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The energy spectrum, spectral density and phase diagrams have been obtained for two-sublattice hard-core

boson model in frames of random phase approximation approach. Reconstruction of boson spectrum at the

change of temperature, chemical potential and energy difference between local positions in sublattices is stud-

ied. The phase diagrams illustrating the regions of existence of a normal phase which can be close to Mott-

insulator (MI) or charge-density (CDW) phases as well as the phase with the Bose-Einstein condensate (SF phase)

are built.
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1. Introduction

Lattice Bose-gas model based on the hard-core bosons approach (the site occupancy ni = 0,1) has a

wide range of possible applications starting from quantum effects in liquid He [1, 2]. This model was also

applied to superconducting gas of Cooper electron pairs [3], physical properties of Josephson junctions

[4], thermodynamics and energy spectrum of crystals with ionic conductivity [5, 6]. In recent years the

hard-core boson approach has gained popularity in connection with investigations of ultra-cold atoms in

optical lattices. At an arbitrary occupation of local particle positions optical lattices are usually described

with Bose-Hubbardmodel (see [7] for review). In U →∞ limit of this model, when potential wells are ex-

tremely deep, Bose-Hubbardmodel turns to hard-core boson model. In this paper we consider this model

for the lattice with non-equivalent sites, particularly in the simplest case of two-sublattice structure. Such

structures can be easily realized in optical lattices [8] and are also observed in the case of adsorption of

hydrogen atoms on the surface of metals (the quantum surface diffusion of protons is described bymeans

of Bose-Hubbard model [9, 10]). Crystal lattice is supposed to be centrosymmetrical of cubic type. Parti-

cles have different local site energies on each of two sublattices (εA , εB , where A and B are sublattice

indices). This model has been investigated in connection with thermodynamic properties of Bose atoms

in complex optical lattices [11–13].

The main focus of our paper is to study the conditions of Bose-Einstein (BE) condensation and to

construct the corresponding phase diagrams. Our goal is to investigate the energy spectrum and one-

particle spectral densities as well as the changes of their shapes as the system enters various phases that

include the phase with BE condensate (also called superfluid or SF) and normal phase of the so-called

Mott-insulator (MI) or charge-density wave (CDW) type. We use two-time Green’s function technique and

random phase approximation (RPA). A similar approach has been used recently in [14].

© I.V. Stasyuk, O. Vorobyov, 2013 23005-1

http://dx.doi.org/10.5488/CMP.16.23005
http://www.icmp.lviv.ua/journal


I.V. Stasyuk, O. Vorobyov

2. Boson Green’s functions and phase diagrams

The Hamiltonian of noninteracting hard-core bosons on a lattice is as follows:

Ĥ =−
∑

i j

ti j b+
i b j + (ε0 −µ)

∑

i

ni , (2.1)

where ti j is the boson hopping parameter and bi , b+
i

are Pauli operators. We proceed to pseudospins

(bi = S+
i
, b+

i
= Si ) and generalize the model for two sublattices (i = n.α; α= A,B ; ε0 = εA, εB):

Ĥ =−
∑

nα

∑

n′β

J
αβ

nn′

(

Sx
nαSx

n′β+S
y
nαS

y

n′β

)

−
∑

α
hα

∑

n

Sz
nα . (2.2)

The parameter of “transversal” interaction between pseudospins J
αβ

nn′ describes the transfer of par-

ticles between nearest neighbours in the lattice; hα = εα−µ is the “field” acting on the pseudospin in α

sublattice.

To start with, we consider the mean-field Hamiltonian

ĤMF =−
∑

nα

∑

n′β

(

J
αβ

nn′ + J
βα

n′n

)

〈Sx
β〉S

x
nα−

∑

α
hα

∑

n

Sz
nα (2.3)

which is diagonalized with the rotation transformation

Sz
nα = σz

nα cosϑα+σx
nα sinϑα ,

Sx
nα = σx

nα cosϑα−σz
nα sinϑα (2.4)

and takes the form ĤMF =−
∑

nα Eασ
z
nα.

