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The work is devoted to the investigation of nontrivial behavior of dilute water-alcohol solutions. The tempe-

rature and concentration dependencies of the contraction for aqueous solutions of ethanol and methanol are

analyzed. The existence of a specific point, the so-called peculiar point, was established. It is shown that water–

alcohol solutions of different types obey the principle of corresponding states if temperature and volume frac-

tion are used as principal coordinates. In this case, the concentration of the peculiar point for different solutions

is close to xν = 0.28. Several predictions are made.
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1. Introduction

During long time the opinion that properties of dilute molecular solutions are close to ideal ones
[1–3] was widespread. The situation essentially changed following the first experiments on molecular
light scattering (MLS) in dilute water–alcohol solutions (see [4–10]). It was shown that an anomalous
increase of the integral intensity for aqueous solutions of ethanol, tertiary butanol, glycerol and others is
observed if the molar concentration approaches xM = 0.04÷0.09 and temperature is within some interval
characteristic of each solution. In addition, the intensity increases more than ten times. In subsequent
years, the similar anomalies were observed for many other water-alcohol solutions.

Here, it should be noted that anomalous MLS is in fact observed at approaching some line Lp in the
plane (T, xm ). The point xp on this line for which the maximum of the MLS is observed was named the
peculiar point. Hereafter we will refer to the corresponding line of relative maxima as the peculiar line.

The important fact for water-glycerol solutions was established in [11] where it was shown that the
correlation length of the concentration fluctuations increases up to 70 Å at approaching the peculiar
point. In this case, the absolute maximum for the intensity for MLS is observed for Tp ≈ 303 K and
xp ≈ 0.04. Such a behavior of the correlation length reflects the existence of instability points for the
concentration fluctuations.

In [12, 13], the peculiar line was identified with the position of the pseudo-spinodal for water-alcohol
solutions, that separates the regions with different cluster structures. These clusters are formed due to
H-bonds connecting water and alcohol molecules stronger than between molecules of the same kind
[14]. In particular, according to [12], clusters formed on the left of the pseudo-spinodal consist of two
glycerol molecules and ten molecules of water. An analogous situation is also characteristic of water-
ethanol solutions [15].

The change of the water-alcohol structure near the peculiar line is also manifest in the behavior of
the adiabatic compressibility [16, 17], the heat capacity [18, 19], diffusion of components [20] and other
phenomena. However, all these manifestations were only fragmentarily investigated.

In the present paper, we focus on the analysis of temperature and concentration dependencies of
the contraction for aqueous solutions of ethanol and methanol. We want to establish the applicability of
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the principle of corresponding states to the description of contraction in water-alcohol solutions. Some
predictions will be made on this basis.

2. Contraction and adiabatic compressibility for water-alcohol

By definition, the contraction of binary solution is equal to:

ϕ (x,T ) =
V12

V1 +V2
−1,

where Vi , i = 1,2 are the initial volumes of components, V12 is the total volume of their mixture. It is clear
that the contraction is the simplest thermodynamic characteristic of binary solutions. Its behavior for
aqueous solutions of ethanol and methanol is presented in figure 1 and figure 2.

Figure 1. The concentration dependencies of ϕ(x) for water-ethanol solutions at different temperatures:

1 — 40◦C, 2 — 20◦C, 3 — 10◦C, 4 — 5◦C, 5 — 0◦C, 6 — –5◦C .

First, the contraction of water-ethanol solutions was investigated by Mendeleev about 130 years ago
[21]. He established the existence of three peculiar points: x(P)

M ≈ 0.077,0.25,0.75, which were identified

with the intersection of straight lines used to approximate the derivative
∂ϕ

∂x
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intervals: (0,0.07),(0.1,0.2),(0.3,0.7),(0.8,1). However, Mendeleev investigated the behavior of the con-
traction only for room temperatures. Experimental data for V12 for other temperatures were obtained
much later [22]. This seems very strange, but a systematic study of ϕ (x) was not even carried out for
typical water-alcohol solutions.

As we see, the contraction curves for both aqueous solutions of ethanol and methanol have the fol-
lowing peculiarities:

a) the signs of the contractions are negative;

b) all curves have minima near x(et)
min = 0.23 and x(met)

min = 0.39;

c) the curves corresponding to different temperatures intersect near x(et)
p = 0.077 and x(met)

p = 0.12

(see figure 3).

