
Condensed Matter Physics, 2013, Vol. 16, No 3, 33801: 1–11

DOI: 10.5488/CMP.16.33801

http://www.icmp.lviv.ua/journal

Merging diabolical points of a superconducting circuit

R. Leone, A. Monjou

Statistical Physics Group, Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine,

BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France

Received July 26, 2012, in final form October 11, 2012

We present the first theoretical study of the merging of diabolical points in the context of superconducting

circuits. We begin by studying an analytically solvable four-level model which may serve as theoretical pattern

for such a phenomenon. Then, we apply it to a circuit named Cooper pairs pump, whose diabolical points are

already known.
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1. Introduction

Superconducting circuits [1] become more and more central in modern quantum physics. Their prin-

cipal building blocks are ultra-small Josephson junctions [2] which can be assembled in a variety of ways,

each of them defining a specific quantum system. Being frequently easier to manipulate, these solid

state devices tend to supplant atomic and photonic systems, the “old paragons” of quantum mechan-

ics. Notably, superconducting circuits are widely used to engineer qubits [3–8]: the non-linear behavior

of Josephson junctions serves to isolate couples of levels in a Hamiltonian spectrum. They are also used

to perform the role of analogs of cavity quantum electrodynamics [9–11] (a qubit plays the role of an arti-

ficial atom while a transmission line carries artificial photon modes), (non-) Abelian holonomies [12–16],

(non-) Abelian quantum charge pumpings [17–24], etc. In brief, they are good candidates for implement-

ing quantum logic operations [7, 25] as well as appear to be quite promising for applications in electrical

metrology [26]. The Cooper pairs pump (CPP) considered in this article is an archetype of quantum circuit

having a few (collective) degrees of freedom. In reference [22] there has been theoretically demonstrated

a possible topological quantization of the pumped charge through an invariant called first Chern num-

ber (or Chern index) [22, 27]. It relies on the existence of diabolical points [28] in the three-dimensional

parameter space of a system, i.e., on double degeneracies characterized by a linear dispersion in all di-

rections of that space.

Quite recently, G. Montambaux et al. have demonstrated the possibility of merging Dirac points in

certain two-dimensional crystals, especially in hexagonal — graphene-like lattices [29–32] (see also ref-

erences [33–35]). Dirac points are nothing else but diabolical points in the reciprocal space of crystals.

They are “naturally” located at points of high symmetry, e.g., at vertices of a regular hexagonal lattice.

However, in accordance with the famous Wigner-von Neumann theorem [36], they may move, driven by

well-chosen additional parameters. In the graphene example, the two triangular sublattices carry non-

equivalent Dirac points. The merging of two neighboring non-equivalent Dirac points evokes the meeting

of a knot and its anti-knot: being monitored by a merging parameter, they move closer together, then

merge into a single degeneracy and finally disappear. At the transition, the single degeneracy is charac-

terized by a quadratic dispersion in the direction of merging. Inspired by the works of G. Montambaux

et al., in this paper we present a theoretical study of the merging of diabolical points in the context of su-

perconducting circuits. The choice of the CPP was motivated by its well-known diabolical points located

in a hexagonal lattice, a property which confers to that circuit a great similarity to graphene.
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The paper is structured as follows. Before introducing the CPP, we begin in section 2 by formally

treating the merging process within the framework of a generic four-level model. The reason for such

a choice in the organization is threefold: (i) the merging using the CPP relies on the model that permits

to display a priori the merging parameter of the CPP; (ii) it provides a “universal Hamiltonian” which is

susceptible to be realized in different quantum contexts of ours; (iii) it gives the opportunity to briefly

review some characteristics of double degeneracies in a parameter space. In section 3, we present the

CPP and emphasize the symmetry origin of its “mobile diabolical points”. Finally, via a modification of

the circuit, we suggest in section 4 a way of merging these points. This will be done through an effective

Josephson energy as the merging parameter.