The following equations define the angles ϑα:

hA sinϑA −〈σz
B〉JA(0)cosϑA sinϑB = 0,

hB sinϑB −〈σz
A〉JB(0)cosϑB sinϑA = 0. (2.5)

Here, Jα(0) =
∑

n′β

(

J
αβ

nn′ + J
βα

n′n

)

; in the case of structurally equivalent sublattices JA(0) = JB(0) ≡ J (0).

The trivial solution sinϑA = 0, sinϑB = 0 defines the normal phase (like MI or CDW), while at sinϑα ,

0 the SF phase exists. For SF phase, the order parameter 〈Sx
α〉 is not equal to zero (because 〈Sx

α〉 =

−〈σx
α〉sinϑα).

For nontrivial solution we have

sin
2ϑα =

〈σz
α〉

2〈σz
β
〉2 J 4(0)−h2

αh2
β

〈σz
α〉

2 J 2(0)[h2
α+〈σz

β
〉2 J 2(0)]

. (2.6)

Here and below, β,α. In the mean-field approximation

〈σz
α〉 =

1

2
tanh

βEα

2
, (2.7)

where

Eα = hα cosϑα+〈σz
β〉J (0)sinϑα sinϑβ = 〈σz

α〉J (0)

√

h2
α+〈σz

β
〉2 J 2(0)

√

h2
β
+〈σz

α〉
2 J 2(0)

. (2.8)

The set of equations (2.7) and (2.8) defines the pseudospin averages 〈σz
A
〉, 〈σz

B
〉 and internal fields EA, EB.

On the other hand, in the case of normal phase

Eα = hα , 〈σz
α〉 =

1

2
tanh

βhα

2
. (2.9)
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The condition of transition to SF-phase is the divergence of boson Green’s function 〈〈S+|S−〉〉q,ω at zero

frequency and ~q = 0 (as we approach SF phase boundary from any of normal phases).

To construct the equations for pseudospin Green’s functions, we use the linearized equations of mo-

tion for ~σnα operators

[

σx
lα, Ĥ

]

= Eαiσ
y

iα−
〈

σz
α

〉
∑

n′

(

J
αβ

ln′ + J
βα

n′l

)

iσ
y

n′β
,

[

σ
y

lα
, Ĥ

]

=−Eαiσx
iα+

〈

σz
α

〉
∑

n′

(

J
αβ

ln′ + J
βα

n′l

)

cosϑA cosϑBiσx
n′β ,

[

σz
lα, Ĥ

]

= 0 (2.10)

(these equations were written using RPA decoupling). It is taken into account that interaction J
αβ

nn′ (parti-

cle hopping) takes place between lattice sites from different sublattices.

As a result, we obtain the following set of equations for pseudospin Green’s functions

ħω〈〈σx
lα|σ

x
l ′γ〉〉 = iEα〈〈σ

y

lα
|σx

l ′γ〉〉− i
〈

σz
α

〉
∑

n′

(

J
αβ

ln′ + J
βα

n′l

)

〈〈σ
y

n′β
|σx

l ′γ〉〉,

ħω〈〈σ
y

lα
|σx

l ′γ〉〉 = −i
ħ

2π
δl l ′δαγ

〈

σz
α

〉

− iEα〈〈σ
x
lα|σ

x
l ′γ〉〉+ i

〈

σz
α

〉
∑

n′

(

L
αβ

ln′ +L
βα

n′ l

)

〈〈σx
n′β|σ

x
l ′γ〉〉, (2.11)

where

LAB
ln′ = J AB

ln′ cosϑA cosϑB . (2.12)

After Fourier transformation of pseudospin interaction matrix

J
(

~q
)

=
∑

n−n′

(

J AB
nn′ + J B A

n′n

)

e
i~q

(

~RnA−~Rn′B

)

(2.13)

as well as Green’s functions 〈〈σα|σβ〉〉we obtain, in particular, the following equations

ħωGxx
AA = iEAG

y x

AA
− i

〈

σz
A

〉

J
(

~q
)

G
y x

BA
,

ħωG
y x

AA
= −i

ħ

2π

〈

σz
A

〉

− iEAGxx
AA + i

〈

σz
A

〉

L
(

~q
)

Gxx
BA ,

ħωGxx
BA = iEBG

y x

BA
− i

〈

σz
B

〉

J
(

~q
)

G
y x

AA
,

ħωG
y x

BA
= −iEBGxx

BA + i
〈

σz
B

〉

L
(

~q
)

Gxx
AA . (2.14)

The system of equations (2.14) can be easily solved to obtain the expressions for matrix Green’s func-

tions 〈〈σ
µ
α|σ

ν
γ〉〉q,w and 〈〈S

µ
α|S

ν
γ〉〉q,w , (we can calculate the latter using relations (2.4)). Here, µ and ν

indices denote +,−,z components.

