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The energy spectrum, spectral density and phase diagrams have been obtained for two-sublattice hard-core
boson model in frames of random phase approximation approach. Reconstruction of boson spectrum at the
change of temperature, chemical potential and energy difference between local positions in sublattices is stud-
ied. The phase diagrams illustrating the regions of existence of a normal phase which can be close to Mott-
insulator (MI) or charge-density (CDW) phases as well as the phase with the Bose-Einstein condensate (SF phase)
are built.
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1. Introduction

Lattice Bose-gas model based on the hard-core bosons approach (the site occupancy n; = 0,1) has a
wide range of possible applications starting from quantum effects in liquid He [1,/2]. This model was also
applied to superconducting gas of Cooper electron pairs [3], physical properties of Josephson junctions
[4], thermodynamics and energy spectrum of crystals with ionic conductivity [5, 6]. In recent years the
hard-core boson approach has gained popularity in connection with investigations of ultra-cold atoms in
optical lattices. At an arbitrary occupation of local particle positions optical lattices are usually described
with Bose-Hubbard model (see [7] for review). In U — oo limit of this model, when potential wells are ex-
tremely deep, Bose-Hubbard model turns to hard-core boson model. In this paper we consider this model
for the lattice with non-equivalent sites, particularly in the simplest case of two-sublattice structure. Such
structures can be easily realized in optical lattices [8] and are also observed in the case of adsorption of
hydrogen atoms on the surface of metals (the quantum surface diffusion of protons is described by means
of Bose-Hubbard model [9, [10]). Crystal lattice is supposed to be centrosymmetrical of cubic type. Parti-
cles have different local site energies on each of two sublattices (s # €5, where A and B are sublattice
indices). This model has been investigated in connection with thermodynamic properties of Bose atoms
in complex optical lattices [11-13].

The main focus of our paper is to study the conditions of Bose-Einstein (BE) condensation and to
construct the corresponding phase diagrams. Our goal is to investigate the energy spectrum and one-
particle spectral densities as well as the changes of their shapes as the system enters various phases that
include the phase with BE condensate (also called superfluid or SF) and normal phase of the so-called
Mott-insulator (MI) or charge-density wave (CDW) type. We use two-time Green’s function technique and
random phase approximation (RPA). A similar approach has been used recently in [14].
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2. Boson Green'’s functions and phase diagrams
The Hamiltonian of noninteracting hard-core bosons on a lattice is as follows:

_Ztijb?—bj"‘(go_ﬂ)zni, 2.1)
ij i

where ¢;; is the boson hopping parameter and b;, b;r are Pauli operators. We proceed to pseudospins
(b; = S;r, b;’ = §;) and generalize the model for two sublattices (i = n.a; @ = A, B; €9 = €a, €B):

T==3 3 Joh (ShaStp+ ShaSlys) - Lha) S 2.2)

ne p' g

The parameter of “transversal” interaction between pseudospins ]Zf , describes the transfer of par-
ticles between nearest neighbours in the lattice; i, = €, —  is the “field” acting on the pseudospin in «
sublattice.

To start with, we consider the mean-field Hamiltonian

e ==Y 3 (136 + 707 )(s5yss «=Lha X Sia 2.3)

na n’ﬁ
which is diagonalized with the rotation transformation

¥4 — z X 5
Sha = Opa€0s9q+07,,5n0y,

Ska = 07550804 —0%,sindy (2.4)

and takes the form Ayg = —Y 0 Ea0%,-
The following equations define the angles 9,:

hasinda — (o) Ja(0) cos Ipsindp = 0,
hgsindg — (03) Jg(0) cos Igsinda = 0. (2.5)

Here, J4(0) =), ﬁ( o’ ] ) in the case of structurally equivalent sublattices J4(0) = Jg(0) = J(0).

The trivial solution s1n19A 0, sin g = 0 defines the normal phase (like MI or CDW), while at sin9, #
0 the SF phase exists. For SF phase, the order parameter (S%) is not equal to zero (because (S}) =
—(o%)sindy).

