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It is well known that the similar universal behavior of infinite-size (bulk) systems of different nature requires the
same basic conditions: space dimensionality; number components of order parameter; the type (short- or long-
range) of the intermolecular interaction; symmetry of the fluctuation part of thermodynamical potential. Basic
conditions of similar universal behavior of confined systems needs the same supplementary conditions such as
the number of monolayers for a system confinement; low crossover dimensionality, i.e., geometric form of re-
stricted volume; boundary conditions on limiting surfaces; physical properties under consideration. This review
paper is aimed at studying all these conditions of similar universal behavior for diffusion processes in confined
liquid systems. Special attention was paid to the effects of spatial dispersion and low crossover dimensionality.
This allowed us to receive receiving correct nonzero expressions for the diffusion coefficient at the critical point
and to take into account the specific geometric form of the confined liquid volume. The problem of 3D<2D
dimensional crossover was analyzed. To receive a smooth crossover for critical exponents, the Kawasaki-like
approach from the theory of mode coupling in critical dynamics was proposed. This ensured a good agreement
between data of computer experiment and theoretical calculations of the size dependence of the critical tem-
perature T (H) of water in slitlike pores. The width of the quasi-elastic scattering peak of slow neutrons near
the structural phase transition in the aquatic suspensions of plasmatic membranes (mesostructures with the
typical thickness up to 10 nm) was studied. It was shown that the width of quasi-elastic peak of neutron scat-
tering decreases due to the process of cell proliferation, i.e., with an increase of the membrane size (including
the membrane thickness). Thus, neutron studies could serve as an additional diagnostic test for the process of
tumor formation.
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1. Introduction

Second half of the previous century, especially its last decades, was guided by two great achieve-
ments of experimental and theoretical physics: (i) the revolutionary discoveries in nanotechnologies, (ii)
solution of problem of the 2”4 order phase transitions. It is now considered generally accepted that the
achievements of nanosciences (including nanoelectronics and nanomedicine) will determine the charac-
ter of the 21 century. It is difficult to overestimate the consequences of creation of modern picture of
physics of phase transitions and critical phenomena (physics of cooperative processes) based on precise
experiments and profound ideas of scale invariance (scaling) and renormalization group [1-3] as well
as of the method of collective variables [4, |5]. Unification of these two directions in the development
of physics, which started 40 years ago following the formulation of the scaling hypothesis for spatially
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limited systems [6-8], continues to raise an increasing interest of researchers to the study of phase tran-
sitions and critical phenomena in mesoscale systems. In resent years this interest touches not only upon
magnetics and liquid crystals but also extends to low- and high- temperature liquid systems.

The ideas of isomorphism of critical phenomena and phase transitions [9, [10] make it possible to
generalize the properties of confined liquids to the systems not only of physical but also of other nature.

This review paper is aimed at studying the conditions of similar universal behavior in confined liq-
uids. Its structure is as follows. Section 2 “Discussion” consists of three subsections. The 1% subsection is
devoted to the universal behavior of bulk and finite-size systems of different nature. In the 2" subsection
we consider the diffusion processes in mesoscale liquid systems with taking into account the additional
factors of universality classes for finite-size systems, especially the spatial dispersion and the geometric
form of finite-size volumes under consideration. The 3" subsection is devoted to our original studies
of the dimensional crossover (or smooth transition) between the properties of the bulk 3D and finite-
size (even 2D) systems. For this purpose we introduce the Kawasaki-like analytical expression for such a
3D < 2D dimensional crossover and propose the theoretical background for the results of computer sim-
ulations with the interpolation formula for the effective critical exponent v(H). And finally, in section 3,
we use the methods of neutron optics to study the temperature and size dependence of the width AE of
the quasielastic neutron scattering peak near the structural phase transition in the plasmatic membranes
(mesostructures with the typical thickness up to 10 nm). It is shown that studies of the width AE of the
quasielastic neutron scattering peak can be applied as an effective tool for the tumor growth diagnostics.