3. Boson spectrum in normal phase and phase diagrams

Let us consider the one-particle boson Green‘s function 〈〈bα|b
+
β
〉〉q,w = 〈〈S+

α|S
−
β
〉〉q,w . In the normal

phase case 〈〈S+
α|S

−
β
〉〉q,w = 〈〈σ+

α|σ
−
β
〉〉q,w . For α=β, we have the following result

G+−
αα (~q, w) ≡ 〈〈σ+

α|σ
−
α〉〉q,w =

ħ

π

〈

σz
α

〉 ħω−Eβ

(ħω−Eα)(ħω−Eβ)−Φq
, (3.1)

derived from equations (2.14). Here, Φq =
〈

σz
A

〉〈

σz
B

〉

J 2
(

~q
)

.

The boson excitation spectrum is defined from the poles of the G+−
αα function

ε(NO)

1,2
(~q) = h±

√

δ2 +
〈

σz
A

〉〈

σz
B

〉

J 2(~q) . (3.2)

We have introduced the general notations h =
EA+EB

2
; δ=

EA−EB

2
. In normal phases h =

hA+hB

2
; δ=

hA−hB

2
.
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The features of the obtained spectrum may vary depending on the values of the model parameters:

For δ= 0 (A and B positions are equivalent; crystal is not split to sublattices and the unit cell is two times

smaller):

ε(NO)

1,2
(~q) = h±

∣

∣

〈

σz
〉∣

∣ J (~q),
〈

σz
〉

=
1

2
tanh

βh

2
. (3.3)

There is only one band ε(~q) = h−〈σz〉 J (~q) inside the two times bigger Brillouin zone.

For δ, 0; δ> 0. There are two bands in this case. The edges of the bands are defined by the inequalities

which depend on the sign of
〈

σz
A

〉〈

σz
B

〉

= 1
4

tanh
β
2

(h+δ) tanh
β
2

(h−δ) expression:

h+δ< ε1(~q) < h+

√

δ2 +
〈

σz
A

〉〈

σz
B

〉

J 2(0)

h−

√

δ2 +
〈

σz
A

〉〈

σz
B

〉

J 2(0) < ε2(~q)< h−δ















〈

σz
A

〉〈

σz
B

〉

> 0

and

h+

√

δ2 +
〈

σz
A

〉〈

σz
B

〉

J 2(0) < ε1(~q) < h+δ

h−δ< ε2(~q) < h−

√

δ2 +
〈

σz
A

〉〈

σz
B

〉

J 2(0)















〈

σz
A

〉〈

σz
B

〉

< 0.
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c CDW
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Figure 1. Dispersion laws ε(q) for different phases. Dashed line denotes the chemical potential level.

The Fourier transform J (~q) = 1
z J (0)

z
∑

α=1
cos qαa is used with the aim of illustration. J (0) is chosen as the

energy unit. T ≡ 1/β= 0.05,δ = 0.8. The numbers indicate the corresponding branches. For SF phase: 1 –

ε1, 2 – ε2 , 3 – ε3, 4 – ε4. For MI and CDW phases: 1 – ε1, 3 – ε2.
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In the first case (〈σz
A
〉〈σz

B
〉 > 0), which holds for h −δ > 0, two different bands always exist; the gap

between these bands disappears as δ→ 0. The chemical potential (which is located on the energy scale

at ε = 0 point) is placed either higher or lower than the bands ε1(~q) and ε2(~q) [figures 1 (a), 1 (d)]. In

the second case (〈σz
A
〉〈σz

B
〉 < 0), which corresponds to the inequalities h −δ < 0; h +δ > 0, two different

bands exist only at δ >
√

|〈σz
A
〉〈σz

B
〉|J (0). The gap disappears when this condition is violated [at T = 0

this happens at δ = δc ≡
1
2

J (0)]. When the bands are separated in normal phase, the chemical potential

is located between the bands [figure 1 (c)]. The instability connected with SF transition takes place when

the level of chemical potential touches the edge of one of the bands that may be driven either by the

temperature, chemical potential or energy difference δ change. At J (0) > 0 (ti j > 0), this always happens

in the ~q = 0 point. The condition for this is as follows:

h2
= δ2

+
〈

σz
A

〉〈

σz
B

〉

J 2
(0). (3.4)

