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We compared the results of the Madden-Glandt (MG) integral equation approximation for partly-quenched sys-
tems with the commonly accepted formalism of Given and Stell (GS). The system studied was a +1 : —1 restricted
primitive model (RPM) electrolyte confined in a quenched +1 : —1 RPM matrix. A renormalization scheme was
proposed for a set of MG replica Ornstein-Zernike equations. Long-ranged direct and total correlation functions,
describing the interactions between the annealed electrolyte species within the same replicas and between the
annealed and matrix particles, appeared to be the same for MG and GS approach. Both versions of the theory
give very similar results for the structure and thermodynamics of an annealed subsystem. Differences between
excess internal energy, excess chemical potential, and isothermal compressibility become pronounced only at
high concentrations of matrix particles.

Key words: partly-quenched systems, electrolyte solutions, Ornstein-Zernike equation, replica theory,
structure, thermodynamics

PACS: 82.45.Gj, 02.30.Rz, 61.20.-p, 82.60.-s

1. Introduction

In the last decades, much attention has been paid to the properties of electrolyte solutions adsorbed
in random matrices (for review see reference [1]). These systems can be considered as partly-quenched,
meaning that some degrees of freedom are quenched and others are annealed [1]. Such systems dif-
fer from regular mixtures: here all the statistical-mechanical averages needed to calculate the systems’
thermodynamic and dynamic properties become double ensemble averages and the thermodynamic re-
lations need to be rewritten accordingly [2,3].

In general, one can describe partly-quenched systems as consisting of two components (subsystems),
one being quenched (usually called the matrix) and the other being allowed to equilibrate in the presence
of the matrix subsystem (annealed subsystem). Usually, it is assumed that the annealed fluid does not
affect the matrix [4-7].

To develop the integral equation theory for partly-quenched systems, Madden and Glandt [8, (9] split
the total correlation functions, i(r), and direct correlation functions, c¢(r), into a “connected” part, repre-
senting the interactions between annealed particles within the same replica, and a “blocking” part (here
denoted by index 12), describing the interactions between the annealed particles mediated by the ma-
trix particles. In their approximation, they set a blocking part of the direct correlation function to zero
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(c'?(r) = 0) and obtained a set of Madden-Glandt Ornsten-Zernike (MGOZ) equations [8,9]
h00 _ 00 — (00 o pohoo

th _CIO — clO ® pOhOO + cll ® plhlo’ (1.1)

h'! —¢!'=¢0® p°h®! + ¢!l ® p'h!l.
Index 0 denotes the matrix subsystem, index 1 is the annealed fluid subsystem, p’ is the number density
of the species i, and symbol ® denotes convolution in r-space. The reasons for choosing matrix notation
will be given is section[3

Later on, Given and Stell derived the exact integral equations for such systems [2,[3]. They are com-
monly known as the Replica Ornstein-Zernike (ROZ) equations and read

hOO _ COO — cOO ® pOhOO’

th _ clO — clO ® pOhOO +c11 ® plhIO _c12 ® plhIO’
1.2)
hll _cll — clO ®p0hOl +c11 ®plhll _c12 ®p1h21,

h12 _012 — clO ®p0hOl +cll ®plhlZ +c12 ®plhll _2012 ®plh21.

Here, c¢!? and h'? (h?!) stand for blocking parts of the direct and total correlation functions, respectively.

While both approaches have been used to study partly-quenched systems (for review see references
[1,14-6] and references therein), only the ROZ equations were applied to systems where both subsystems
(i.e., quenched and annealed) were electrolytes. One of the main reasons for that lies in the fact that
due to the long-ranged nature of the Coulomb interaction, an appropriate renormalization scheme is
necessary to solve the above equations within the integral equation theory framework [10-14]. To our
best knowledge, there exist no documented attempt for the renormalization of MGOZ equations.

