the order parameter. Weneed to describemore in detail
the function Ξρ0 (∆) in formula (3.33) for ∆ the interval −d É∆É d .

Ξρ0 = exp[µ∗(1−∆)]

∫

exp
[

N E (ρ0)
]

dρ0 .

Here, E (ρ0) =µ∗ρ0+Dρ2
0−Gρ4

0, ρmax
0 =∆ and µ∗ =−2D∆+4G∆

3 for ρ0 = ρmax
0 . To calculate the integral

∫

exp[N E (ρ0)]dρ0 we can use the steepest-descent method only when E (∆) =µ∗
∆+D∆

2−G∆
4 is positive.

To this end, we shall look for the points where E (∆) = 0:

(−2D∆+4G∆
3)∆+D∆

2 −G∆
4 = 0.

We get three points ∆ = 0, ∆ = ± f , where f =
p

D/3G . The curves for both E (∆) and exp[N E (∆)] are
demonstrated in figure 8.

Let us discuss the situation aroundfigure 8. At the points∆=±b [discriminantQ = 0, see (3.10)–(3.17)]
we have a boundary between the single states of homogeneous gas (for ∆ < −b) and of homogeneous
liquid (for ∆> b) and a “process” of two phases arising.
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Figure 8. The curves of the function NE(∆) in the region −d É ∆ É d . The most important points: ∆ =
±d the jump-like transition gas-liquid or liquid-gas; ∆ = ± f the points for the extreme overcooled gas

or extreme overheated liquid. The region − f < ∆ < f is the unattainable region of densities, ∆ = 0 is

localization of the rectangular diameter. The order parameter is equal to 2d =
p

2D/G ∼ τν/2, N = 2000.

At the points −d É∆É d , µ∗ = 0, there occurs a jump of densities, i.e., the process of boiling. This is a
situation of emitting (or consuming) the latent heat.

The probabilities of the state when |∆| = b and |∆| = d , are proportional to exp[N E (b)]= exp
(

N 2
3

D2

G

)

and exp[N E (d)] = exp
(

N 1
4

D2

G

)

. There are the points of high probability. The points ∆=± f are the least

attainable points, the exp[N E (∆)]= 1 for ∆= 0,± f .

The states for which ∆ = ±b/2 have E
(

b
2

)

= − 1
12

D2

G , and the probability exp
[

−N D2

12G

]

tend to zero

when N →∞. The states at these points are absolutely not attainable.
So, we can say that the states for which −d <∆<− f , are the states of overcooled gas, and the states

for which f <∆< d are the states of overheated liquid.

The order parameter. All significant points b,d and f are connected with the phase transition processes.
This really takes place in our system. And there is a question: what is the order parameter. It may be∆= b,

or ∆= d . The quantity ∆
(d)
η0

= η(d)
L

−η(d)
G

= 2d(η), where d =
√

1
2

D
G

represents the difference of the density
between liquid and gas states at the beginning and at the end of the boiling process.

The quantity ∆η(b) = η(b)
L

−η(b)
G

= 2b(η) where b =
√

2
3

D
G is the difference between the liquid and

the gas densities at the moment when the two phase gas-liquid situation arises and at the moment of its
disappearance inside the monophasic gas or liquid states.

We take here the quantity
2d =

p
2D/G

as the order parameter of the system. Now we are going to talk about the equality of the chemical poten-
tials at the beginning and at the end of the boiling process.

The equality of chemical potentials. Equilibrium conditions. According to (3.5), the generalized chemical
potential µ∗ is equal to

µ∗ = h−ξ+|α(0)| M̃1p
N

,

where

h =β(µ−µ0), ξ= M3

|M4|
, M̃1 =

p
N (1−∆), α(0) = N

V

Φ̃(0)

kBT
.

Near the points of the phase transition of the first order, ∆G,L = ∓
√

1
2

D/G , the function µ∗ tends to
zero, and

{

βµ=βµ0 +ξ−|α(0)|(1−∆)
}

∣

∣

∣

∆G=−
√

1
2 D/G , ∆L=

√

1
2 D/G

. (4.7)

Here, all the functions on the right hand side are monotonous functions of density η, of the parameter ∆,
and of temperature τ, see figure 5 and 9.
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Figure 9. Chemical potential β(µ−µ0) on the binodal ∆= d for Argon at |τ| = 0.001. Dashed line indicates

two points on the binodal: −d is transition to the gas state, d is transition to the liquid state.