2. The four-level model

We consider a model Hamiltonian depending on a triple of tunable parameters R = (X ,Y , Z ) and

having the form

H(R) =









ξ+X F eiZ F eiZ 0

F e−iZ −ξ+Y GeiZ F eiZ

F e−iZ Ge−iZ −ξ−Y F eiZ

0 F e−iZ F e−iZ ξ−X









(1)

in an orthonormal basis {|e1〉, |e2〉, |e3〉, |e4〉}. Here, F , 0 and ξ are constants, and G is an additional tun-

able parameter. The latter is a dubbed merging parameter for the reason which will appear shortly. We

will restrict Z to the interval [−π
2

; π
2

] since the translation Z → Z +π amounts to the change of the sign

of F and G. The set of vectors R forms the natural parameter space of the problem. In this space, the

spectrum of H possesses the symmetry D2h . Indeed, H is (anti)unitary transformed under sign-reversing

of X , Y and Z . Explicitly, we have

1. H(X ,Y ,−Z ) =K H(X ,Y , Z )K †, where K is the complex conjugation operator with respect to the

basis {|e1〉, |e2〉, |e3〉, |e4〉};

2. H(X ,−Y , Z ) =
[

U (Z )K
]

H(X ,Y , Z )
[

U (Z )K
]†

with

U (Z )=









e2iZ 0 0 0

0 0 1 0

0 1 0 0

0 0 0 e−2iZ









;

3. H(−X ,Y , Z ) =
[

U (Z )T
]

H(X ,Y , Z )
[

U (Z )T
]†

with

T =









0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0









.

In particular, under R-inversion, we observe the simple unitary equivalence H(−R) =T H(R)T †.

Since 〈e1|(H −µ)(H −ν)|e4〉 = 2F 2e2iZ
, 0, for any µ and ν, H has at least three distinct eigenvalues.

Thus, λ is a (doubly) degenerate eigenvalue of H if and only if (iff) there exists a real β> 0 such that

(H −λ)(H +λ+β)(H +λ−β) = 0. (2)

In this case, −λ−β and −λ+β are the other eigenvalues and λ is the smallest one iff β < −2λ. After a

little algebra based on equation (2) and H ’s characteristic polynomial, we find that the ground level of H

is degenerate iff G is greater than the critical value Gc =
√

2F 2 +ξ2 −ξ while X =±Xd with

Xd =

√

(

1−
Gc

G

)

(G +2ξ)(G +Gc +2ξ) .
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Figure 1. (Color online) Plots of the two lowest energy levels as functions of X and Y , with Z = 0 and

ξ = |F |, for different values of the merging parameter G . As long as G > Gc, the distance between the

diabolical points D+ and D− decreases with G . They merge for G = Gc into a single degeneracy charac-

terized by a quadratic dispersion δ(X ) in the X -direction and disappear as G <Gc. The plot unit is |F |. (a)
G =Gc +0.25 |F |; (b) G =Gc +0.05 |F |; (c) G =Gc; (d) G =Gc −0.3 |F |.

As long as G > Gc, the two distinct points D±, located at R± = (∓Xd,0,0), are isolated degenerate

points in the R-space. They illustrate a classical theorem of von Neumann and Wigner [36] which states

that, generically, twofold degeneracies have codimension three. Alternatively stated, in an N -dimensional

parameter space, there generically exist submanifolds of dimension N −3 over which a level is doubly

degenerate. Here, N = 3 and the degenerate subspaces are the points (dimension: 3−3 = 0). One should

also think of a bigger space collecting all the parameters entering H , as the six-dimensional space of

vectors R = (X ,Y , Z ,ξ,F,G). The submanifold verifying, simultaneously F , 0, Y = Z = 0, G Ê Gc(ξ,F ),

and X = ±Xd(ξ,F,G) carries a degenerate ground level and has a (co)dimension 3 in the R-space, as

expected.