Therefore, in the present contribution we propose a renormalization scheme for the MGOZ equations
and calculate the structural and thermodynamic properties of simple model systems: the quenched and
annealed subsystems are both +1 : —1 restricted primitive model electrolytes. We compare the results
of MGOZ approach to the ROZ one. Hypernetted-chain (HNC) approximation was used as the closure
relation in both cases [14]. The comparison of the results for the Madden-Glandt and Given-Stell approach
enables one to gain insights into the meaning of the “blocking” function. MG approximation seems also
to be an easier starting point in developing theories of association and other related phenomena (see, for
example, reference [7]). However, there are reasons beyond academic ones why one should explore the
MG approximation in the case of electrolyte solutions. One of them is the fact that the MG approach is
in principle less demanding than the ROZ because the equations and the closure relations are simpler
(contain less terms). The computationally convergence is, therefore, faster compared to ROZ.

We structured the paper as follows: After an Introduction, a short description of the model is given,
followed by the description of the renormalization procedure. Next, the results for a few typical cases
studied are presented and conclusions are given in the end.

2. The model

The model studied here is basically the same as the one studied previously by the Monte Carlo sim-
ulation methods [15], as well as by the integral equation theory [14]: the so-called primitive model for
electrolyte solutions, where the particle-particle interaction Ul."j?"(r) is given by

00, r<(a?+a‘})/2,

U= 22 AV
— r=0%+d%)/2
4meyegT l J
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and
00, r<(a}+a‘})/2,
Ul =4 ez2° 2.2)
] i 7 1 0
— r=(o:+07)/2,
4mever ! Y
00, r<(al!+0}.)/2,
Uil =1 ézlz! 2.3)
] i~ 1 1
— r=(o;+0)/2.
4mever t Y

In equations (Z.I)-(2.3) e denotes the elementary charge, z;" (z]'.”) is the nominal charge of ions (m =0, 1),
&y is the permittivity of vacuum, €y and ¢ are the dielectric constants of the pre-quenching conditions and
of the partly-quenched system studied, respectively, 0? and O'll. are the diameters of the matrix and of the
annealed fluid particles, respectively, and as usual r denotes the distance between particles i and j. Note
that in this work both matrix and annealed fluid are +1: —1 electrolytes (IZ;"I =1) with equal diameters,
ie,ol=0Y=425A

The equilibrium structure of the matrix subsystem was obtained at temperature 7y which is in gen-
eral different from the temperature of observation, 7. The relation between the two is given by the so-
called quenching parameter Q =goTy/€eT.

3. Theoretical procedure

For systems containing Coulomb forces, a renormalization of the pair potential and correlation func-
tions into short- and long-ranged terms is required to obtain numerical solution of the above given sets
of integral equations [10-14]. While the renormalization scheme for the ROZ set of equations is well
established [1, [14], no such scheme for MGOZ equations (L) has been previously proposed. We follow
the procedure described in detail in reference [13] by splitting / and ¢ functions into the short- and long-
ranged parts

h"" = h" +q"" 3.1)

and
c™ =c[":)"+(l>m", 3.2)

where the superscripts m,n assume the values 0,1, and subscript (s) denotes the short-ranged part of
the correlation functions. Since +1 : —1 electrolyte is a two component system (cations and anions), all
the equations are written in the matrix form. Matrices are of the order 2 x 2 and contain appropriate
functions for ++, +—, —+, and —— interactions. We choose the elements (p;’]?”(r) of the matrix ®™" in the
form of a Coulomb interaction [13]

e%zmzn
eI (r) = ————
4 dmeverkg T
(3.3)
e?292%
P2(r) = -—
1 Ameyeqrkg Ty

where kg denotes the Boltzmann constant.

It is convenient to introduce the so-called Bjerrum length, Lg = 62/(47[8V€]CB T), and the Debye-Hiickel
screening lengths, ko = (47p°Lg/Q)"? and k1 = (47wp' L)%, p° = p% + p° and p' = p} + pL, where p™
(p™) is the number density of positive (negative) ions in the sub-system m. In the case of a symmetric
electrolyte studied here p7' = 0.5p™ = ¢, Na, where ¢;,;, denotes the molar concentration of an electrolyte
and Nj the Avogadro number.

