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Thermodynamic properties of the particles interacting through smooth version of Stell-Hemmer interaction

were studied using Wertheim’s thermodynamic perturbation theory. The temperature dependence of molar

volume, heat capacity, isothermal compressibility and thermal expansion coefficient at constant pressure for

different number of bonding sites on particle were evaluated. The model showed water-like anomalies for all

evaluated quantities, but thermodynamic perturbation theory does not properly predict the dependence of

these properties at a fixed number of bonding points.
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1. Introduction

They were Stell and Hemmer who first proposed core-softened potentials in 1970 [1]. In their early

work, they stressed that negative curvature in interaction potential might lead to a second critical point

in addition to a standard liquid-gas critical point. In different works [2, 3] it has been shown that core-

softened potentials and similar shouldered potentials can reproduce various fluid anomalies that are

typical of water and other substances with angular dependent interactions, such as silica [3], silicon [4],

BeF
2

[5]. Core-softened potentials were also used to study single-component liquid metal systems [6–

10] and as solvent for studying ions [11]. Poole et al. [12] proposed liquid-liquid phase transition as an

explanation for anomalous properties of water. After that there was an increased interest to the studies of

these liquid-liquid phase transitions. Franseze et al. [13] suggested that the liquid-liquid phase transition

and its critical point might be caused by the potential with two characteristic distances (hard core and

soft core). In their work, they reported the existence of the low-density liquid phase and the high-density

liquid phase obtained for 3D model using molecular dynamics (MD) simulations. On the other hand,

2D MD produced only a density anomaly but no liquid-liquid phase transition [14, 15]. Scala et al. [16]

carried out MD simulations of 2D discrete and smoothed version of potential to study liquid anomalies.

These studies were continued by Buldyrev et al. [17] to explore liquid-liquid phase transition for 2D and

3D version of potentials and by Almudallal et al. [18]. They both produced phase diagrams for a discrete

version of potential with liquid anomalies, and no liquid-liquid critical point in stable liquid region was

obtained.

Our aim here is to apply Wertheim’s thermodynamic perturbation theory (TPT) to capture the physics

of the model of 2D molecules interacting by Stell-Hemmer potential. In recent years, a theory has been

developed for fluids comprised of molecules that associate into dimers and higher clusters due to the

presence of highly directional attractive forces [19–21]. In the present work, we apply the thermodynamic

perturbation theory (TPT) [19–22] to central symmetric attractive potential.
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2. Model

The smooth version of the core-softened potential proposed by Scala et al. [16] is used in this work.

The interaction potentialU (r ) is a sum of a Gaussian well and the Lennard-Jones (LJ) part of the potential

U (r )ÆULJ(r )ÅUa

(r ), (2.1)

whereULJ(r ) is standard Lennard-Jones potential
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" is here the well-depth and ¾ is the distance, where LJ part of the potential is zero. The Gaussian part of

the interaction is as follows:
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This part of potential is stronger than the LJ part and is the reason that the particles make strong as-

sociation. We also refer to this part of potential as association potential. We apply the units and values

of model parameters as used before by Scala et al. [16] as " Æ 1.0, ¾ Æ 1.0, ¸ Æ 1.7, a Æ 25.0, r
0

Æ 1.5¾.

Figure 1 shows the shape of the smooth version of the core-softened potential used here.

Figure 1. (Color online) The core-softened potential U (r ) (solid line) with both contributions (LJ — long

dashed line and Gaussian part — dashed line).

3. Monte Carlo simulation details

We performed Monte Carlo simulations in the isothermal-isobaric (NpT) ensemble to obtain thermo-

dynamic properties of the model. At each step, the displacements in the x, y coordinates were chosen ran-

domly. We used periodic boundary conditions and the minimum image convention to mimic an infinite

system of particles. The starting configurations were selected at random. Every 10 moves of particles an

attempt is made to scale the dimensions of the box and all of its component particles in order to hold the

pressure constant. 5£104 moves per particle were needed to equilibrate the system. The statistics were

gathered over the next 1£106 moves to obtain well converged results. All simulations were performed

with N Æ200 or N Æ400molecules. The maximum change of dimensions of the box was calibrated during

equilibration simulations. The physical properties of the system such as enthalpy and volume were calcu-

lated as the statistical averages of these quantities over the course of simulations [24]. The heat capacity,

C

p

, the isothermal compressibility, ·, and the thermal expansion coefficient, ® are computed from the

fluctuations [25] of enthalpy, H , and volume, V .
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T is temperature of the system and N number of particles.