Two equations derived from this relation allow us to construct the phase diagrams in (J (0),h) and

(T,h) planes that show the areas of SF and normal (MI, CDW) phases. Diagram in figure 2 illustrates the

change of the shape of phase boundary curve on (J (0),h) plane as the temperature increases (at T = 0,

the phase boundary curve corresponds to the one obtained in [11, 12]). The definitive boundary between

MI and CDW regions exists only at zero temperature. In this case, MI and CDW states can be interpreted

as different phases. When one departs from T = 0 limit, this boundary disappears and one may observe a

single normal phase. However, this normal phase is close to either MI or CDWphases in different regions

of phase diagram (also see below).
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4
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MIMI
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/

h/
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CDW
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0.25
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CDW
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MI MI

1
2

3

4

5
6

 

 

T/
J(

0)

h/J(0)

SF
 

Figure 2. Phase diagram of two-sublattice model

of hard-core bosons for different temperatures:

1. T = 0.00005, 2. T = 0.05, 3. T = 0.15, 4. T = 0.2,

5. T = 0.5. Energy quantities aremeasured in units

of δ= (εA −εB)/2.

Figure 3. Phase diagram (T,h) at various values of

δ: 1. δ = 0.1, 2. δ = 0.3, 3. δ = 0.48, 4. δ = 0.499,

5. δ= 0.501, 6. δ= 0.8. Energy quantities are mea-

sured in units of J (0).

If the existing critical value of the difference of sublattice local energies (δ= δc) is exceeded, it leads

to the splitting of the SF-phase area on (T,h) plain (figure 3). This result is in agreement with the papers

mentioned above, where all calculations were performed only at T = 0. Therefore, at δ > δc, there are

two critical points for T , 0.

For intermediate values of chemical potential, the normal phase is similar to the charge ordered phase

(CDW) while at large positive (or negative) values of h this phase is of Mott-insulator (MI) type. This

conclusion is confirmed by one-particle spectral density ρα(ω) calculations. We use the relation

ρα(ω)=−
1

N

∑

q

2Im〈〈S+
α|S

−
α〉〉q,ω+iε =

2

N

∑

q

〈

σz
α

〉

{

Aα
1 (~q)δ

[

ω−
ε1(~q)

ħ

]

+ Aα
2 (~q)δ

[

ω−
ε2(~q)

ħ

]}

,

which follows from the decomposition into partial fractions.
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Here,

AA
1,2(~q) =

1

2
±

δ

2

√

δ2 +Φq

,

while expression for AB
1,2

(~q) is derived from AA
1,2

(~q) by A⇄B (δ→−δ) substitution.

Using non-perturbative density of states

ρ0(z)=
1

N

∑

q

δ
[

z − J (~q)
]

,

we can rewrite the expression (3.5) for α= A

ρA(ω) = 2〈σz
a〉

J(0)
∫

−J(0)

dzρ0(z)

















1

2
+

δ

2

√

δ2+
〈

σz
A

〉〈

σz
B

〉

z2






δ

[

ω−
1

ħ

(

h+
√

δ2+
〈

σz
A

〉〈

σz
B

〉

z2
)

]

+







1

2
−

δ

2

√

δ2+
〈

σz
A

〉〈

σz
B

〉

z2





δ

[

ω−
1

ħ

(

h−

√

δ2+
〈

σz
A

〉〈

σz
B

〉

z2

)

]











. (3.5)

When performing numerical calculations, we use the semi-elliptical function ρ0(z)= 1

πJ2(0)

√

J 2(0)− z2.
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~  

 

A
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A =0.5

B =0.449

b SF

h-

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
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-0.5

0.0

0.5

1.0

~ h=0.3
A =0.5

B =-0.5

A

 

 

c CDW

h- -2.0 -1.5 -1.0 -0.5 0.0 0.5
-2.0

-1.5

-1.0

-0.5

0.0
h=-1

A =-0.482

B =-0.5

 
 

A

d MI

~

h-

Figure 4. Spectral density of A-sublattice for different phases. T = 0.05, δ= 0.8. All energy quantities are

measured in units of J (0). ρ̃A = ρA/ħ is the spectral density as function of energy ħω.