2. Discussion

2.1. Universality classes for infinite (bulk) and finite-size systems

Let us first recall the important notion of universality classes. Basic conditions of the similar universal
behaviour for infinite-size (bulk) systems of different nature are well-known [1-3,(9,10]: (i) space dimen-
sionality; (ii) the number of components of order parameters; (iii) the type (short- or long-range) of the
intermolecular interaction; (iv) symmetry of Hamiltonian (fluctuation part of the thermodynamic poten-
tial). Similar universal behaviour for confined systems needs the following basic conditions in addition
to four previous ones: (v) geometric factors (the number of monolayers) for system confinement; (vi) low
crossover dimensionality defined by the shape of the restricted volume, (see below for a more detailed
explanation); (vii) the type of boundary conditions; (viii) the physical properties under consideration [6-
8, [11H13]. These basic conditions of similar universal behavior of confined systems will be illustrated
herein below.

2.2. Diffusion processes in mesoscale liquid systems

Methods of the theory of phase transitions in the spatially limited systems are used here to study the
diffusion coefficient of water molecules in cylindrical pores, as well as the effects of spatial dispersion
and low crossover dimensionality (geometrical form) on the diffusion processes [6-8,[11-17].

Taking into account the fundamentals of thermodynamics and statistical physics of irreversible pro-
cesses as well as the modern theory of critical phenomena in liquid systems, one can write down the
coefficient of self-diffusion

D= (Lg+Ls)(Oul/dp)r. 2.1)

Here, Ly and Lg are regular and singular parts of the kinetic Onsager coefficient, the derivative (Ou/dp)r
is proportional to the inverse value of the isothermal compressibility of liquids. In accordance with the
theory of dynamic scaling, the singular part Ls of the Onsager coefficient behaves as the characteris-
tic correlation length of the order parameter fluctuations (for liquids - fluctuations of density), namely:
Lg = L‘S)(T*)‘V where Lg is the amplitude, 7* is the corresponding temperature variable for the systems
with restricted geometry, and v = 0.63 is the critical index. This value for the correlation length critical
exponent v is taken because the bulk classical liquids belong to the 3D Ising model universality class. Ac-
cording to the scaling theory, the derivative (Ou/dp)t = (Op/ ap)OT(T*)Y. Here, (Ou/ ap)OT is the amplitude
of inverse isothermal compressibility, and y = 1.24 is the isothermal compressibility critical index in the
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3D Ising model universality class. Finally, the coefficient of self-diffusion in the spatially-limited liquid
system is described by the following formula:

D=[Lp+L3(t") "] (Ouldp)}(x*)T. 2.2)

In a general case, while describing the dynamic phenomena, the following three regions exist depend-
ing on temperature “distance” to the phase transition point [18]:

1. Dynamic fluctuation region, where singular parts of kinetic Onsager coefficients substantially pre-
vail over its regular parts (Ls > Lg);

2. Dynamic crossover region, where both parts of the kinetic Onsager coefficients are of the same
order of magnitude (Lg = Lg);

3. Dynamic regular region, where singular parts of kinetic Onsager coefficients are substantially less
than its regular parts (Ls < Lg).

An answer to a question, which of these regions realize in experiments or in natural conditions, de-
pends on the value of Ginzburg-Levanyuk number Gi, which permits to estimate the role of fluctuation
effects. For weak aquatic solutions with Gi = 0.3 only dynamic crossover and regular regions are expected
to be observed in reality.

It appears that the temperature variable 7 is characterized by the following formula in liquids with
confined geometry [11,/16,17]:

T = (GIS)Y + [1+(G/S)%] ). 2.3)

Here, G is a geometrical factor which depends on the low crossover dimensionality (geometrical form)
of liquid volume [for the plane-parallel layer G = 7, while for cylindrical sample G = 2.4048 is the first
zero of the Bessel function Jy(z); S = L/ ay is the number of monolayers (L is a linear size of the system)
in the direction of its spatial limitation, ay is the average diameter of a molecule], £* = £/& is the dimen-
sionless correlation length of density fluctuations (o is the amplitude of correlation length which has the
same order of magnitude as ap).