4. Thermodynamic perturbation theory

The Helmholtz free energy of the system is the key quantity of the thermodynamic perturbation the-

ory [19, 20]. In case of the model studied in this work, this quantity is the sum of two terms

A

NkBT
Æ

ALJ

NkBT
Å

A

a

NkBT
. (4.1)

N is the number of molecules, T is temperature and kB is Boltzmann’s constant. The Helmholtz free

energy of Lennard-Jones system, ALJ, is calculated using the Barker-Henderson perturbation theory [26]
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AHD is the hard-disk contribution to the Helmholtz free energy, gHD(r,´) is pair correlation function for

hard disks at packing fraction ´ Æ
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We used the procedure by Scalise et al. [27] to calculate the HD term of the Helmholtz free energy
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For gHD(r ), the expression of Gonzalez et al. [28] was used.

The association contribution to Helmholtz free energy, A
a

, was calculated by [19, 20, 29]
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where x is the fraction of molecules not bonded at particular interaction site and is obtained from the

mass-action law [19, 20] in the form

x Æ

1

1ÅN
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. (4.6)

½ is the total number density. Finally, ¢ is defined by [19, 20, 29]

¢Æ 2¼
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f
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(r ) is a Mayer function for the association potential
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The pair distribution function gLJ(r ) is obtained by solving the Percus-Yevick equation for Lennard-Jones

disks. N
a

is the number of association points on the particles. Particles have a spherically symmetric

association potential. They do not have a varied number of bonding points as is usually the case where

Wertheim’s theory is used. We made approximation that each particle can have N
a

association points in

the center of a particle interacting with associating potential. We used a different number of interaction

sites, from 1 to 6, the last being a coordination number of particle in a perfect hexagonal crystal. Once

the Helmholtz free energy is known, other thermodynamic quantities may be calculated from standard

thermodynamic relations [26]
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5. Results

All the results are given in reduced units; the excess internal energy and temperature are normal-

ized to the LJ interaction parameter " (E¤ Æ E/", T ¤ Æ kBT /") and all the distances are scaled to the

characteristic length ¾ (r¤ Æ r /¾).

Figure 2. (Color online) Temperature dependence of the molar volume at P¤ Æ 0.75 as obtained by the

Monte Carlo simulation (symbols), the thermodynamic perturbation theory for a different number of

associating points (N
a

Æ 1 full red line, N
a

Æ 2 long dashed green line, N
a

Æ 3 dashed blue line, N
a

Æ 4

dotted pink line, N
a

Æ 5 long dashed-dotted light blue line and N
a

Æ 6 dashed-dotted grey line.

In figure 2, we compare the molar volume or volume per particle, V ¤/N , obtained from the Monte

Carlo simulations, with the results of the thermodynamic perturbation theory for a different number of

bonding sites on particle (N
a

Æ 1¡6). The calculations were performed at a reduced pressure of P¤ Æ 0.75.

We find out that the TPT does not properly capture the results for simulations as well as it does not

predict the maxima in density or minima in molar volume. In order to obtain an agreement, N
a

should

be dynamically varied. N
a

should be varied with temperature and density in order to get an agreement

between theoretical and simulation results. We can see from figures that we have good agreement of TPT

with simulation for N
a

Æ 2 at high temperature T ¤ Æ 2.0, then 3 at T ¤ Æ 1, etc.
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The remaining figures show the temperature dependencies of the other thermodynamic quantities of

interest: the isothermal compressibility, ·¤
T

(figure 3), the thermal expansion coefficient, ®¤ (figure 4), the

heat capacity, C¤
p

(figure 5), and the excess chemical potential ¹¤ex (figure 6). The TPT for a fixed number

of associating points is not in agreement with the Monte Carlo simulation data for all quantities. From

the results we can also see that the model behaves in a way that the number of associating points is not

fixed, but it changes at a constant pressure with temperature. We calculated free energy as a function of

the number of boding sites, N
a

, and the free energy decreases within the whole range.

Figure 3. (Color online) Temperature dependence of

the isothermal compressibility at P¤ Æ 0.75; legend

as for figure 2.

Figure 4. (Color online) Temperature dependence of

the thermal expansion coefficient at P¤ Æ 0.75; leg-

end as for figure 2.