For nontrivial solution we have

Z\2/+2\2 14 212
(0a){op ] (0)— hg hig

)
sin“ 9, = . (2.6)
T OS2 OHE +(05)? T (0)]
Here and below, 8 # a. In the mean-field approximation
1 BE
(0% = Etanh 2“ , 2.7)
where
\ e+ (@52 (0)

Egq=hgcosOq + <Uz)](0) sindy sindg = (05) J(0) (2.8)

NCRRCAOZON

The set of equations and defines the pseudospin averages (o%), (0f) and internal fields Ey, Eg.
On the other hand, in the case of normal phase

Pha
2 2.9)

1
Eq = hq, (0%) = > tanh
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The condition of transition to SF-phase is the divergence of boson Green’s function ((S*|S7)) 4 at zero
frequency and 4 = 0 (as we approach SF phase boundary from any of normal phases).
To construct the equations for pseudospin Green’s functions, we use the linearized equations of mo-
tion for & o operators
(0%, ] = Eaiol, — (02) Y (11 + 15} )io)
n!

In' n'p’

[0, H] = —Eqio}, + <Ué>2(];xf +]5,0;) cos 9 cosIpio g,
n

(07, H]=0 (2.10)

(these equations were written using RPA decoupling). It is taken into account that interaction ]Zf , (parti-
cle hopping) takes place between lattice sites from different sublattices.
As a result, we obtain the following set of equations for pseudospin Green’s functions

hoof,lo5, ) = ool lob ) =i(a2) Y (Jih+ J5%) (@ slos ),
n!

hw((a;’alafy)) —1§6”/6ay (d2) - iEa((07glop, ) + 1(02)% (Laﬁ + L’Ba) Uopplog, ), (2.11)

In' n'l

where
L’;‘,]f, = ]fB cosdacosdg. (2.12)

n/

After Fourier transformation of pseudospin interaction matrix

@) = X ()il 19

n—n'

as well as Green’s functions ({(c% Iaﬁ )) we obtain, in particular, the following equations

hoGyy = iEAGiy—i(05)7(G)Ghy,
B , , .
hwGﬁ = —1§<U§>—1EAGXX+1<U§>L(C])ng,
hoGgy = iEsGyy —i(0§)J(d)Gay,
hwGy, = -iEgGyx+i(0of)L(q)Gxx. (2.14)

The system of equations (Z.14) can be easily solved to obtain the expressions for matrix Green’s func-
tions ((Ugla¥))q,w and <<Sﬁ|8¥))q,w, (we can calculate the latter using relations (2.4)). Here, u and v
indices denote +,—,z components.

3. Boson spectrum in normal phase and phase diagrams

Let us consider the one-particle boson Green‘s function ((balbg))q,w = <<S:§|55>>q,w- In the normal
phase case ((S;IS;))q'w = <<a;|a/g>>,,,w. For a = 3, we have the following result
_ fiw— Eﬁ

> — _h, .
Caa(q, ) = (04100l g0 = 7 (7a) (hw — Eo) (hw — Eg) — @y’ Gn

derived from equations 2.I9). Here, ®, = (0%) (0%) J* (4).
The boson excitation spectrum is defined from the poles of the G} function

ey @=h+ \/52+<U,§)(0§>12(67)- (3.2)

We have introduced the general notations & = % ;0= @ In normal phases h = @; 0= %
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The features of the obtained spectrum may vary depending on the values of the model parameters:

For =0 (A and B positions are equivalent; crystal is not split to sublattices and the unit cell is two times
smaller):

ph
7.

There is only one band £(§) = h— (g %) J(§) inside the two times bigger Brillouin zone.

M@ =nh+ (e I1@, (o%)= %tanh 3.3)

1,2

For 6 #0; 6 > 0. There are two bands in this case. The edges of the bands are defined by the inequalities
which depend on the sign of (0% ) (05) = i tanh g(h +6) tanh g(h — &) expression:

h+8<el(d<h+ \/52 +{02)(02) J2(0)
h= 62+ (05)(05) J2(0) < £2(@) < h—5

s (05)(of)>0

and
B+ (/62 +(02)(05) J2(0) <e1(@) < h+6
h=6<e2(d) < h— /62 +(0%) (0%) J2(0)

b (0%)(0%) <0.
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Figure 1. Dispersion laws &(q) for different phases. Dashed line denotes the chemical potential level.