The size dependence of the self-diffusion coefficient D(S) is theoretically estimated in the dynamic
crossover region in accordance with formulae (2.2), (2.3) in [15] (figures 1, 2). Obviously, in a general case
of restricted systems for which inequality ¢ > L is correct, the first term (G/ S)% will prevail in (2.3), that
is why the diffusion coefficient will decrease at the fixed temperature while the linear sizes of a system
increase. In the opposite case, i.e., for a relatively large linear size in the sense of inequality { < L, the
multiplier (¢ *)‘% in the second term in (2.3) will play a greater role. That is why the diffusion coefficient
D will grow and will asymptotically approach the value of Dy in the spatially unlimited volume.
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Figure 1. Dependence of self-diffusion coefficient D on S.

Figure 1 illustrates a non-monotonous dependence of self-diffusion coefficient D (in relative units) on
the parameter S (the curve with circles - for the liquid system with cylindrical geometry, dotted curve —
for geometry of plane-parallel layer), at the fixed temperature deviation 7 = (T — T¢)/ T, = —0.01, where
T, is the critical temperature of a bulk phase.
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Figure 2. Size dependence of self-diffusion coefficient at S > &*.

An increase of the self-diffusion coefficient D with the growth of S (see right-hand part of figure 1 at
S > 40, and figure 2), is confirmed both by experimental data [19] in cylindrical pores within the range
interval of radius 40-150 nm and by theoretical calculations [13] for the self-diffusion coefficient of water
molecules.

Table 1. Correspondence between the real system geometry and low crossover dimensionality dicp.

Real 3-dimensional confined A corresponding Low crossover
systems borderline case dimensionality
Plane-parallel layer, slitlike pore, monomolecular 2
plane interphase, membrane, plane
synaptic cleft
Cylindrical pore, long pore with monomolecular 1
square or rectangular sections, filament (line)
ionic channel
Sphere, cube, parallelepiped, Point (one molecule) 0
ellipsoid of rotation, vesicle

Theoretical studies performed in [15] demonstrate the dependence of the self-diffusion coefficient on
the geometric form of a liquid system or, in other words, on its low crossover dimensionality dicp. This
is briefly summarized in table 1. The low crossover dimensionality dicp determines the limited spatial
dimension of geometric objects (2™ column) towards which the real investigated system (1%t column)
passes if its linear size (sizes) in the direction (directions) of spatial limitation converge to a minimum
possible size, i.e., to the molecule diameter. It is clear that a three-dimensional plane-parallel layer trans-
fers to the monomolecular plane (essentially — 2D object), while a three-dimensional cylindrical pore
passes to the monomolecular filament (essentially — 1D object), while spheres or cubes restricted at three
directions have as its limit only one molecule, i.e., 0D object. The last 3% column of table 1 contains the
value of dicp for real spatially limited systems.

The analysis of the dependence of the self-diffusion coefficient on dicp makes it possible to formu-
late the following conclusion valid for other equilibrium and non-equilibrium properties of nano- and
mesoscale systems: with an increase of dicp, physical properties of the spatially limited systems tend to
their bulk values.
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Another conclusion concerns the temperature position 7y (S) = [T.(S) — T¢]/ T of the extremum (pre-
cisely — minimum) of the self-diffusion coefficient depending on the parameter S, i.e., linear size L of the
liquid systems with different crossover dimensionalities.
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Figure 3. Dependence of the self-diffusion coefficient D on 7 = (T — T¢)/ T¢ at S = const.

As it follows from figure 3 obtained in [15], the temperature deviation 7y(S) has a negative value (in
complete accordance with the scaling theory for spatially-limited systems); increases modulo at dimin-
ishing the dicp; and tends to zero at increasing the linear sizes of the system.