Figure 5. (Color online) Temperature dependence of

the heat capacity at P¤ Æ 0.75; legend as for figure 2.

Figure 6. (Color online) Temperature dependence of

the excess chemical potential at P¤ Æ 0.75; legend as

for figure 2.

6. Conclusion

The thermodynamic perturbation theory was used to study the thermodynamics of the particles in-

teracting through a smooth version of Stell-Hemmer interaction. The results for the molar volume, the

isothermal compressibility, the thermal expansion coefficient, the heat capacity and the excess chemi-

cal potential obtained by the TPT theory for a fixed number of bonding sites on the particles are not in

agreement with the computer simulation results for all the parameters studied. This is caused by the fact

that the interaction is spherical symmetric, and for TPT we have to make approximations. It is crucial to
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change the spherical symmetric potential into a directional one and to have a different number of inter-

action points with directional forces. We cannot obtain correct thermodynamic properties with a fixed

number of association points. Proper thermodynamics could be obtained if the number of association

points varied with temperature and pressure.

7. Acknowledgements

We appreciate the support by the Slovenian Research Agency (P1 0103-0201 and J1 4148) and NIH

Grant GM063592.

References

1. Hemmer P.C., Stell G., Phys. Rev. Lett., 1970, 24, 1284; doi:10.1103/PhysRevLett.24.1284.

2. De Oliveira A.B., Netz P.A., Barbosa M.C., Eur. Phys. J. B, 2008, 64, 481; doi:10.1140/epjb/e2008-00101-6.

3. Sharma R., Chakraborty S.N., Chakravarty C., J. Chem. Phys., 2006, 125, 204501; doi:10.1063/1.2390710.

4. Sastry S., Angell C.A., Nat. Mater., 2003, 2, 739; doi:10.1038/nmat994.

5. Angell C.A., Bressel R.D., Hemmati M., Sare E.J., Tucker J.C., Phys. Chem. Chem. Phys., 2000, 2, 1559;

doi:10.1039/b000206m.

6. Mon K.K., Ashcroft N.W., Chester G.V., Phys. Rev. B, 1979, 19, 5103; doi:10.1103/PhysRevB.19.5103.

7. Levesque D., Weis J.J., Phys. Lett. A, 1977, 60, 473; doi:10.1016/0375-9601(77)90059-7.

8. Cummings P.T., Stell G., Mol. Phys., 1981, 43, 1267; doi:10.1080/00268978100102051.

9. Voronel A., Paperno I., Rabinovich S., Lapina E., Phys. Rev. Lett., 1983, 50, 247; doi:10.1103/PhysRevLett.50.247.

10. Velasco E., Mederos L., Navascues G., Hemmer P.C., Stell G., Phys. Rev. Lett., 2000, 85, 122;

doi:10.1103/PhysRevLett.85.122.

11. Lukšič M., Hribar-Lee B., Vlachy V., Pizio O., J. Chem. Phys., 2012, 137, 244502; doi:10.1063/1.4772582.

12. Poole P.H., Sciortino F., Essmann U., Stanley H.E., Nature, 1992, 360, 324; doi:10.1038/360324a0.

13. Franzese G., Malescio G., Skibinsky A., Buldyrev S.V., Stanley H.E., Nature (London), 2001, 409, 692;

doi:10.1038/35055514.

14. Sadr-Lahijany M.R., Scala A., Buldyrev S.V., Stanley H.E., Phys. Rev. Lett., 1998, 81, 4895;

doi:10.1103/PhysRevLett.81.4895.

15. Sadr-Lahijany M.R., Scala A., Buldyrev S.V., Stanley H.E., Phys. Rev. E, 1999, 60, 6714;

doi:10.1103/PhysRevE.60.6714.

16. Scala A., Sadr-Lahijany M.R., Giovambattista N., Buldyrev S.V., Stanley H.E., Phys. Rev. E, 2001, 63, 041202;

doi:10.1103/PhysRevE.63.041202.

17. Buldyrev S.V., Franzese G., Giovambattista N., Malescio G., Sadr-Lahijany M.R., Scala A., Skibinsky A., Stan-

ley H.E., Physica A, 2002, 304, 23; doi:10.1016/S0378-4371(01)00566-0.