Z
The Fourier transform J(g) = % J(0) Y. cosqgqa is used with the aim of illustration. J(0) is chosen as the
=1

a=
energy unit. T =1/ =0.05,0 = 0.8. The numbers indicate the corresponding branches. For SF phase: 1 -
€1,2—-€2,3-¢€3,4-¢€4. For MI and CDW phases: 1-¢€7, 3 - €2.
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In the first case ((aﬁ)(ag) > 0), which holds for & —§ > 0, two different bands always exist; the gap
between these bands disappears as § — 0. The chemical potential (which is located on the energy scale
at € = 0 point) is placed either higher or lower than the bands €;(g§) and &3(g) [figures [ (a), @ (d)]. In
the second case ((af\) (0123) < 0), which corresponds to the inequalities h—§ < 0; h+ 6 > 0, two different

bands exist only at § > /I(Ug) (0'123)| J(0). The gap disappears when this condition is violated [at T = 0

this happens at § = 6. = % J(0)]. When the bands are separated in normal phase, the chemical potential
is located between the bands [figure[Tl(c)]. The instability connected with SF transition takes place when
the level of chemical potential touches the edge of one of the bands that may be driven either by the
temperature, chemical potential or energy difference 6 change. At J(0) > 0 (#;; > 0), this always happens
in the ¢ = 0 point. The condition for this is as follows:

h? =6%+{a%)(a&) J*(0). (3.4)

Two equations derived from this relation allow us to construct the phase diagrams in (/(0), h) and
(T, h) planes that show the areas of SF and normal (MI, CDW) phases. Diagram in figure 2lillustrates the
change of the shape of phase boundary curve on (J(0), ) plane as the temperature increases (at T =0,
the phase boundary curve corresponds to the one obtained in [11,12]). The definitive boundary between
MI and CDW regions exists only at zero temperature. In this case, MI and CDW states can be interpreted
as different phases. When one departs from 7 = 0 limit, this boundary disappears and one may observe a
single normal phase. However, this normal phase is close to either MI or CDW phases in different regions
of phase diagram (also see below).

4 T T T 0.25
0.20 -
3+
5.
© . 0.15 -
o2t S
= 4 2
) 3 = 0.10 1 -
r 2 0.054 i
A
Mi
0 0.00 T T T
2 1 -1.0 0.5 0.0 0.5 1.0
h/s h/J(0)
Figure 2. Phase diagram of two-sublattice model Figure 3. Phase diagram (T, h) at various values of
of hard-core bosons for different temperatures: 6:1.6=0.1,2.6=0.3, 3.6 =0.48, 4. § = 0.499,
1. T =0.00005, 2. T =0.05,3. T=0.15,4. T =0.2, 5.6 =0.501, 6. 6 = 0.8. Energy quantities are mea-
5. T =0.5. Energy quantities are measured in units sured in units of J(0).

of § = (ep —€g)/2.

If the existing critical value of the difference of sublattice local energies (6 = d) is exceeded, it leads
to the splitting of the SF-phase area on (7, k) plain (figure[3). This result is in agreement with the papers
mentioned above, where all calculations were performed only at T = 0. Therefore, at § > §, there are
two critical points for T # 0.

For intermediate values of chemical potential, the normal phase is similar to the charge ordered phase
(CDW) while at large positive (or negative) values of h this phase is of Mott-insulator (MI) type. This
conclusion is confirmed by one-particle spectral density p4 (w) calculations. We use the relation

&1(g)
YTy n

1 2 _ R "
pale) = - T 2IMUSLIS govic = 3 X (03] 410 + a5 @0 |0- 221,
q q

which follows from the decomposition into partial fractions.
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Here,
0

1
_i—’
2 2,/62+ 9,

while expression for A]fyz(ﬁ) is derived from A11\,2 (§) by A2 B (6 — —0) substitution.
Using non-perturbative density of states

Aiz(ﬁ) =

1 o
po(2)==> 6[z-1(@],
N q

we can rewrite the expression (3.5) for o = A
J(0)
o

1
palw) = 2(d%) f dzpo(2){ | =+ 6[0)—

h+./82+(0%)(0%) 22
it 2 2,\/62+(0%) (o) 22 [+ yots )

1 4 1 2+ O-Z O.Z ZZ
dEew e 6[w—%(h—\/5 (05)(5) 2]

When performing numerical calculations, we use the semi-elliptical function po(z) = m VJ2(0) - z2.