By analogy with the procedure given in reference [13], we define the appropriate long-ranged total
correlation functions, q, through the equations

qIO _(DIO — pOd)lO ®q00 +pld)11 ®q10’
(3.9
qll —(Dll — p0®10®q10+p1®11 ®q11‘
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The two equations (3.4) can be readily solved to obtain the Fourier transforms of the screened potentials,
and then inverted to the Cartesian space. For +1: —1 electrolyte, one obtains

(q++(r) qﬂ‘l(r)) __Ipexp(=xor) ( 1 —1)
Cr g% wm) Qr -1 1)
(q++(r) qi"_(r))__ Ko

0 q%m) B2

exp(—xor) 3 ﬁ exp(—«1r)

2
r Ky r

47
e 1)
ot (3.5)

2

(q++(r) qll_(r))__LBexp(—nr)(l —1)+M Ko
-1 2 x5-«?

L q'tm) r 1
ZK(Z)eXp(—Kor) 2K36Xp(—1<1r)

) 2_ .2
r(xy—x7) r(ky—x7)

— K1 exp(—«1r)

1 -1
-1 1)
It should be noted that in the case where kg = k1 = k, a somewhat different set of functions is obtained

q++(r) g0 (r) k \Lgexp(-xr) (1 -1
) (1) Leexpxn) ,
g g2 2 r -1 1
(3.6)
1 L — 3 1 -
(q++(r) qffm) S A L expKr) 1- —'D—Kr (1 —Kr) ( ! 1).
il ) B ) r 8 p! 3 -1 1
By comparing the results 3.5) and (3.6) with the q functions obtained in work [13] for the set of ROZ
equations, one can see that the results are basically identical, suggesting that in the Debye-Hiickel limit
both approaches provide the same results.
The renormalized MGOZ equations now read

00 00 g 0100
htg —cg = ¢y ® p° (hgg +q”) + @ ® p°hyg,
10 00 , 00 10 o, 04,00 , 11 10, 10 1 g 1310
h{)—c) =cg @p’(hY) +q”) + @' @ p°h)) +cij 8 p' (h)+q'%)+@' 2 p'h}), (3.7)
11 11 _ 10 01 10 0 11 11 1,11
hij—ci =cg @p’(h)) +q")+ @@ p’h)) +cij o p' (hi)+q'")+@ p'h].

To solve these equations, another relation between the total and direct correlation function is needed.
Here, we used the hypernetted-chain approximation which reads [14]

c"M(r) = exp [-BUT () + Y™ ()] - 1=y (1), (3.8)

where y™"(r) = h™"(r) — ¢™"(r) and the superscripts m, n assume the values 0 and 1. U"(r) are the
inter-particle potentials for different components [equations @.I)-(Z.3)] and g =1/kpT.

MGOZ equations were solved by a direct iteration on a grid of 2! points with 0.005 A spacing in
r-space to obtain appropriate correlation functions (the same was done for ROZ equations). These were
then used to calculate various thermodynamic properties using the well-established equations [14,/16-19]
adapted for the MGOZ approximation. The reduced excess internal energy per an annealed fluid particle
can be calculated via the expression

——— Z Y x; p]fg“(r)U“(r)dr+

z+]+— z+]+—

x! pjfglo(r)Um(r)dr (3.9)

The isothermal compressibility reads

opP
(Ll)Tzl o' Z Z x fc[s)lj(r)dr (3.10)

op i=+,— i=+,—

The excess chemical potential of species i (logarithm of the activity coefficient y;) is

Buiy = — Z pjfc(s)z] Z pjfc[s)l]

j=+- j=+-

1
+§j§p(}fh 2 (1) [hlo(r)—cm(r)]dr +— Z P]f{h“(r) [h“(r)—c“(r)]}dr. G.11)
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Figure 1. Radial distribution functions of the annealed electrolyte, gl.lj1 (r), for the case ¢; = 1.0 mol dm ™3

and ¢y = 5.0 mol dm 3. Quenching parameters were Q = 0.7, 1.0, and 1.3. Solid lines show the ROZ and
dashed lines show the MGOZ approach.