The points D± move closer together when we reduce G , while conserving the symmetry relations

[H ,U ] = [H ,K ] = 0 (see figure 1). This corresponds to a generic situation: if they deviated from the

planes Y = 0 or Z = 0, each of them would split into 2 (or 4) distinct degenerate points. They merge at

R = 0 for G =Gc and finally disappear as soon as G <Gc, the minimal gap between the two lowest levels

being

∆=
1

2

(
√

16F 2 + (G −2ξ)2 −3G

)

−ξ.

Let Π be the projector into H(R+)’s ground eigenspace and {|1〉, |2〉} an orthonormal basis of that

subspace. Let σσσ = (σx ,σy ,σz ) be the triple of operators represented by the usual Pauli matrices in the

basis. Up to an unimportant component along Π, there exists a unique fixed real matrixM of the order of

3 such that Π
[

∇∇∇H(R+) · (R−R+)
]

Π reads σσσ ·M(R−R+). Obviously, M depends on the choice of the basis,

but it is a simple task to show that the signum of its determinant is intrinsic to the degeneracy. It is the

signature [37] of the degenerate point D+ in the R-space. One can explicitly choose

|1〉 =
1
p

2

(

|e2〉− |e3〉
)

,

|2〉 =

√

G(G +2ξ)

4λ2 −β2

[(

1−
X

G +2ξ

)

|e1〉−
F

G
|e2〉−

F

G
|e3〉+

(

1−
X

G +2ξ

)

|e4〉
]

,

where β is given by

β=

√

G2
c +2ξ

(

1−
Gc

G

)

(Gc +2ξ) .

Within this choice, one finds

detM=
4F 2(G +2ξ)Xd

(4λ2 −β2)2
.
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As long as G > Gc, the signature of D+ is +1. In its vicinity, the two lowest levels are close together

and σσσ ·M(R−R+) is an accurate Hamiltonian for the states belonging to them. Since D+ has a nonzero

signature, the level splitting around it is effective from the first order in ‖R−R+‖ in all directions of

the parameter space: D+ is a diabolical point [28]. By symmetry, so does D−, whose signature is found

to be −1. For G = Gc, the single degeneracy located at the origin has a vanishing signature, because the

dispersion in themerging direction is quadratic. A perturbative analysis shows that a deviation (0,0,0) →
(X ,0,0) opens a gap

δ(X ) =
G3

c X 2

2F 2(F 2 +G2
c )

+O(X 4).

Before introducing the system which will serve to realize our four-level model, let us end this sec-

tion with two remarks. The first one is peculiar to the model: if Y , Z are suppressed and ξ, F tunable,

the Hamiltonian may be used to construct non-Abelian holonomies [38, 39] over the manifold satisfy-

ing simultaneously F , 0, G Ê Gc(ξ,F ) and X = ±Xd(ξ,F,G). The model may also serve to implement

non-Abelian pumpings having Z as pumping parameter [39]. The second remark is more general and

concerns the signature. Consider some Hamiltonian H continuously defined over the R-space. Suppose

the existence of a nonsingular transformation t : R 7→ R′ associated with a fixed symmetry operator T ,

such that H(R′) = T H(R)T †. If T is unitary, it is straightforward to verify that the signatures are con-

served by the transformation if t is orientation-preserving and reversed otherwise. If T is antiunitary,

the contrary occurs. In our example, the signature of D− is due to the orientation-reversing map R 7→ −R

associated with the unitary operator T . Moreover, below we will use successive orientation-preserving

transformations of the parameter space, without incidence on the signature.