==

(3.5)
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Figure 4. Spectral density of A-sublattice for different phases. T = 0.05, § = 0.8. All energy quantities are
measured in units of J(0). pp = pa/# is the spectral density as function of energy Ziw.

Figure M illustrates spectral density for all phases. For CDW region of normal phase [figure [ (c)],
the chemical potential is located within the gap between the bands p, (w); the sign of p, (w) function is
different in each band [pq(w) <0 at hiw < g and pq(w) > 0 at fiw > p]. For MI region [figures [l (a), [ (d)]
the chemical potential is at the same side of both bands pg (w).
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The values of 0§ and 0§, averages presented in figures 4l (a)-#l(d) are very close to those at T = 0. We
observe the modulated occupancy np = %—Ui =0,ng = % —0of = 1in CDW-like case [figure[d(c)]. Contrary
to this, in MI-like cases, this occupancy is either close to zero or unity depending on the chemical potential
value. The latter two possibilities are illustrated in figure [ (a) (ns =~ ng =~ 0 when y is positioned below

the energy bands) and figure[(d) (ns = ng = 1 when u is placed above the bands).

4. Excitation spectrum in SF phase

In the case of a phase with BE-condensate (SF phase), when sin9a # 0, sindg # 0,

n Py
AN =—(o% , 4.1
OIS =5 TN e E3)(h?w? — E3) - 2Myh?w? — 2N, EpEg + M2 @D
where
P’;(hw) = [Ea(cos? 94 + 1) + 2hwcos 9a] (FPw* — E5) — 2hw My cos O + @’;EB, 4.2)

and the following notations are introduced:
1 -
My =®,cosdrcosdp, Ng= 5% (1+cos®Oacos®Op), Dy =Dycos” O (1+cos’Pp)  (4.3)

(the replacement A 2 B gives an expression for the ((SE IS]g N aqw function).
The boson spectrum consists now of four branches

1/2

e (@) =+ (P + Q)" ey (@) == (Pg— Qq) .4

Here,

1/2
Pq:%(E§+E§)+Mq, Qq= i(Ei—E§)2+2NqEAEB+Mq (E5-E3)| . 4.5)

Energies Ej and Eg, as well as averages <0§) and (UE) are determined now as solutions of equations (2.7)
SF) [ >
(1“ 4)(57) are

and @2.13). Regions of existence of SF phase are shown in figures 2] 8] The dispersion curves €
present in figure[dl (b) for certain values of & and § parameters.

The presence of branches with linear dispersion at small values of g [e3(g) and €4(4) in the case
presented in figure [ (b)] is the specific feature of SF phase; their energy goes to zero in the point of
the location of chemical potential. This peculiarity of spectrum is well known from investigations of the
simple hard-core boson model [3]. However, in our case, at €5 # €p, the additional gapped branch [&2(§)
in figure[dl (b)] appears in the negative energy region.

Similarly to the normal phase case, one can perform calculations of the boson spectral density pq ().

Using decomposition of expression (4.I) into partial fractions, we obtain

2 4 N (q
Palw) = —Z(af,)ZA?(q)é(w—M), (4.6)
NG -1 n
where
PY(hw=¢;(q)
A;x((_/]') = M 4.7

4Qq5i((ji)
It is easy to obtain an expression like passing to integration with the po(z) density of states. The
contributions from all four bands are present in the total spectral density.