Comparison with the experimental data. To this end, we have to know at first the parameters of the
full initial Lennard-Jones-potential, pictured in figure 1. It consists of the potential of hard core (point b)
with the parameter σ and of the attractive long-range potential φ(r ) (point c, and σ0). To find parameter
σ (of the reference system) we equate the critical density ηc from (4.3) to the experimentally determined
critical density δc for the concrete matter:

ηc =
Nc

V

πσ3

6
,

Nc

V
= ηc

6

πσ3
, δc =

Ncm

V
= Nc

V

M

NA
g/cm3,

m is the mass of the particle, m = M
NA

, M is molecular weight, NA is Avogadro-number. Then,

δc =
6ηc

πσ3
0

M

NA

and in figure 1 we have to put for σ the quantity

σ=
(

6ηc

πδc

M

NA

)1/3

. (4.8)

Using expression (4.2), we can make a comparison of theoretical results with the experimental data
(for several substances, see table 4).

In figure 9 the isotherm of the chemical potential µ is given for argon. The curve is quite symmetrical
with regard to the rectilinear diameter ∆(η) = 0, ηc = 0.13044. The horizontal lines intersects the curve at
the points of equal values of chemical potential µ.

In such a way, we have used the experimental value for the critical density ρc to determine the con-
stants of the initial potential in (2.5) and (2.7). We had to take into account equation (4.1) for the ηc and
ηc = 0.13044. The condition ∆ = 0 automatically demands µ∗ = 0 as it is seen from (3.34). So, the recti-
linear diameter places on the surface µ∗ = 0. The phase transition of the second order takes place on the
surface. Here and always from (4.1) ηc = 0.13044. For example for Argon, M = 39.948 δc = 0.533 g/cm3

we get σ= 3.2007 Å.
The attractive potential Φ(r ) equals zero for all r <σ0.
Expression (4.1) plays a critical role when doing comparison with the experiment (see table 4).

5. Conclusions

Thiswork is a continuation of our previous articles printed in different journals [16–22]. In this article,
we made some complete investigations of the behaviour of the liquid-gas system at the critical point
T = Tc and below it, T É Tc. Weworked in the narrow vicinity to the critical point in the region where the
system obeys a special symmetry-behaviour of the scale invariance referred to as the critical regime. We
tried to describe the property of the gas-liquid systems and to compare our results with the experimental
data for some real substances. To this end, for description we took the Lennard-Jones type potentials.
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Table 4. The critical temperature Tc and the effective hard sphere diameter σ for some systems.

System Tc, ◦C Tc, ◦C σ0, Å σ, Å σ/σ0 ε/kB, K
(exp.) (this (exp.)

work)

CO–CO –140.23 –138.46 3.76 3.37 0.898 100.2
Ar–Ar –122.65 –123.27 3.405 3.14 0.922 119.8
Kr–Kr –63.1 –67.84 3.6 3.367 0.935 171
Xe–Xe 16.62 16.84 4.1 3.71 0.905 221
O2–O2 –118.84 –110.8 3.58 3.18 0.89 117.5
N2–N2 –147.05 –150.02 3.698 3.365 0.91 95.05

Wemade use of the collective variables method developed previously in solving the Isingmodel [6–10,
15]. We worked in grand canonical ensemble. The repulsive part of the potential was taken into account
including the reference system given on the Cartesian phase space of particles coordinates. The hard
spheres system was used as the reference system. An estimation of the effective hard sphere diameter is
proposed in (4.8).

The long-range attraction was described in the phase space of collective variables {ρk}. In such a way,
the short-range and long-range interactions work in different phase-spaces. The natural “crossing” of the
short-range and long-range interactions takes place in the equation ∂ lnΞL

∂µ∗ = N [see (3.31) and (3.32)].

In the way the problemwas stated, we were restricted to the region of minimum of the Fourier-image
of attraction potential (the wave vectors k É B). We assumed that the main events concerning the phase
transition concentrate in this region. We supposed that the problem at k > B had a known solution,
which can be presented, e.g., in the form of the virial series with convergent integrals. More accurate
results could have been produced by renormalization of the quantities D and G in the region of k < B .
However, as was shown in [21], the correction is inessential.

