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It is well known that the similar universal behavior of infinite-size (bulk) systems of different nature requires the

same basic conditions: space dimensionality; number components of order parameter; the type (short- or long-

range) of the intermolecular interaction; symmetry of the fluctuation part of thermodynamical potential. Basic

conditions of similar universal behavior of confined systems needs the same supplementary conditions such as

the number of monolayers for a system confinement; low crossover dimensionality, i.e., geometric form of re-

stricted volume; boundary conditions on limiting surfaces; physical properties under consideration. This review

paper is aimed at studying all these conditions of similar universal behavior for diffusion processes in confined

liquid systems. Special attention was paid to the effects of spatial dispersion and low crossover dimensionality.

This allowed us to receive receiving correct nonzero expressions for the diffusion coefficient at the critical point

and to take into account the specific geometric form of the confined liquid volume. The problem of 3D⇔2D

dimensional crossover was analyzed. To receive a smooth crossover for critical exponents, the Kawasaki-like

approach from the theory of mode coupling in critical dynamics was proposed. This ensured a good agreement

between data of computer experiment and theoretical calculations of the size dependence of the critical tem-

perature Tc(H) of water in slitlike pores. The width of the quasi-elastic scattering peak of slow neutrons near

the structural phase transition in the aquatic suspensions of plasmatic membranes (mesostructures with the

typical thickness up to 10 nm) was studied. It was shown that the width of quasi-elastic peak of neutron scat-

tering decreases due to the process of cell proliferation, i.e., with an increase of the membrane size (including

the membrane thickness). Thus, neutron studies could serve as an additional diagnostic test for the process of

tumor formation.
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1. Introduction

Second half of the previous century, especially its last decades, was guided by two great achieve-

ments of experimental and theoretical physics: (i) the revolutionary discoveries in nanotechnologies, (ii)

solution of problem of the 2nd order phase transitions. It is now considered generally accepted that the

achievements of nanosciences (including nanoelectronics and nanomedicine) will determine the charac-

ter of the 21th century. It is difficult to overestimate the consequences of creation of modern picture of

physics of phase transitions and critical phenomena (physics of cooperative processes) based on precise

experiments and profound ideas of scale invariance (scaling) and renormalization group [1–3] as well

as of the method of collective variables [4, 5]. Unification of these two directions in the development

of physics, which started 40 years ago following the formulation of the scaling hypothesis for spatially
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limited systems [6–8], continues to raise an increasing interest of researchers to the study of phase tran-

sitions and critical phenomena in mesoscale systems. In resent years this interest touches not only upon

magnetics and liquid crystals but also extends to low- and high- temperature liquid systems.

The ideas of isomorphism of critical phenomena and phase transitions [9, 10] make it possible to

generalize the properties of confined liquids to the systems not only of physical but also of other nature.

This review paper is aimed at studying the conditions of similar universal behavior in confined liq-

uids. Its structure is as follows. Section 2 “Discussion” consists of three subsections. The 1st subsection is

devoted to the universal behavior of bulk and finite-size systems of different nature. In the 2nd subsection

we consider the diffusion processes in mesoscale liquid systems with taking into account the additional

factors of universality classes for finite-size systems, especially the spatial dispersion and the geometric

form of finite-size volumes under consideration. The 3rd subsection is devoted to our original studies

of the dimensional crossover (or smooth transition) between the properties of the bulk 3D and finite-

size (even 2D) systems. For this purpose we introduce the Kawasaki-like analytical expression for such a

3D ⇔ 2D dimensional crossover and propose the theoretical background for the results of computer sim-

ulations with the interpolation formula for the effective critical exponent ν(H). And finally, in section 3,

we use the methods of neutron optics to study the temperature and size dependence of the width △E of

the quasielastic neutron scattering peak near the structural phase transition in the plasmatic membranes

(mesostructures with the typical thickness up to 10 nm). It is shown that studies of the width △E of the

quasielastic neutron scattering peak can be applied as an effective tool for the tumor growth diagnostics.

2. Discussion

2.1. Universality classes for infinite (bulk) and finite-size systems

Let us first recall the important notion of universality classes. Basic conditions of the similar universal

behaviour for infinite-size (bulk) systems of different nature are well-known [1–3, 9, 10]: (i) space dimen-

sionality; (ii) the number of components of order parameters; (iii) the type (short- or long-range) of the

intermolecular interaction; (iv) symmetry of Hamiltonian (fluctuation part of the thermodynamic poten-

tial). Similar universal behaviour for confined systems needs the following basic conditions in addition

to four previous ones: (v) geometric factors (the number of monolayers) for system confinement; (vi) low

crossover dimensionality defined by the shape of the restricted volume, (see below for a more detailed

explanation); (vii) the type of boundary conditions; (viii) the physical properties under consideration [6–

8, 11–13]. These basic conditions of similar universal behavior of confined systems will be illustrated

herein below.