The plots of the pa(w) functions in the case of SF phase are presented in figure [ (b). For branches
with linear dispersion [e34(g)], the spectral density changes its sign in the point iw = 0 (at that point the
chemical potential is located). The change of the spectral density shape at MI — SF transition, when we
observe the appearance of the negative branch of p, (w) [figured (b)], corresponds to the results obtained

23005-7



LV. Stasyuk, O. Vorobyov

in [15,/16] as well as to the ones obtained for generalized hard-core boson model with excited states trans-
fer [17]. Additional branch €, (g) that appears in SF phase is characterized by a negative spectral density.
Its intensity (at the chosen values of /& and § parameters) is small. Qualitatively, this shape of the p4 (w)
function is specific for the Bose-Hubbard model [18]. However, contrary to the standard case, where addi-
tional branches separated by gaps exist due to the local energy splitting (caused by the Hubbard repulsion
of bosons), in our two-sublattice model such an effect is a consequence of the energy non-equivalence of
sublattices.

The behaviour of pa (w) function is in agreement with the results of numerical calculations performed
in [19] with exact diagonalization technique for one-dimensional (d =1) chain structures. In [19], the
authors take into account the two-particle interaction between nearest neighbouring sites. This inter-
action forms the effective internal field which is similar to the field 6 considered here, and both fields
are responsible for the appearance of CDW-like phase. The shape of spectral densities in various phases,
obtained here, lets one identify the equilibrium states on phase diagrams (diagrams of state) obtained
numerically for d = 1.

5. Conclusions

Within the random phase approximation, we have calculated the spectral densities of a two-sublattice
model of hard-core bosons and analyzed the features of the boson single-particle spectrum in various
phases. These features are connected with the position of the chemical potential level. It is placed:

» within the gap between two boson bands in the case when normal phase is similar to the charge-
ordered (CDW) phase;

* above (or below) both bands in the case when normal phase is similar to the Mott insulator (MI)
phase;

» within a certain boson band, for SF phase (the phase with BE condensate); the additional boson
bands appear in this case.

We have obtained the equation that describes the transition to the SF phase and have built the
corresponding phase diagrams at various temperatures and at different values of energy difference
o= %(sA —¢g). The temperature increase leads to the gradual vanishing of the difference between CDW-
like and MI-like modifications of normal phase; there are no border lines separating them. SF-phase re-
gion also decreases with the temperature increase;at the same time, two regions of the SF phase, which
exist at T =0 and at a fixed value of §, join together. On the other hand, a similar effect takes place for
fixed temperature at the decrease of §. At high values of 8, there are two critical points in which the
SF phase disappears at an increase of temperature. When § decreases, only one central critical point
remains.

At the same time, it should be mentioned that nonzero value of § is the main reason for the appear-
ance of the CDW-like state in our system. We have not included direct intersite interactions between
particles into consideration. This kind of interaction may induce the phase transition into “true” CDW
phase.

More elaborate study of the boson spectrum reconstruction at the transitions between different re-
gions in phase diagrams and the change of their topology remains an interesting task. It is worthy of
special attention.
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EHepreTnuHnii cnekTp i pasosi giarpamm aBoniarpaTtkoBoi
Mozei XXOPCTKUX 6030HIB

I.B. Cractok, O. Bopobiios

IHCTUTYT $i3nkn KoHAeHCcOBaHMX cnctem HAH YkpaiHw,
Byn. CBeHUiubKoro, 1, 79011 JibBiB, YkpaiHa

Jns ABoniarpaTkoBoi Mogeni XOPCTKMX 6030HIB B paMKax HablvKeHHS XaoTUYHNX a3 po3paxoBaHO eHepre-
TUYHWIA CNeKTP i CMeKTpanbHi ryCTMHM Y pi3HuX pasax Ta nobygosaHo ¢pas3osi giarpamu. locnigkeHo nepebyso-
By 6030HHOrO CNeKTpy NpwW 3MiHi TeMnepaTypu, XiMiYHOTo noTeHLiany Ta PisHUL eHepriil JoKanbHVX MNO3ULLiA
y niarpatkax. NMobyaosaHo $a3oBi giarpamu, AKi iNtOCTPyoTb 06/1aCTi iCHYBaHHA HOpPManbHOI ¢asu, LWo Moxe
6yTV Noai6HOI A0 dasn MOTTIBCbKOrO gienekTpuka (MI) um 3apsigosoro BnopsigkyBaHHs (CDW), a Takox dasm
3 603e-KoHAeHcaToM (¢pasu SF).

KntouoBi cnoBa: XopcTki 6030HU, rycTvHa CTaHiB, $asosi giarpamu
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