The above-mentioned results and conclusions are qualitatively confirmed by the data of the heat
capacity temperature dependence in confined liquids of different geometry [20]. It follows that a heat
capacity maximum shifts to the region of lower temperatures and this shift grows from a bulk phase to
the liquids with dicp changing from 2 to 1 and 0 (see table 1 where the real examples of such spatially
limited liquids are presented).

Table 2. Self-diffusion coefficient for water molecules and related properties (see text for the explanation).

| = L] 1z | ¥ [ @uwdp)y | D* Dwater, m*/s
10 | 1 1073 1.001 1 1.001 2.30-107°
10T 1| 4107 | 1.004 | 56-107% | 5.622-107%2 | 1.29-10710
102| 1 [18-1072|1.018] 33-107% | 3.359-103 | 7.73-1071?
103 1 1071 1.1 | 1.9-107% | 1.945-107% | 4.47-107
104 1| 310! 13 | 1.1-107™ | 1.43-10™° | 3.29-1071*
107° | 1 1 20 | 631077 | 1.26-107° | 2.90-107P°
106 [ 1 6.3 73 | 36-107% | 263-1077 | 6.05-107'6
1077 | 1 25 26 | 2.1-1079 | 5.46-107% | 1.26-1071°

Analytical formulae obtained for the self-diffusion coefficient D* = D/ D, make it possible to conduct
numeral calculations of the self-diffusion coefficient D of a certain liquid almost in the whole critical
area (0 <7 < 1) using only a single parameter, i.e., the known value of amplitude Dy = L% O/ ap)OT. As an
example, the results of self-diffusion coefficient for water molecules are presented in table 2. The value
of the amplitude of self-diffusion coefficient for water molecules Dy used for this purpose was found in a
regular area far from the critical point: Dy = 2.3-10~% m?/s. This value was obtained experimentally for
the molecules of water at the temperature of T = 293 K, which corresponds to the temperature deviation
T = —0.5 from the critical temperature of water of T = 647 K. Then, taking into account the value of Dy,
as well as data for D* from the next to the last column of table 2, we get numerical results for temperature
dependence of the diffusion coefficient of water molecules in the critical region (see the last column of
table 2).

The effects of spatial dispersion (nonlocality) being neglected results in the physical properties in
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the critical points or the points of the 2nd order phase transitions tending to infinity (i.e., isothermal
compressibility, magnetic susceptibility, isobar and isochoric heat capacities and others) or to zero (i.e.,
coefficients of diffusion and thermal diffusivity, speed of sound and others). To take into account the
effects of spatial dispersion, the following idea is used [21]: spatial dispersion terms must be added to the
values which become equal to zero in the critical point (for example, added to the coefficient of diffusion
of D or to the reverse value of the isothermal compressibility). Thus, for the self-diffusion coefficient one
has the following formula:

{(G/S)% + [1+ (G/S)%] (5*)_%signT}Y+Bk2

D", S, k) = - . - v : (2.4)
{Gi97+ [1 + (G/S)V] () vsignz} + bk
It follows from (2.4) that a minimum nonzero value of the diffusion coefficient is equal to
. (G/S)V +4n2B/ 12
D (L) = 2.5)

(G/S) +4n2p/12

The same approach could be also used for taking into account the effects of temporal (frequency) dis-
persion of physical properties in the critical region. However, this problem will not be examined herein.

In the critical point (7 = 0), the self-diffusion coefficient of the bulk phase is constant and nonzero: D =
LOR(O,ulap)OTB/b = const where B and b are coefficients of nonlocality. Figure 4 (solid curve) illustrates
this result. Two other graphs demonstrate temperature dependence of the self-diffusion coefficient for
liquids in plane-parallel (dotted curve) and cylindrical (curve with circles) confined geometry.
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Figure 4. Temperature dependence of the self-diffusion coefficient.