A detailed consideration of the contraction for water-ethanol solution is given in [24]. Here, we will
only analyze the most characteristic properties of the contraction in the vicinity of their peculiar points
in aqueous solutions of alcohol.
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Figure 2. The concentration dependencies ofϕ(x) for water-methanol solutions at different temperatures

[23]: 1 — 0◦C, 2 — 10◦C, 3 — 15.6◦C, 4 — 20◦C .

(a) Ethanol (b) Methanol

Figure 3. The vicinities of peculiar points for aqueous solutions of ethanol and methanol at different

temperatures: 1 — 40◦C, 2 — 20◦C, 3 — 10◦C, 4 — 5◦C, 5 — 0◦C, 6 — –5◦C.

The position of the peculiar point x(et)
p = 0.077 for water-ethanol solution practically coincides with

that, registered in theMLS experiments [25] [x(et)
p (MLS) = 0.077]. Unfortunately, there are no correspond-

ing data for aqueous solutions of methanol. Moreover, only for water–ethanol solutions the existence of
the peculiar point is certified with the help of contraction and the MLS, i.e., by thermodynamic and dy-
namic methods.

On the other hand, the existence of the peculiar point in water-alcohol solutions is also supported by
caloric measurements. So, the specific behavior of the heat capacity at approaching the peculiar points
was observed in [19] for aqueous solutions of TBA (tertiary butanol alcohol). The heat capacity of these
solutions is characterized by sharp peaks similar to those near the critical points. However, the height of
peaks near the peculiar point remains finite.

The strong increase of the MSL intensity near the peculiar point means that optical homogeneity of
water-alcohol solutions is violated by large scale fluctuations, accessible for observation in the visible
light range. This fact is immediately supported by data of correlation spectroscopy [11], according to
which the characteristic size of heterogeneities reaches 70 Å. From the general point of view, an anoma-
lous increase of fluctuations is connected with the instability of water-alcohol solutions near their peculiar
points. However, this instability cannot be connected with delamination of these solutions. Usually, their
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delamination is observed for 0.3 < xM < 0.5 and sometimes for xM close to 0.1. Therefore, the appearance
of instability should be connected with structural transformations in water-alcohol solutions.

Experimental data on the adiabatic compressibility βS for aqueous solutions of γ-picoline and acetone
in [16, 17] provide us with the important additional information on the physical nature of peculiar points.
The quantity βS is naturally connected with the adiabatic sound velocity: βS = 1/(ρc2

S ), where cS =ωMB/k

and ωMB is the frequency of the Mandelshtam–Brilluoin components (ρ is the mass density and k is the
transfer wave vector).

All these facts allow us to conclude that (i) dilute water-alcohol solutions can be considered as ensem-
bles of elementary clusters. They are formed by H-bonding between water and alcohol molecules, which
is stronger than the interaction between molecules of the same components; (ii) elementary clusters form
a percolation cluster when x → xp. Near xp, they begin to overlap and are destroyed; (iii) the character of
clusterization is different on the right of xp.

In other words, structural transformations in the vicinity of xp can be qualified as a smeared phase
transition between different cluster structures.

Some details of the clusterization in aqueous solutions of glycerol–ethanol and γ-picoline are dis-
cussed in [12, 13, 15]. In these papers it was shown that peculiar points of these solutions are located on
pseudo-spinodals separating the states of solutions with different character of clusterization.

3. Principle of corresponding states for the description of contraction

The usage of molar concentration in figures 1–5 does not allow us to display the role of molecular
parameters, such as an inherent molecular volume and the degree of nonsphericity, in the formation of
the contraction. However, exactly these parameters essentially effect the structure and size of elementary
clusters in low concentration region. In turn, this also effects the value of molar concentration, which
corresponds to the percolation threshold.

Figure 4. Isotherms of the concentration dependency for the Mandelshtam-Brilluoin components [∆ν =

ωMB/(2πc), c is the vacuum light velocity] in aqueous solutions of γ–picoline: 1 — 10◦C, 2 — 20◦C, 3 —

30◦C, 4 — 40◦C, 5 — 50◦C, 6 — 60◦C, 7 — 70◦C, 8 — 80◦C [16].

From this point of view, it follows that elementary clusters in methanol and ethanol should (i) be
similar since they correspond to the components forming only one H-bond between water and alcohol
molecules and (ii) have different volumes, since molecules of methanol and ethanol have noticeably dif-
ferent molecular volumes. We expect that the ratio x(et)

p /x(met)
p reduces to the simplest estimate:

x(et)
p

x(met)
p

⇒

ν(met)
m

ν(et)
m

≈ 0.7. (1)
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Figure 5. The adiabatic compressibility, βS, for aqueous solutions of acetone as a function of concentration

for different temperatures (1 — 10◦C, 2 — 25◦C, 3 — 40◦C) and sodium chloride concentrations (I — 0, II

— 0.4, III — 1.0, IV — 2.0) [17].