Figure 4 illustrates spectral density for all phases. For CDW region of normal phase [figure 4 (c)],

the chemical potential is located within the gap between the bands ρα(ω); the sign of ρα(ω) function is

different in each band [ρα(ω) < 0 at ħω< µ and ρα(ω) > 0 at ħω> µ]. For MI region [figures 4 (a), 4 (d)]

the chemical potential is at the same side of both bands ρα(ω).
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The values of σz
A
and σz

B
averages presented in figures 4 (a)–4 (d) are very close to those at T = 0. We

observe themodulated occupancy nA = 1
2
−σz

A
= 0,nB = 1

2
−σz

B
= 1 in CDW-like case [figure 4 (c)]. Contrary

to this, in MI-like cases, this occupancy is either close to zero or unity depending on the chemical potential

value. The latter two possibilities are illustrated in figure 4 (a) (nA ≈ nB ≈ 0 when µ is positioned below

the energy bands) and figure 4 (d) (nA ≈ nB ≈ 1 when µ is placed above the bands).

4. Excitation spectrum in SF phase

In the case of a phase with BE-condensate (SF phase), when sinϑA , 0, sinϑB , 0,

〈〈S+
A |S

−
A 〉〉q,w =

ħ

2π
〈σz

A〉
P A

q

(ħ2ω2 −E 2
A

)(ħ2ω2 −E 2
B

)−2Mqħ
2ω2 −2Nq EAEB +M2

q

, (4.1)

where

P A
q (ħω) =

[

EA

(

cos
2ϑA +1

)

+2ħωcosϑA

](

ħ
2ω2

−E 2
A

)

−2ħωMq cosϑA + Φ̃
A
q EB , (4.2)

and the following notations are introduced:

Mq =Φq cosϑA cosϑB , Nq =
1

2
Φq

(

1+cos
2ϑA cos

2 ϑB

)

, Φ̃
A
q =Φq cos

2ϑA

(

1+cos
2ϑB

)

(4.3)

(the replacement A⇄B gives an expression for the 〈〈S+
B
|S−

B
〉〉q,w function).

The boson spectrum consists now of four branches

ε(SF)

1,2
(~q) =±

(

Pq +Qq

)1/2
, ε(SF)

3,4
(~q) =±

(

Pq −Qq

)1/2
. (4.4)

Here,

Pq =
1

2

(

E 2
A +E 2

B

)

+Mq , Qq =

[

1

4

(

E 2
A −E 2

B

)2
+2Nq EAEB +Mq

(

E 2
A −E 2

B

)

]1/2

. (4.5)

Energies EA and EB, as well as averages 〈σz
A
〉 and 〈σz

B
〉 are determined now as solutions of equations (2.7)

and (2.13). Regions of existence of SF phase are shown in figures 2, 3. The dispersion curves ε(SF)

1..4
(~q) are

present in figure 1 (b) for certain values of h and δ parameters.

The presence of branches with linear dispersion at small values of q [ε3(~q) and ε4(~q) in the case

presented in figure 1 (b)] is the specific feature of SF phase; their energy goes to zero in the point of

the location of chemical potential. This peculiarity of spectrum is well known from investigations of the

simple hard-core boson model [3]. However, in our case, at εA , εB, the additional gapped branch [ε2(~q)

in figure 1 (b)] appears in the negative energy region.

Similarly to the normal phase case, one can perform calculations of the boson spectral density ρα(ω).

Using decomposition of expression (4.1) into partial fractions, we obtain

ρα(ω)=
2

N

∑

q

〈σz
α〉

4
∑

i=1

Aα
i (~q)δ

(

ω−
εi (~q)

ħ

)

, (4.6)

where

Aα
i (~q) =

Pα
q

(

ħω= εi (~q)
)

4Qqεi (~q)
. (4.7)

It is easy to obtain an expression like (3.5) passing to integration with the ρ0(z) density of states. The

contributions from all four bands are present in the total spectral density.