An important peculiarity of the self-diffusion coefficient was also taken into account. Namely, its
asymmetry (see figure 4), as it follows from the inequality D} > D*, where D} = D(|7|,L,k)/Dj and
DZ = D(-|t|,L, k)/ Dy . There are two reasons for such an inequality D} > DZ: (i) change of sign of tem-
perature deviation 7 in expressions for D(+|7l,L, k); (ii) inequality Dj # Dj of self-diffusion amplitudes
in overcritical (T > T¢) and subcritical (T < T¢) regions. The same temperature dependence of the self-
diffusion coefficient (confirmed by independent theoretical calculations [22]) should be expected in ex-
perimental studies of diffusion processes in finite-size liquids.

2.3. Dimensional crossover in finite-size liquid systems

In this section we would like to pay attention to the following problem: how the results of 3D systems
can be transferred to the results of 2D systems and vice versa. Of course, this transition cannot be very
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sharp; it should be smooth and without discontinuities, i.e., crossover-like. Let us call this 3D < 2D tran-
sition as the dimensional crossover. To describe the dimensional crossover we shall take into account (i)
an obvious fact that the critical exponents in 3D and 2D systems have quite different numerical values
(see table 3); (ii) the results of computer experiments [23].

Table 3. Values of the critical exponents in 2D and 3D systems [10] (* Ornstein-Zernike approximation).

Space
dimen Theory or a B Y o v n
siona experiment
lity
Landau 0 1/2 1 3 1/2% 0*
2D Ising model +0(In|t]) 1/8 7/4 15 1 1/4
3D Ising model 0.125 0.3125 | 1.250 5 0.638 | 0.041
3D RG 0.110 0.325 | 1.241 4.8 0.63 | 0.031
3D Experimental 0.11+ 0.33+ 1.23+ | 4.6+ | 0.63+ | 0.04+
data 0.01 0.01 0.02 0.2 0.01 0.02

Let us consider a confined liquid system with, say, the geometry of a plane-parallel layer. While re-
ducing its width L [or the number of monolayers S, see formulae (3)—(5) in our approach], the system
will transfer from 3D to 2D geometry. This transition should result in the change of critical exponents of
classical liquids which belong to the universality class of Ising model. The critical index v will shift its
value from 0.63 to 1.0, the critical index y — from 1.24 to 1.75, etc. (table 3, [10]).

To receive a smooth transition between two fixed quantities we would like to use the idea of Kawasaki
from the theory of mode coupling [24]. It permits to receive the so-called Kawasaki-like formula for the
critical exponents inside 3D < 2D dimensional crossover:

2 n3—n;
y=n3+ |—arctan(ax—b)—1| ——. (2.6)
b3 2
Equation (2.6) provides an interpolation for any effective critical exponent y between its 3D and 2D values
(n3 and np, respectively). Here, x = L/ Ly is the dimensionless width of the plane-parallel layer; L is the

linear size of the system in restricted geometry at which the crossover occurs (authors [23] consider
Ly = 2.4 nm for the slitlike pore); and a, b are the dimensionless parameters characterizing the slope

y

0.954
0.94
0.854
0.84
0.754
0.7

0.65 4

Figure 5. Dependence of the critical exponent v on S.
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and position of the 3D < 2D crossover along the S-axis. Figure 5 provides the theoretical dependence
of the effective critical exponent v on the number of monolayers S in accordance with equation (2.6).
Parameters a = 20 and b = 8 were chosen to fit the condition that the limiting 2D value of the critical
exponent v = 1 corresponds to a system containing approximately one monolayer.