3. The Cooper pairs pump and its diabolical points

3.1. Basic settings

We consider one of the simplest implementations for a CPP, represented in figure 2. It is a small-

inductance superconducting loop (L → 0), threaded by amagnetic fluxΦx and broken by three ultra-small

Josephson junctions [2]. The junctions are assumed non-dissipative. They enclose two superconducting is-

lands, polarized by gate voltages Vgk through low gate capacitances Cgk (k = 1,2). We set ngk =CgkVgk /2e

the corresponding gate charges in the unit of 2e (> 0). The vanishing loop inductance leads to a biasing

(n1,ϕ1) (n2,ϕ2)

Cg1 Cg2

Vg1 Vg2

Φx

L → 0

EJL ,CL EJ,C EJR,CR

Figure 2. (Color online) The Cooper pairs pump (CPP) is essentially an array of three Josephson junctions

in a loop configuration. It depends on three external parameters: the gate voltages Vgk on the supercon-

ducting islands and the magnetic flux Φx threading the loop. The system is said to be mirror symmetric

if the “exterior junctions” are identical (i.e., EJL = EJR, CL =CR) and totally symmetric if all the junctions

are identical.
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phase [2] ϕx = 2πΦx/Φ0 across the CPP, where Φ0 = h/2e is the quantum of flux. We suppose Φx, Vg1 and

Vg2 independently tunable. The system has two collective degrees of freedom — one for each island —

and depends on three external parameters that we choose to be ng1, ng2 and ϕx rather than Vg1, Vg2 and

Φx. The conjugated operators assigned to the degrees of freedom are nk and ϕk (k = 1,2): the number of

Cooper pairs in excess (with respect to charge neutrality) and the phase of the superconducting param-

eter of the kth island, respectively. They verify the commutation relations [n j ,ϕk ] = iδ j ,k . We will study

the CPP in charge representation; |n1,n2〉will represent the fundamental charge states defined such that

e±iϕ1 |n1,n2〉 = |n1∓1,n2〉 and e±iϕ2 |n1,n2〉 = |n1,n2∓1〉. Since eigenvalues of n1 and n2 can theoretically

cover all the range of Z, the orthonormal basis B = {|n1,n2〉 |(n1,n2) ∈Z
2} spans the whole Hilbert space

of the problem.

Throughout this article, CΣ = CL +C +CR will be the capacitance unit and EC = (2e)2/CΣ will be

the energy unit. The latter is a typical charging energy of the circuit. We will study the system in the

Coulomb blockade regime, characterized by Josephson energies small in comparison to EC = 1. Using the

canonical quantization procedure, a Hamiltonian H = H(ng1,ng2,ϕx) may be derived for the system. It

splits into two parts: a charging Hamiltonian HC = HC(ng1,ng2) and a Josephson tunneling Hamiltonian

HJ = HJ(ϕx). Neglecting the gate capacitances in comparison to CΣ = 1 and using the notationααα= (α1,α2),

the former is

HC =
1

2
(n−ng) ·C−1(n−ng), (3)

where C is the capacitance matrix:

C=
(

CL +C −C

−C C +CR

)

.

The charging Hamiltonian is obviously diagonal in the basisB and verifies HC(ng+a) = e−ia·ϕϕϕHC(ng)eia·ϕϕϕ

for any integer vector a. Over the ng-plane, the energy surface of the eigenstate |0〉 = |0,0〉 is an elliptic

paraboloid centered at ng = 0. Thus, the energy surface of |n〉 = |n1,n2〉 = e−in·ϕϕϕ|0〉 is simply the trans-

lation by n of this paraboloid. Two different states |n〉 and |n′〉 are degenerate on a straight line charac-

terized by n, n′ and the capacitances. Then, one easily checks that |n1,n2〉 is the ground state of HC in

a hexagon hex(n1,n2) centered at ng = n. This defines the well-known honeycomb lattice of the CPP. It

is graphically obtained by integer translations of two nonequivalent lattice points T ± whose coordinates

are

ng(T ±) =±
1

2
C

(

(C−1)11

(C−1)22

)

.