In the above equations, x} = pll. DY, pl! denotes the mole fraction of the annealed species, gl.’;.”’(r) =
h!M"(r) + 1 s the radial distribution function, U;"" (r) is the pair potential (m,n =0,1), and dr = 4mridr.
Note that due to MG approximations, equations ([m and are somewhat different form those given
in references [14,/16-19] for ROZ approach.

4. Results

We show the results for the radial distribution functions and thermodynamic quantities (reduced
excess internal energy, excess chemical potential, and isothermal compressibility) for selected examples
of the partly-quenched system studied. In all the cases, the temperature of observation was taken to be
T =298 K and the dielectric constant of aqueous solutions at this T was € = 78.5. The Bjerrum length
equals Lg = 7.14 A for the chosen T and &.

As already explained in the above section, the q'° and q'! functions for the case of MGOZ approach
are the same as those presented in reference [13] for ROZ equations. We, therefore, examined the total
correlation functions in the form of pair distribution functions, gi’;?”(r). These are for three different
quenching parameters (Q = 0.7, 1.0, and 1.3), and one matrix concentration (¢y = 5.0 mol dm~3) presented
in figures[and ] In both cases the annealed fluid concentration was ¢; = 1.0 mol dm™3. The results for
the ROZ equations are shown by solid lines and those of MGOZ equations by dashed lines.

One can see that there is no obvious difference between the two results. This is expected since the
behaviour of the systems studied was found to be mainly determined by the long-ranged correlations
[14].

We proceed with the results for thermodynamic properties, namely the reduced excess internal en-
ergy, the excess chemical potential, and the isothermal compressibility. The results for different condi-

45
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(r)

25

10
]

9,

20

r/A r/A r/A

Figure 2. The same as in figure[Jlbut for the interaction of the annealed particles with the matrix particles,
gl.lj(.) (r). In the notation —: +, the minus sign applies to the matrix and plus to the annealed ions.
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Figure 3. The reduced excess internal energy per annealed particle as a function of the annealed elec-
trolyte concentration. Matrix concentrations were 2.5 and 5.0 mol dm~3, and quenching parameters
Q=0.7,1.0, and 1.3. Solid lines apply to the Give-Stell and dashed to Madden-Glandt equations.

tions studied are presented in figures [3H3l

As previously observed in work [20], the excess internal energy (at a given matrix concentration)
first increases with the increasing concentration of the annealed electrolyte, and then slowly starts to de-
crease. This is a consequence of the annealed fluid interaction with the matrix particles. Both approaches,
ROZ (solid lines) and MGOZ (dashed lines), provide very similar results. The differences, as expected, be-
come larger at higher matrix concentrations.

7 Q=07 ¢o = 5.0 mol dm 3 Q=10 ¢ = 5.0 mol dm~3 Q=13 ¢o = 5.0 mol dm’?

co = 2.5 mol dm~3 co = 2.5 mol dm~? ¢o = 2.5 mol dm™*
1
0
0 0.5 1 15 20 0.5 1 1.5 20 0.5 1 1.5 2
¢; / mol dm™? ¢; / mol dm™3 ¢; / mol dm™?

Figure 4. The logarithm of the mean activity coefficient, i.e., the excess chemical potential, of the annealed
electrolyte. Parameters and notations are the same as in figure[3]

Figure[shows the results for the excess chemical potential, fu; = lny}_,, as a function of the annealed
electrolyte concentration within the two matrices with different concentrations. Similarly to the excess
internal energy, very small differences are observed between the MGOZ and ROZ results. The MGOZ lie
slightly below the ROZ results for high matrix and annealed fluid concentrations.

Small but more pronounced differences between the two approaches are still observed for isothermal
compressibility. These differences pertain even at low annealed fluid concentrations, where short-ranged
interactions become important.