The computer simulation experiment [23] demonstrates the dependence of the dimensionless pore
critical temperature TP°/T3p on the pore size, i.e., the thickness H of a slitlike pore or radius R of a
cylindrical pore (figure 6). Closed squares and open circles correspond, respectively, to slitlike and cylin-
drical pores filled with water molecules. Dashed lines show the critical temperatures of the bulk 3D water
(upper line) and the 2D water (lower line). The lowest square corresponds to the critical temperature of
nearly 2D water in slitlike pore with its thickness H = 0.5 nm. This value of thickness H refers to nearly
one monolayer plane with taking into account that the diameter of water molecule is equal to d ~0.3 nm.

a
Ll
gt 08E @ slitlike pores
D['_‘U . E O cylindrical pores 3

pore size (H or RYA

Figure 6. Size dependence of the pore critical temperature (computer experiment [23]).

T.(H)
.30

0.59

~0.5

—1

Figure 7. Size dependence of the critical temperature in slitlike pore [finite-size scaling + formula (2.6)
for v].

The finite-size scaling theory [6-8,/11,[16,125] provides the following formula for the shift of the critical
temperature 72°" = T, (H) in comparison with its bulk value T3P = T, (c0):

T* = [Te(H) - Te(00)] / Te(00) ~ H™¥. @7
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The quite equivalent formula is as follows:

Te(H) _
T (00)

1+kH v, 2.8)

where k is the coefficient of proportionality.

In order to check our interpolation formula (2.6) using the results of computer experiment [23],we
substituted the size dependence of the critical exponent v(H) [see (2.6) and figure 5] into the formula
(2.8). It yields the size dependence of the critical temperature T.(H) in slitlike pores shown by figure 7.
The agreement between the computer experiment data and theoretical calculations seems to be quite
good. An additional curvature near the 3" left-hand point (figure 6) is even observed in the theoretical
dependence T.(H) in figure 7.

It is interesting to stress that the beginning of the dimensional crossover from 3D to 2D critical be-
havior takes place at the slitlike pore thickness H“'%% = 2.4 nm. This value of H“'%% is mentioned in [23]
and can be observed in figure 7. It corresponds to approximately 8 monolayers of water molecules in a
slitlike pore.

3. Neutron studies and its medical applications

The method of quasi-elastic neutron scattering (QENS) is a powerful physical method of studying the
dynamic properties of liquids and aquatic suspensions of membrane mesostructures [19]. In particular,
the direct relationship between the change of the diffusion coefficient D of water molecules and the
sensitivity of biological cells to antitumor drugs was examined based on the theoretical calculations and
precise QENS experimental information in [26,27].

The corresponding theoretical background includes both contributions of the collective and single-
particle diffusion of water molecules. The width of the quasi-elastic peak of slow neutron scattering
AE(qZ) can be presented by the following formula [19, 26, 27]:

2n —ow
AE(g?) = 2hDeo g2 4 21 | - XD y )2 — 1.
70| 1+(D-Dwl)g2r,

3.1

Here, D! is the collective contribution to the diffusion coefficient of water molecules, D is the diffusion
coefficient with collective and single-particle contributions, W is the energy of activation (Debay-Waller
factor), g = (4n/1)sinB/2 is the change of neutron wave vector, 8 is the scattering angle of a neutron
beam, 79 = 1071% + 10712 5 is the mean lifetime of hydrogen bonds.

Thus, the width of the neutron quasi-elastic scattering peak AE(qz) makes it possible to calculate D
and 7, i.e., the dynamic characteristics of interaction between water molecules and its environment.

Neutron analysis of the width AE (qz, 7) in aquatic solutions of plasmatic membranes of tumor cells is
a promising biomedical direction of studies near structural phase transitions such as the cell proliferation
[28]. It is known (see, for example, [29-31]) that the mobility of polar groups as well as rotational mobility
of carbohydrate chains changes near the phase transitions of cell structures. Cooperative processes in
the membranes which are isomorphous to phase transitions in liquid mixtures play an important role
in the mechanisms of ionic transport, amplification of external stimuli, diffusion processes in membrane
memory, etc.