The plots of the ρA(ω) functions in the case of SF phase are presented in figure 4 (b). For branches

with linear dispersion [ε3,4(~q)], the spectral density changes its sign in the point ħω= 0 (at that point the

chemical potential is located). The change of the spectral density shape at MI → SF transition, when we

observe the appearance of the negative branch of ρα(ω) [figure 4 (b)], corresponds to the results obtained
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in [15, 16] as well as to the ones obtained for generalized hard-core boson model with excited states trans-

fer [17]. Additional branch ε2(~q) that appears in SF phase is characterized by a negative spectral density.

Its intensity (at the chosen values of h and δ parameters) is small. Qualitatively, this shape of the ρα(ω)

function is specific for the Bose-Hubbardmodel [18]. However, contrary to the standard case, where addi-

tional branches separated by gaps exist due to the local energy splitting (caused by the Hubbard repulsion

of bosons), in our two-sublattice model such an effect is a consequence of the energy non-equivalence of

sublattices.

The behaviour of ρA(ω) function is in agreement with the results of numerical calculations performed

in [19] with exact diagonalization technique for one-dimensional (d = 1) chain structures. In [19], the

authors take into account the two-particle interaction between nearest neighbouring sites. This inter-

action forms the effective internal field which is similar to the field δ considered here, and both fields

are responsible for the appearance of CDW-like phase. The shape of spectral densities in various phases,

obtained here, lets one identify the equilibrium states on phase diagrams (diagrams of state) obtained

numerically for d = 1.

5. Conclusions

Within the randomphase approximation, we have calculated the spectral densities of a two-sublattice

model of hard-core bosons and analyzed the features of the boson single-particle spectrum in various

phases. These features are connected with the position of the chemical potential level. It is placed:

• within the gap between two boson bands in the case when normal phase is similar to the charge-

ordered (CDW) phase;

• above (or below) both bands in the case when normal phase is similar to the Mott insulator (MI)

phase;

• within a certain boson band, for SF phase (the phase with BE condensate); the additional boson

bands appear in this case.

We have obtained the equation that describes the transition to the SF phase and have built the

corresponding phase diagrams at various temperatures and at different values of energy difference

δ= 1
2

(εA −εB). The temperature increase leads to the gradual vanishing of the difference between CDW-

like and MI-like modifications of normal phase; there are no border lines separating them. SF-phase re-

gion also decreases with the temperature increase;at the same time, two regions of the SF phase, which

exist at T = 0 and at a fixed value of δ, join together. On the other hand, a similar effect takes place for

fixed temperature at the decrease of δ. At high values of δ, there are two critical points in which the

SF phase disappears at an increase of temperature. When δ decreases, only one central critical point

remains.

At the same time, it should be mentioned that nonzero value of δ is the main reason for the appear-

ance of the CDW-like state in our system. We have not included direct intersite interactions between

particles into consideration. This kind of interaction may induce the phase transition into “true” CDW

phase.

More elaborate study of the boson spectrum reconstruction at the transitions between different re-

gions in phase diagrams and the change of their topology remains an interesting task. It is worthy of

special attention.
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Енергетичний спектр i фазовi дiаграми двопiдґраткової

моделi жорстких бозонiв

I.В. Стасюк, О. Воробйов

Iнститут фiзики конденсованих систем НАН України,

вул. Свєнцiцького, 1, 79011 Львiв, Україна

Для двопiдґраткової моделi жорстких бозонiв в рамках наближення хаотичних фаз розраховано енерге-

тичний спектр i спектральнi густини у рiзних фазах та побудовано фазовi дiаграми. Дослiджено перебудо-

ву бозонного спектру при змiнi температури, хiмiчного потенцiалу та рiзницi енергiй локальних позицiй

у пiдґратках. Побудовано фазовi дiаграми, якi iлюструють областi iснування нормальної фази, що може

бути подiбною до фази моттiвського дiелектрика (MI) чи зарядового впорядкування (CDW), а також фази

з бозе-конденсатом (фази SF).

Ключовi слова: жорсткi бозони, густина станiв, фазовi дiаграми
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