1.1

1.0

Q=07

Q=10 {f. Q=13

09
0.8
07
S 06
05
04
03

0.2
0.5 1 . 1.5 20 0.5 1 . 15 20 05 1 . 15 2
¢ / mol dm™? ¢1 / mol dm™? ¢1 / mol dm™®

Figure 5. The isothermal compressibility of the annealed electrolyte. Parameters and notations are the
same as in figure[3]
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5. Conclusions

Arenormalization scheme for the MGOZ equations was proposed and used to study the structural and
thermodynamic properties of simple systems, where the quenched and annealed subsystems were both
+1: -1 restricted primitive model electrolytes within the hypernetted-chain approximation. The results
were compared with those obtained by ROZ/HNC approximation.

The results obtained for the q functions determining the long-ranged behaviour of the total correla-
tion functions are identical to those evaluated for the ROZ equations. Consequently, no significant differ-
ences in the structural properties were observed. The differences between the two approaches become
more important when studying the compressibility of the system, where short-ranged interactions play a
central role.
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CTpyKTypa i TepMoAnHaMiKa NPUMITUBHOI MoAeNi PO3UUHY
eNneKTponiTy y 3apagiKeHii maTpuli:
Aocnip)keHHA Habav>KeHHa MagaeHa-TnaHaTa

M. flyKLLIibm, b. Fpi6ap-ﬂ#2]
L YHiBepcuTeT JltobasHn, PakynbTeT XiMmii i XiMiuHOT TexHonorii, SI-1000 JltobnsiHa, CnoBeHis
2 [JlepxaBHuii Hbto-Mopkcbkuii yrisepcuTeT B CTOHI Bpyk, CToHi Bpyk, NY 11794-5252, CLLA

Mwu nopiBHAAN pe3ynbTaTy HabavxeHHA MagaeHa-TnaHaTa y Gopmaniami iHTerpanbHWUX PiBHAHb AR YacTKo-
BO 3aMOPOXEHWX CUCTEM i3 3arafbHO NPUAHATUM $opmyntoBaHHAM liBeHa i CTenna. Posrnsigaetbes +1: -1
BaJleHTHa 0bMexeHa MpUMITVBHA MOZAenb PO34MHY eNeKTPOITy ¥ 3aMOpOXeHili +1 : —1 BaneHTHin maTpu-
Lji. 3aNponoHOBaHO Cxemy NepeHOPMYyBaHHA ANA HabamxeHHA MagjeHa-TnaHATa pennikoBaHOro PiBHSAHHS
OpHwTeiiHa-LepHike. BUABNSETLCA, WO AaNeKOCSKHI BKNAAM A0 NPAMOI i MOBHOI KOpensiifiHnX GyHKLRA, aKi
OMUCYHOTb B3AEMOIH0 MiX YaCTUHKAMU eNeKTPOoiTy Y NeBHili penili, a Takox MiX YacTUHKaMW MAUHY i Ma-
TPWLi, € OAHAKOBMMU Yy HabanxeHHi MaaaeHa-MnaHaTa i popmyntoBaHHi lNiBeHa i Ctenna. Obuasi Teopii npu-
3BOAATb A0 AyXe NOAIOHMX pe3ynbTaTiB AN CTPYKTYPY | TepMOAMHAMIKK NigcucTemu agcopbaty. PisHMUs Mix
3HAYEHHAMUN HAANNLLIKOBOI BHYTPILLUHbLOI €Heprii, HAANNLLIKOBOrO XiMiYHOro noTeHLiany Ta i30TepMiUyHOi CTU-
CNMBOCTI CTAE BiNbLL BUPA3HO NULLIE NPW BUCOKIV TYCTUHI MaTPUYHOI NigcucTemu.

KntouoBi cnoBa: 4acTkoBO 3aMOPOXEHi CUCTEMU, PO3YNHY €NIEKTPOITIB, PiBHAHHS OpHLUTeliHa-LjepHike,
Teopisi penik, CTPYKTypa, TepMOAgUHaMIKa
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