The plasmatic membranes of cells are typical mesostructures with a characteristic thickness about
10 nm. Therefore, in accordance with the hypothesis of dynamic scaling and expressions for kinetic co-
efficients in spatially limited liquids (see the previous results in this paper), we may write the following
formula for the width of quasi-elastic peak of slow neutron scattering in slitlike pores with its thickness H:

AE(G% 1) = AEo(q2) {(G/S)% + [1 + (G/S)%] (5*)‘%signr}7. 3.2)

Here, AEy(g?) = 2hDgg? and Dy are the amplitudes of the width of quasi-elastic peak and diffusion
coefficient.
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The main theoretical result of equations (3.2) is as follows: the width AE of quasi-elastic peak of
slow neutrons scattering narrows (as well as the diffusion coefficient D decreases), while the process of
proliferation with increasing S ~ H takes place in the mesostructure of plasmatic membranes.

Such a size dependence of width AE in bulk aquatic suspensions of plasmatic membranes for the
case H/¢ <1 can be explained as follows. If H > Hp, i.e., for sizes H larger than the characteristic
size Hp at which the dynamic crossover region is realized [18, 132], one has the following expression:
AE(g? 1)/ AEy(g?*) ~ HYY = H™2, while y/v = 2—n = 1.96. In the fluctuation region (H < Hp), at which
singular parts of the kinetic Onsager coefficients should be taken into account, the size dependence of
AE becomes smoother: AE(q%, 1)/ AEy(g%) ~ HEVY = H71,

Thus, the studies of the width of quasi-elastic peak of slow neutron scattering depending on the thick-
ness of the membrane mesostructures, which changes in the process of the cell proliferation, can serve
as an additional diagnostic test for the process of tumor formation.

4. Conclusion

In this review paper, we have investigated the specific features of mesoscale liquids in the critical
region. We have shown that, having taken into account the actual factors of a liquid system at restricted
geometry, such as number monolayers in confined systems, low crossover dimensionality, etc., the hy-
pothesis of the universality may be essentially generalized for the finite-size systems of different nature.
There is another important problem discussed in this paper, namely, the 3D < 2D dimensional crossover.
We have proposed the interpolation formula (2.6) to get a smooth transition from 3D to 2D values of the
critical exponent v confirming the results of computer experiments. We also hope that the further de-
velopment of the physics of the 1st and continuous the 2nd order phase transitions will make a great
contribution to biomedical applications; especially it will help to formulate new ideas and methods of
diagnostics and to prevent the process of tumor formation.
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Knacu yHiBepcanbHOCTi Ta KpUTUYHI IBULLLA B 06MeXXeHUX
PiAVNHHUX cucTeMax

0.B. Yannifl, 11.0. bynagiHZ, B.®. YexyH?, K.O. Yannifl, /1.M. YepHeHkd?,
0.M. Bacunbes?, 0.B. 3aiiuesd?, .B. Xpaniiiuyl, 0.B. CerepuH?, M.B. KoBaneHkd?

L HauioHanbHWI MeanyHW yHiBepcuTeT iMeHi 0.0.boromonbus
2 KuiBcbkuii HaLioHa/IbHWIA yHiBepcuTeT iMeHi Tapaca LLleByeHka
3 IHCTUTYT ekcnepMMeHTanbHOI NaTonorii, OHKoorii Ta pagiosorii imeHi Kaseubkoro HAH YkpaiHn