18. Almudallal A.M., Buldyrev S.V., Saika-Voivod I., J. Chem. Phys., 2012, 137, 034507; doi:10.1063/1.4735093.

19. Wertheim M.S., J. Stat. Phys., 1986, 42, 459; doi:10.1007/BF01127721.

20. Wertheim M.S., J. Stat. Phys., 1986, 42, 477; doi:10.1007/BF01127722.

21. Wertheim M.S., J. Chem. Phys., 1987, 87, 7323; doi:10.1063/1.453326.

22. Vakarin E.V., Duda Yu.Ja., Holovko M.F., Mol. Phys., 1997, 90, 611; doi:10.1080/002689797172336.

23. Kalyuzhnyi Yu.V., Stell G., Llano-Restrepo M.L., Chapman W.G., Holovko M.F., J. Chem. Phys., 1994, 101, 7939;

doi:10.1063/1.468221.

24. Frenkel D., Smit B., Molecular Simulation: From Algorithms to Applications, Academic Press, New York, 2000.

25. Silverstein K.A.T., Haymet A.D.J., Dill K.A., J. Am. Chem. Soc., 1998, 120, 3166; doi:10.1021/ja973029k.

26. Hansen J.P., McDonald I.R., Theory of Simple Liquids, Academic, London, 1986.

27. Scalise O.H., Zarragoicoechea G.J., Gonzalez L.E., Silbert M., Mol. Phys., 1998, 93, 751;

doi:10.1080/002689798168763.

28. Gonzalez D.J., Gonzalez L.E., Silbert M., Mol. Phys., 1991, 74, 613; doi:10.1080/00268979100102461.

29. Jackson G., Chapman W.G., Gubbins K.E., Mol. Phys., 1988, 65, 1; doi:10.1080/00268978800100821.

43605-6

http://dx.doi.org/10.1103/PhysRevLett.24.1284
http://dx.doi.org/10.1140/epjb/e2008-00101-6
http://dx.doi.org/10.1063/1.2390710
http://dx.doi.org/10.1038/nmat994
http://dx.doi.org/10.1039/b000206m
http://dx.doi.org/10.1103/PhysRevB.19.5103
http://dx.doi.org/10.1016/0375-9601(77)90059-7
http://dx.doi.org/10.1080/00268978100102051
http://dx.doi.org/10.1103/PhysRevLett.50.247
http://dx.doi.org/10.1103/PhysRevLett.85.122
http://dx.doi.org/10.1063/1.4772582
http://dx.doi.org/10.1038/360324a0
http://dx.doi.org/10.1038/35055514
http://dx.doi.org/10.1103/PhysRevLett.81.4895
http://dx.doi.org/10.1103/PhysRevE.60.6714
http://dx.doi.org/10.1103/PhysRevE.63.041202
http://dx.doi.org/10.1016/S0378-4371(01)00566-0
http://dx.doi.org/10.1063/1.4735093
http://dx.doi.org/10.1007/BF01127721
http://dx.doi.org/10.1007/BF01127722
http://dx.doi.org/10.1063/1.453326
http://dx.doi.org/10.1080/002689797172336
http://dx.doi.org/10.1063/1.468221
http://dx.doi.org/10.1021/ja973029k
http://dx.doi.org/10.1080/002689798168763
http://dx.doi.org/10.1080/00268979100102461
http://dx.doi.org/10.1080/00268978800100821


Two-dimensional core-softened model

Двовимiрна модель потенцiалу з м’яким кором з

властивостями подiбними до води. Дослiдження методом

термодинамiчної теорiї збурень

Т. Урбiч

Факультет хiмiї i хiмiчної технологiї, Унiверситет м. Любляна, 1000 м. Любляна, Словенiя

Термодинамiчнi властивостi системи частинок, що взаємодiють за допомогою зм’якшеного потенцiалу

типу Стелла-Хеммера дослiджено в рамках термодинамiчної теорiї збурень Вертхайма. Розраховано тем-

пературну залежнiсть молярного об’єму, теплоємностi, iзотермiчної стисливостi i коефiцiєнта термiчного

розширення при сталому тиску для рiзного числа зв’язкiв для заданої частинки. Модель характеризується

аномальною поведiнкою властивостей, подiбною до води, але термодинамiчна теорiя збурень незадо-

вiльно описує цi властивостi, якщо число зв’язкiв в розрахунку на частинку є зафiксоване.

Ключовi слова: Монте Карло, термодинамiчна теорiя збурень, плин з м’яким кором
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