To describe the interaction between the particles at short-range distances, the reference system of
elastic particles is introduced with the corresponding cumulant valuesM1,M2,M3,M4. A principal ques-
tion in solving the problem in general is the discovery of wide plateaus in cumulantsMn at small values
of k in the vicinity of the point k = 0 [17]. The interval (0B) of the wave-vectors k is located completely on
the plate, and that of the cumulantsMn located at k = 0. Corresponding calculations permit us to reduce
the problem of gas-liquid critical point to the Ising model in external field [18, 19].

The effect of short-range interactions concentrated in a reference system is essential to solving our
problem. The values M2(0), M3(0) and M4(0) produce an expression for the parameter
∆ = −

[

M2(0)ξ+ 1
3
M3(0)ξ2

]

, ξ = M3(0)
|M4(0)| , which is the main variable of the equation of state. The natural

“crossing” of the short-range and long-range interactions takes place in the equation ∂ lnΞL

∂µ∗ = N [see (3.31)

and (3.32)] under substitution of the generalized chemical potential µ∗ by its values as a function of τ and
∆(η).

Our analysis is correct in the region of densities η, where the cumulant M4 is finite and negative,
namely at 0.02 É η É0.2. Let us note that integration is carried out in the phase space of collective vari-
ables ρk, ρ0. That is why the values of initial coefficients a2 and a4, presented in table 1, are essential.

In general, after a twenty-year long break, connected with the political activities of one of us, we
would like to express the heartfelt gratitude to our friends, collaborators at the Institute for Condensed
Matter Physics of the NAS of Ukraine, in particular to I.M. Mryglod and O.L. Ivankiv, for permanent
assistance in returning to the “liquid-gas critical point” problem and for the first discussion of this work at
the Institute seminar. We are sincerely grateful to L.A. Bulavin for discussion of this work at the seminar
of the physics faculty at T. Shevchenko Kyiv National university and to A.G. Zagorodny for the discussion
of the work at the seminar of the Bogolubov Institute for Theoretical Physics NAS of Ukraine.

We are sincerely grateful to M.P. Kozlovsky and especially to R. Romanik for fruitful discussions and
for assistance in proofreading the paper and for the preparation of some illustrations, heartily thank
Yu. Holovatch for useful discussions of the results and for assistance in preparing an English version
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of the paper, heartily thank O.V. Patsahan for proofreading the paper and for useful pieces of advice
concerning calculations of latent heat of transition.

As a result of this investigation a lot of different characteristics were obtained: the critical point, the
critical temperature and the critical density; the order parameter; the sphere of the phase transitions;
the size of the jump of the density during the phase transition of the first order; the size of the critical
areas; the intervals of densities for the overcooled and overheated states; the equality of the chemical
potentials at the beginning and at the end of the jump of density during the phase transition; the area of
the phase transition of the second order near the critical point; the way to get the values of σ – the size of
the diameter of the hard sphere of the particles, and finally the comparison with the experimental data
for Ar, Kr, Ne, Xe, O2, N2, CO. We have got quite satisfactory results.

Of course, a lot of problems remain unresolved. We talk about the coordination of the mutual ac-
curacy in the consideration of long-range and short-range interactions, about taking into account the
dependence of cumulants M2 andM4 on k2, about taking into account the attractive interactions in the
area k > B and other issues. A more precise consideration is to be undertaken.
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Фазовий перехiд рiдина-газ в критичнiй точцi та в областi

нижче критичної точки

I.Р. Юхновський, В.О. Коломiєць, I.М. Iдзик

Iнститут фiзики конденсованих систем НАН України, Львiв, 79011, вул. Свєнцiцького, 1

Ця стаття є продовженням наших попереднiх робiт (див. Yukhnovskii I.R. et al., J. Stat. Phys, 1995, 80, 405, а

також посилання там), в яких ми описали поведiнку простої системи взаємодiючих частинок у критичнiй

точцi i в областi температур вище критичної точки, T Ê Tc. Тут ми описуємо поведiнку системи в кри-

тичнiй точцi (Tc,ηc) i в областi температур нижче критичної точки. Розрахунки здiйснюються з перших

принципiв. Вираз для великої статистичної суми приведений до функцiонального iнтегралу на множинi

колективних змiнних i представлений в iзингоподiбнiй формi. Нижче Tc, де система демонструє фазовий

перехiд першого роду, тобто кипiння, вiдбувається “стрибок” мiж “екстремально” високими ймовiрно-

стями газового i рiдкого станiв, при цьому видiляється або поглинається прихована теплоту переходу.

Виведено також умови фазової рiвноваги.

Ключовi слова: фазовий перехiд рiдина-газ, критична точка, колективнi змiннi
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