The lattice picture is useful if we identify each fundamental state |n1,n2〉 with its corresponding

hexagon hex(n1,n2). With respect to HC, the common side of two neighboring hexagons is a piece of

the degeneracy line between the states, while the vertices are points of triple degeneracy. Introducing

the distance induced by the scalar product (x|y) = 2−1/2 x ·C−1y in the plane, this picture allows one to in-

terpret the charging energy of |n1,n2〉 as the squared distance between ng and the center of hex(n1,n2).

“Branching” HJ, which can be brought into the form

HJ =U (ϕx)
[

−EJL cos(ϕ1 +ϕx)−EJ cos(ϕ2 −ϕ1 +ϕx)−EJR cos(ϕ2 +ϕx)
]

U (ϕx)†, (4)

couples the neighboring states and generically lifts the degeneracies of HC. Explicitly,U (ϕx) = eiκκκ·nϕx , with

κ1 = 1−CR(C−1)12 and κ2 = 2−CR(C−1)22. In the Coulomb blockade regime, HJ is seen as a perturbation of

HC. As a good approximation, the Hilbert space may be reduced to its subspace spanned by a few number

of fundamental states in the neighborhood of ng. To this end, we only take into account the states |n1,n2〉
at a distance of ng shorter than a certain value.

Since H(ng+a,ϕx) = e−ia·ϕϕϕH(ng,ϕx)eia·ϕϕϕ, translations of lattice vectors a leave the physics unchanged

up to a displacement |n〉 → |n+ a〉 of the fundamental charge states. Moreover, performing the gauge

transformation |n1,n2〉 →U (ϕx)|n1,n2〉, the Hamiltonian is invariant under the translations ϕx → ϕx +
2kπ (k ∈ Z). Thus, the spectrum of H possesses the translational symmetry of a hexagonal prism lattice
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hex(0, 0)

hex(0, 1)

hex(1, 0)

hex(1,−1)hex(0,−1)

hex(−1, 0)

hex(−1, 1)

T+

T−

ng1

ng2

σ
v

ϕx

Figure 3. The honeycomb lattice of the CPP over the ng-plane. It is generated by the triple points T±

whose coordinates are given in the text. Each state |n1,n2〉 is the ground eigenstate of HC in the hexagon

hex(n1,n2). In the space of vectors r = (ng,ϕx), the spectrum of the Hamiltonian H possesses the sym-

metry C2h . It becomes D2h =C2h ×σv if the CPP is mirror symmetric (the vertical reflection planes are

represented by thick lines).

in the space of vectors r = (ng,ϕx). In the new representation, let us introduce the complex conjugation

operator K , the “sign change operator” S : |n1,n2〉 7→ |−n1,−n2〉 and the “charge exchange operator”

P : |n1,n2〉 7→ |n2,n1〉. Taking the ϕx-axis vertical, the spectrum of H possesses the point symmetry C2h :

under the reflectionσh and the inversion ι, we have H(r) =K
†H(σh r)K =S

†H(ιr)S . In particular, the

symmetry C2 = ι◦σh implies that the Hamiltonians at (T +,ϕx) and (T −,ϕx) are antiunitary equivalents,

and even unitary equivalents iff ϕx = 0 mod π.

If the CPP is mirror symmetric, that is to say, if the “exterior junctions” are identical (EJL = EJR and

CL = CR), the symmetry D2h is reached. Indeed, the reflection σv , shown in figure 3, exchanges ng1 and

ng2, inducing the transformation H(σv r) = [V (ϕx)P K ]H(r)[V (ϕx)P K ]†, where V (ϕx) = e−2i(n1+n2)ϕx .

3.2. The diabolical points

The CPP is said to be totally symmetric if the three junctions are identical. In this specific case, one has

ng(T ±) = ±( 1
3

, 1
3

). As shown in figure 4(a), the orientation-preserving map (ng1,ng2) 7→ (X ,Y ), such that

X =
p

3
2

(ng2+ng1− 2
3

) and Y = 1
2

(ng2−ng1), makes the hexagons regular in the (X ,Y )-plane and places the

origin at T +. The charging energy of a state |n1,n2〉 becomes the usual squared distance between (X ,Y )

and the center of hex(n1,n2).