Taking the experimental values of x(et)
p and x(met)

p , we find x(et)
p /x(met)

p ≈ 0.72, i.e., the agreement between

the ratios x(et)
p /x(met)

p and ν(met)
m /ν(et)

m is practically full.

This example shows that the volume fraction xν, defined as

xν =
n2ν2

n1ν1 +n2ν2
⇒

xMν2

(1− xM)ν1 + xMν2
, (2)

is a more natural coordinate for the description of contraction than the molar concentration: xM =

n2/(n1 +n2). This conjecture is supported by figure 6.

Figure 6. The contraction of water-ethanol (1) and water-methanol (2) solutions as a function of the vol-

ume fraction at 0◦C.
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For other temperatures, the agreement between methanol and ethanol curves is analogous to that in
figure 6, i.e., curves practically coincide for 0 < x < 0.2 and 0.65 < x < 1.0.

These facts allow us to conclude that the contraction behavior for aqueous solutions of alcohols, for
which only one H–bond forms betweenwater and alcohol molecules, is approximately consistent with the
principle of corresponding states. In addition, the volume fraction and temperature are natural variables
for the description of the contraction behavior. Maximal values of deviations from some universal curve
do not exceed 10%.

For low concentrations xν = xMν1/ν2, and the peculiar point is determined by the coordinate:

x(P)
ν = x(P)

M

νa

νw
+·· · . (3)

If the ratio νa/νb is much larger than unity, x(P)
ν is a nonlinear function of x(P)

M as it is demonstrated

in figure 7. In particular, for the ratio x(P)
ν (met)/x(P)

ν (et), we obtain:

x(P)
ν (met)

x(P)
ν (et)

≈

x(P)
M (met)

x(P)
M (et)

νmet

νet

1+ x(P)
M (et)

(

νet

νw
−1

)

1+ x(P)
M (met)

(

νmet

νw
−1

) .

Figure 7. The interconnection between x(P)
ν and x(P)

M according to (2) for different values of the ratio

νw/νa.

From here and (1) it follows that

x(P)
ν (met)

x(P)
ν (et)

≈ 1. (4)

Thus, the volume fractions of methanol and ethanol at their peculiar points are the same and we can
write

x(P)
ν (et) ≈ x(P)

ν (met) ≈ 0.28. (5)

In accordance with our reasoning, this is a characteristic volume fraction of alcohol that stimulates the
structural reconstruction in water-alcohol solution. Therefore, we expect that

x(P)
ν (alc) ≈ 0.28 (6)
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for those water-alcohol solutions in which only one H–bond is formed between water and alcohol mole-
cules.

The corresponding value for the molar concentration is equal to:

x(P)
M

(alc) = 0.28
νw

νalc

1

1−0.28

(

1−
νw

νalc

) . (7)

In order to find the ratio νw/νalc, we will use the fact that the effective molecular volume for liquids is
close to the corresponding fraction volume:

νi =
1

ni
≈

mi

ρi
, i =w,alc,

where ni and ρi are the number and mass densities, respectively, and mi is the molecular mass. Then,

νw

νalc
≈

mw

malc
·

ρalc

ρw
. (8)

In particular, for TBA (ρ = 0.7887
g

cm3 , µ= 74.12
g

mol ) we obtain

x(P)
M (TBA) ≈ 0.069. (9)

4. Discussion of the results obtained

As was noted above, the structural transformations in water-alcohol solutions near their peculiar
points also manifest themselves in the molecular light scattering experiments and in other phenomena.
The positions of the peculiar points, determined by different methods, are presented in table 1. It is taken
into account that the MLS intensity usually has maximums for two concentrations: (i) near xM(alc) ∼

0.1÷0.5, which corresponds to the standard delamination of solution and (ii) near xM(alc) ∼ 0.03÷0.08,
which corresponds to structural transformations in the vicinity of its peculiar point. These maxima are
only observed within some temperature intervals.

Table 1. Manifestations of the peculiar point in the MLS and other experiments.