4 IHcTUTYT Ximii noBepxHi imeHi 0.0.Yyliko HAH YkpaiHu

MogibHiCTb YHiBepCcanbHOI MOBEAIHKN CMCTEM BEeANKMX PO3MIpiB Pi3HOI NPUPOAW BMMarae oAHakoBOCTI Takux
OCHOBHMX YMOB: BMMIipPHOCTi NPOCTOPY, Y1C/1a KOMMNOHEHT NapaMeTpa NopsajKy; KOpoTKo- abo AaneKoAioumx
MiXMONIeKYNAPHNX B3AEMOZi; cuMeTpii GNyKTyaLiiHOT YaCTUHY TepMOAMHAMIYHOrO noTeHuiany. OCHOBHI yMo-
BV NOAIGHOCTI yHiBEpCanbHOI NOBeAIHKM /1S MPOCTOPOBO 06MEXEHUX CUCTEM JOMOBHIOTLCS 04HAKOBUMM J0-
AATKOBMMIW YMOBAMU: KiNIbKiCTIO MOHOLLAPIB Yy HaNpPsMKY MPOCTOPOBOr0 06MeXeHHS CUCTEMN; HKHBOKO KpOo-
COBEpHOI BUMIPHICTIO, TO6TO reomMeTpryHO GOPMOLD 06MEeXeHOro 06'my; rpaHNMYHNMM YyMOBaMM Ha obMe-
XYHOUMX NOBEPXHSX; Gi3NYHUMIK BAACTUBOCTAMM, SiKi pO3rnsgatoTbcsi. MeToto L€l ornsagoBoi cTaTTi 6yno Bu-
BYEHHSI YMOB MOAIOHOCTI yHiBepcanbHOi MoBeAiHKM npoueci ANdysii y NpOCTOPOBO 06MeEXeHUX PiIANHHUX
cnctemax. OcobavBy yBary 6yno npugineHo epekram NpocTopoBOi AUCNepCii i HMXHBOT KPOCOBEPHOI BUMIp-
HocTi. Lle 403BOAMNO OTPMMATU NPaBWAbHI HEHYNbOBI BUpasn Ana KoedilieHTa ANY3ii y KPUTUYHIK Touui 3
ypaxyBaHHAM KOHKPETHOi reoMeTpuyHoi Gpopmu obmexxeHoro o6'emy piagnHu. Mpu posrnagi npobnemn 3D <
2D BMMipHOro KpocoBepa 6yav OTpMMaHi OpUriHanbHi pe3ynbTaTh AN NAABHOTO NepexoAy KPUTUYHUX iHAe-
KCiB 3a AOMOMOro0 MiAXOAy, CXOXOro Ha MeTog KaBacaki B Teopii guHamiuHoro ckeininry. Lie npusseno go
rapHOro y3roZXeHHs MiX AaHNMMN KOMM'IOTEPHOr0 eKCMePUMEHTY i TEOPeTUYHMMN PO3PaxyHKaMU 3aneXHOCTI
BeIMYMHU KpUTHUHOI Temnepatypu Tc(H) BOAU Big TOBLUMHU LWiNMHONOAIBHUX nop. byno gocnigkeHo wnpu-
HY KBa3inpy>XHOro niky po3cisiHHA NOBIIbHUX HEATPOHIB N06M3Y CTPYKTYPHOTO $pa3oBOro nepexody B BOAHUX
CyCneHsifax NnasmMaTM4HMX MembpaH (Me30CTpyKTyp 3 TMMOBO TOBLUMHOK A0 10 HM). [loBeAeHo, Lo WnpHHa
KBa3iMpy>HOro niky Po3CiiHHA HeTPOHIB MOBUHHA 3MEHLUMTWCA BHACNIAOK NpoLiecy KAiTUHHOI nponidepadii,
TO6TO i3 36iNbLUEHHAM PO3Mipy MemMbpaHu (y TOMY YMCAT TOBLUMH MeMbpaH). Takum YMHOM, HeATPOHHI focni-
[PKEHHA MOXYTb C/TyryBaTh A0AATKOBUM AiarHOCTUYHNM TECTOM A/t BUSIBAEHHS NPOLLEeCY YTBOPEHHSA MyXAVNHN.

KnrouoBi cnoBa: kiacy yHiBepcanbHOCTI, 06MexXeHi pignHHI cucTemy, npocTopoBa ANCNEPCis, HYXHS
KpocoBepHa BUMIPHICTb, BUMIDHUI KPOCOBEP, LUMPUHA KBA3IMPYXHOro Miky, HeMTPOHHE PO3CIIHHS
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