Setting Z =ϕx, the spectrum possesses the symmetry D3h in the so-defined R-space [see figure 4(a)].

The rotation C3 induces the transformation H(C3R) = [V (ϕx)R]H(R)[V (ϕx)R]†, with R : |n1,n2〉 7→ |1−
n1 −n2,n1〉. The two symmetry operators P and R generate an unitary representation Γ of the group

D3 in the Hilbert space, such that Γ(σv ) = P and Γ(C3) = R. At the high symmetry points (T +,ϕx = 0

mod π), the Hamiltonian commutes with Γ.

The ground eigenspace of HC(T +) — spanned by |0,0〉, |1,0〉, and |0,1〉 — is an invariant subspace of

Γ. If Γg is the restriction of Γ to this space, we have

Γg(σv ) =





1 0 0

0 0 1

0 1 0



 and Γg(C3) =





0 0 1

1 0 0

0 1 0





in the basis {|0,0〉, |1,0〉, |0,1〉}. The subrepresentation Γg decomposes as A⊕E , where A and E are respec-

tively the totally symmetric and the two-dimensional irreducible representations of D3. Obviously, the
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hex(0, 0)

hex(1, 0)

hex(0, 1)

hex(−1, 1)

hex(1,−1)

T−

Y

X

hex(0,−1)

hex(−1, 0)

T+σ
v

Z

Y

X

Energy

ϑ

D+

(a) (b)

Figure 4. (a) The regularized honeycomb lattice of the totally symmetric CPP. The new parameters X

and Y are notably chosen so that T+ is located at the origin. (b) Plot of the two lowest energy levels as

a function of X and Y at ϕx = π in the close vicinity of D+. In a totally symmetric configuration, they

locally form a right circular double cone whose aperture is 2ϑ= 2π/3+O(EJ).

state

|A〉 =
1
p

3

(

|0,0〉+ |1,0〉+ |0,1〉
)

belongs to A. Then, we complete the basis of Γg by choosing two orthonormal states belonging to E :

|E1〉 =
1
p

2

(

|0,1〉− |1,0〉
)

and |E2〉 =
1
p

6

(

2|0,0〉− |0,1〉− |1,0〉
)

.

In the basis {|A〉, |E1〉, |E2〉}, we thus have Γg = A⊕E with A(σv ) = A(C3) = (1) and

E (σv ) =
(

−1 0

0 1

)

, E (C3) =
1

2

(

−1 −
p

3p
3 −1

)

. (5)

Any Josephson coupling between the states |A〉, |E1〉 and |E2〉 is forbidden at the high symmetry points.

Since 〈Eα|HJ(π)|Eα〉− 〈A|HJ(π)|A〉 = −3/2 < 0 (α = 1,2), up to the first order in EJ, the ground level of

H(T +,π) belongs to E while the first excited one belongs to A. The contrary occurs for H(T +,0). Thus,

the half-fluxoid condition Φx =Φ0/2 mod Φ0 ensures the double degeneracy of the ground level at the

point T +. The same conclusion holds at T − from the equivalence between H(T −,ϕx) and H(T +,ϕx).

Let us analyze the signatures of the degenerate points D± = (T ±,π). Redefining, for convenience, Z

as ϕx −π, D+ is located at the origin of the new R-space. Using the same notations as in section 2, basis

states |1〉 and |2〉 of H(D+)’s ground level are partners of the irreducible representation E =ΠΓΠ. They

may— and they will— be chosen so that the matrices of E are given by (5) in the basis {|1〉, |2〉}. Thereby,
we have |α〉 = |Eα〉+O(EJ), α= 1,2. The (anti)unitary transformations of H under the action of D3h imply

Table 1. The character table of D3. There are three irreducible representations: A (totally symmetric), B

(antisymmetric) and E (two-dimensional).