Aqueous solutions
of some substances
(W-substances)

Intensity maximum
in low

concentrations
region

Intensity maximum
in middle

concentrations
region

Inversion point
for the velocity

sound

Minimum of
the partial

molar
volume

W–ethanol 0.09(T = 20 ◦C) [25] Indistinct [25] 0.068 [28] 0.07 [29]

W–methanol 0.12(T = 20 ◦C) [25]

W–isopropyl
alcohol

0.06(T = 20 ◦C) [25]
0.08 [8]

Indistinct [25] 0.04 [28] 0.06 [29]

W–n–propyl
alcohol

0.05(T = 20 ◦C) [25] 0.15 [25] 0.05 [9] 0.045 [29]

W–tertiary
butyl alcohol

0.03 [25] – 0.032 [28] –

W–glycerol 0.04(T = 10 ◦C) [11] – – –

W–β–picolin 0.05 [27] – – –

W–acetone 0.055 [29] 0.1 [9] 0.062 [28] 0.07 [29]

Positions of the peculiar points, calculated for the same water-alcohol solutions according to (7) and
(8), are presented in table 2.

On the whole, we find a quite satisfactory agreement between experimental and calculated data. For
the majority of water-alcohol solutions, the difference between experimental and calculated data does
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Table 2. Positions of the peculiar points determined according to (7) and (8).

Aqueous solutions of some
substances collected in the table 1

Positions of the peculiar points
according to (7) and (8)

W–ethanol 0.09

W–methanol 0.12

W–isopropyl alcohol 0.08

W–n–propyl alcohol 0.08

W–tertiary butyl alcohol 0.066

W–glycerol 0.084

W–β–picolin 0.064

W–acetone 0.083

not exceed the width of the interval for the experimental error. Among alcohols that form only one H-
bond with water molecules, the calculated value of x(P)

M exceeds approximately twice the corresponding
experimental value only for tertiary butyl alcohol. A considerable deviation of the calculated value for
x(P)
M from experimental one is also observed for water-glycerol solution. However, a glycerol molecule can

form three H-bonds with water molecules. Thus, it seems doubtful that water-glycerol solutions belong
to the water-ethanol similarity class.

Here, it is interesting to note that the Russian vodka and Ukrainian horilka are aqueous solutions of

ethanol having concentration of 40 volume percent. This is more than the concentration for the peculiar

point [x(P)
ν (et) ≈ 0.28] but it is smaller in comparison with the concentration x(min)

ν (et) ≈ 0.55 characteris-

tic of the minimum of contraction (see figure 1 and figure 7). Such a volume fraction of ethanol is more

characteristic of different kinds of cognacs.

It should be noted that Mendeleev was the first to relate the appearance of peculiar points to the

formation of molecular complexes in water–ethanol solutions. Thus, he related the low concentration

peculiar point at xM(et) ≈ 0.077 for water–ethanol solution to the formation of a complex consisting of

one molecule of ethanol and 12 molecules of water. The second peculiarity at xM(et) ≈ 0.23 corresponds

to a complex of 1 ethanol and 3 water molecules (see [21]). In recent years, Mendeleev’s fruitful ideas

were developed in the works [12, 13, 15, 24, 30, 31].

We want to dedicate this paper to 60-th anniversary of Professor Mychailo Kozlovskii who made es-

sential contribution to the theory of critical phenomena. We hope that nontrivial peculiarities of dilute

water–alcohol solutions will also attract his attention.
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Особливi точки фазової дiаграми водно-спиртових розчинiв

Чєчко В.Є.1, Гоцульський В.Я.1, Маломуж М.П.2

1 Науково-дослiдний iнститут фiзики, Одеський нацiональний унiверситет, Дворянська 2, Одеса, Україна

2 Кафедра теоретичної фiзики, Одеський нацiональний унiверситет, Дворянська 2, Одеса, Україна

Робота присвячена дослiдженню нетривiальної поведiнки розбавлених водно-спиртових розчинiв. Про-

аналiзовано температурнi i концентрацiйнi залежностi стиснення водних розчинiв етанолу i метано-

лу. Специфiчна поведiнка залежностей призводить до iснування особливої точки. Показано, що водно-

спиртовi розчини рiзних типiв пiдкоряються принципу вiдповiдних станiв, якщо застосовувати в якостi

основних координат температуру i об’ємну частку спирту. У цьому випадку особливостi рiзних параметрiв

спостерiгаються в околi концентрацiй близьких до xν = 0.28. Зроблено декiлька прогнозiв.

Ключовi слова: водно-спиртовi розчини, контракцiя, особлива точка
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