D3 E 2C3 3σv

A 1 1 1

B 1 1 -1

E 2 -1 0

33801-7
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the existence of two reals α and β such that

Π[∇∇∇H(D+) ·R]Π=
(

−αX αY + iβZ

αY − iβZ αX

)

, (6)

in the basis {|1〉, |2〉}. The coefficients α and β may be calculated as α = 3−1/2 +O(EJ) and β = 3−1/2EJ +
O(E 2

J
). Fixing Z = 0, the two lowest levels, plotted around T + as functions of X and Y , locally form a right

circular double cone whose aperture is 2arccot(α) = 2π/3+O(EJ) [see figure 4 (b)]. This is a consequence

of theD3 symmetry.Writing the right-hand side of equation (6) in the formσσσ·MR, one has detM=α2β> 0:

the signature of D+ is +1. Returning to the natural r-space, the points D± are located at r± = (ng(T ±),π).

Since r− =C2r+ and H(C2r)= [S K ]H(r+)[S K ]†, the signature of D− is −1.

The existence of “signed degeneracies” is fundamental to the physics of quantum pumpings. They

quantize the pumped charge along classes of cycles in the parameter space [22]. They are robust in the

sense that their existence is ensured by theWigner-von Neumann theorem even though the D3 symmetry

is broken. In some ways, one should say that the symmetry plays an important role of producing signed

degeneracies which become “accidental” as soon as the symmetry is broken. Under continuous varia-

tions of the circuit characteristics (capacitances and Josephson energies) they continuously move in the

plane ϕx =π, conserving their signature and the relation [H ,K ]= 0 (though loosing the regularity of the

conical intersection over the (X ,Y )-plane).

4. Merging the diabolical points

As the first approximation in the close vicinity of T ±, the whole Hilbert space can be reduced to the

ground eigenspace of HC(T ±). In these three-level models, the positions of D± are easily found. They are

located in the plane ϕx = π at

ng(D±) ≈ ng(T ±)±
1

2EJLEJEJR
C

(

E 2
JL

(

E 2
JR −E 2

J

)

E 2
JR

(

E 2
JL −E 2

J

)

)

.

Suppose that the CPP is mirror symmetric and EJ tunable. The above formula illustrates that the displace-

ment of D± conserves the symmetry [H ,P ] = 0. Furthermore, reducing EJ improves ng1(D+) = ng2(D+)

as much as it reduces ng1(D−) = ng2(D−). So, the two diabolical points D+ and D− shown in figure 5(a)

are expected to merge symmetrically at their midpoint I located at ( 1
2

, 1
2

) in the ng-plane.

Vg1

Cg1 Cg2

Vg2

Φx

Φ′
xEJE,C/2 EJE,C/2

EJE,C/2

EJE,C/2

dc SQUID

hex(0, 0) hex(1, 0)

hex(0, 0) hex(1, 1)

ng1

ng2

D+

D−

I

(a) (b)

Figure 5. (a) (Color online) Displacements of two diabolical points D+ and D− as EJ decreases: theymerge

at their midpoint I . (b) The circuit used to merge the points. The central junction of the CPP is replaced

by a dc SQUID threaded by a controllable flux Φ
′
x. It behaves essentially as an effective junction having a

capacitance C and a Josephson energy tunable between 0 and 2EJE.
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Figure 6. (Color online) Plots of the critical value EJc as a function of EJE, obtained by the four-level model,

on the one hand, and by a numerical treatment, on the other hand. The plot unit is EC.

Let EJE = EJL = EJR be the Josephson energy of the exterior junctions. By the definition of the capaci-

tance unit, their capacitance is (1−C )/2. Around the point I , an approximate Hamiltonian is the restric-

tion of H to the subspace spanned by the basis {|0,0〉, |1,0〉, |0,1〉, |1,1〉}. Up to an unimportant shift of the

zero of energies, the truncated Hamiltonian has the form (1) in this basis, where X and Y are redefined

as follows:

X =
ng2 +ng1 −1

1−C
, Y =

ng2 −ng1

1+3C
.

The other parameters are ξ= C/[(1−C )(1+3C )], F = EJE/2 and G = EJ/2. Within the four-level approxi-

mation, if EJ is greater than the critical value

EJc =
√

2E 2
JE
+4ξ2 −2ξ=

E 2
JE

2ξ
+O(E 4

JE), (7)

the degeneracies are located at R± = (∓Xd,0,0), with

Xd =
1

2

√

(

1−
EJc

EJ

)

(EJ +4ξ)(EJ +EJc +4ξ) .

Section 2 tells us that the merging of the diabolical points D+ and D− is possible if EJ is adjustable.

It is well-known that a tunable effective Josephson coupling can be realized via two junctions in a loop

configuration (a dc SQUID). Such a circuit element is de facto interesting from the viewpoint of tuning

the couplings between superconducting qubits [4, 40]. It has also demonstrated its utility for Cooper pairs

pumping in the so-called Cooper pairs sluice [19]. As shown in figure 5 (b), we replace the central junction

by a dc SQUID and assume all the junctions of the circuit to be identical. To be consistent with our previous

notations, we set EJE to be the Josephson energies and C/2 to be the capacitances of all the junctions. The

new central element has a capacitance C and an effective Josephson energy EJ = 2EJE

∣

∣cos(ϕ′
x/2)

∣

∣, where

ϕ′
x = 2πΦ′

x/Φ0. The charging and Josephson Hamiltonians still read (3) and (4) after the replacements

ϕx →ϕx +ϕ′
x/2 and U (ϕx) →U (ϕx,ϕ′

x), the exact definition of the last unitary operator being irrelevant

for our purpose. We also have CΣ = 2C and ξ= 0.4.

The merging is done by tuning the central coupling (through ϕ′
x) while we use ϕx to maintain the

new half-fluxoid condition ϕx +ϕ′
x/2 = π. A numerical simulation of the process was made, using the 62

closest states of the point I to define the truncated Hilbert space. The results are in good accordance with

the four-level model in the Coulomb blockade regime. For example, in figure 6 there is shown a plot of

the critical value EJc as a function of EJ: the numerical result coincides with the expression (7) in the limit

EJ ≪ 1.
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5. Conclusion

We have demonstrated the possibility of merging diabolical points of a superconducting quantum

circuit. We have emphasized the role played by the symmetry for that phenomenon. In an experimental

perspective, the principal difficulty to overcome is the mirror symmetry since it is impossible to fabricate

two identical junctions. This problem can be partially eliminated by using balanced SQUIDs [41]. The

theoretical study was accurately based on a four-level model whose eigenproblem is exactly solvable

within the constraint of a degeneracy. For subsequent works, it may serve as a formalmodel to implement

mergings of diabolical points in different contexts, such as quantum circuits or cold atoms. It may also be

used to produce non-Abelian holonomies as well as non-Abelian pumpings.
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Злиття диявольсьих точок надпровiдного контура

Р. Леоне, A. Монжу

Група статистичної фiзики, Iнститут iм. Жана Лямура, UMR CNRS 7198, Унiверситет Льорран, Вандувр лє

Нансi, Францiя

Представлено перше теоретичне вивчення злиття диявольських точок у застосунку до надпровiдних кон-

турiв. Спочатку дослiджено аналiтично розв’язувану чотирирiвневу модель, яка може служити теорети-

чною основою такого явища. В подальшому ця модель застосовується до контура, який називають помпа

куперiвських пар, з вiдомими диявольськими точками.

Ключовi слова: помпа куперiвських пар, диявольськi точки, виродженiсть, злиття
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