2.2. Diffusion processes in mesoscale liquid systems

Methods of the theory of phase transitions in the spatially limited systems are used here to study the

diffusion coefficient of water molecules in cylindrical pores, as well as the effects of spatial dispersion

and low crossover dimensionality (geometrical form) on the diffusion processes [6–8, 11–17].

Taking into account the fundamentals of thermodynamics and statistical physics of irreversible pro-

cesses as well as the modern theory of critical phenomena in liquid systems, one can write down the

coefficient of self-diffusion

D = (LR +LS)(∂µ/∂ρ)T . (2.1)

Here, LR and LS are regular and singular parts of the kinetic Onsager coefficient, the derivative (∂µ/∂ρ)T

is proportional to the inverse value of the isothermal compressibility of liquids. In accordance with the

theory of dynamic scaling, the singular part LS of the Onsager coefficient behaves as the characteris-

tic correlation length of the order parameter fluctuations (for liquids – fluctuations of density), namely:

LS = L0
S

(τ∗)−ν where L0
S
is the amplitude, τ∗ is the corresponding temperature variable for the systems

with restricted geometry, and ν ≈ 0.63 is the critical index. This value for the correlation length critical

exponent ν is taken because the bulk classical liquids belong to the 3D Ising model universality class. Ac-

cording to the scaling theory, the derivative (∂µ/∂ρ)T = (∂µ/∂ρ)0
T

(τ∗)γ. Here, (∂µ/∂ρ)0
T
is the amplitude

of inverse isothermal compressibility, and γ≈ 1.24 is the isothermal compressibility critical index in the
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3D Ising model universality class. Finally, the coefficient of self-diffusion in the spatially-limited liquid

system is described by the following formula:

D =
[

LR +L0
S(τ∗)−ν

]

(∂µ/∂ρ)0
T (τ∗)γ. (2.2)

In a general case, while describing the dynamic phenomena, the following three regions exist depend-

ing on temperature “distance” to the phase transition point [18]:

1. Dynamic fluctuation region, where singular parts of kinetic Onsager coefficients substantially pre-

vail over its regular parts (LS ≫ LR);

2. Dynamic crossover region, where both parts of the kinetic Onsager coefficients are of the same

order of magnitude (LS ≈ LR);

3. Dynamic regular region, where singular parts of kinetic Onsager coefficients are substantially less

than its regular parts (LS ≪ LR).

An answer to a question, which of these regions realize in experiments or in natural conditions, de-

pends on the value of Ginzburg-Levanyuk number Gi, which permits to estimate the role of fluctuation

effects. For weak aquatic solutions with Gi ≈ 0.3 only dynamic crossover and regular regions are expected

to be observed in reality.

It appears that the temperature variable τ∗ is characterized by the following formula in liquids with

confined geometry [11, 16, 17]:

τ∗ = (G/S)
1
ν +

[

1+ (G/S)
1
ν

]

(ξ∗)−
1
ν . (2.3)

Here,G is a geometrical factor which depends on the low crossover dimensionality (geometrical form)

of liquid volume [for the plane-parallel layer G = π, while for cylindrical sample G = 2.4048 is the first

zero of the Bessel function J0(z); S = L/a0 is the number of monolayers (L is a linear size of the system)

in the direction of its spatial limitation, a0 is the average diameter of a molecule], ξ∗ = ξ/ξ0 is the dimen-

sionless correlation length of density fluctuations (ξ0 is the amplitude of correlation length which has the

same order of magnitude as a0).

The size dependence of the self-diffusion coefficient D(S) is theoretically estimated in the dynamic

crossover region in accordance with formulae (2.2), (2.3) in [15] (figures 1, 2). Obviously, in a general case

of restricted systems for which inequality ξ≫ L is correct, the first term (G/S)
1
ν will prevail in (2.3), that

is why the diffusion coefficient will decrease at the fixed temperature while the linear sizes of a system

increase. In the opposite case, i.e., for a relatively large linear size in the sense of inequality ξ≪ L , the

multiplier (ξ∗)−
1
ν in the second term in (2.3) will play a greater role. That is why the diffusion coefficient

D will grow and will asymptotically approach the value of D0 in the spatially unlimited volume.

Figure 1. Dependence of self-diffusion coefficient D on S.

Figure 1 illustrates a non-monotonous dependence of self-diffusion coefficient D (in relative units) on

the parameter S (the curve with circles – for the liquid system with cylindrical geometry, dotted curve –

for geometry of plane-parallel layer), at the fixed temperature deviation τ = (T −Tc)/Tc =−0.01, where

Tc is the critical temperature of a bulk phase.
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Figure 2. Size dependence of self-diffusion coefficient at S ≫ ξ∗.

An increase of the self-diffusion coefficient D with the growth of S (see right-hand part of figure 1 at

S > 40, and figure 2), is confirmed both by experimental data [19] in cylindrical pores within the range

interval of radius 40–150 nm and by theoretical calculations [13] for the self-diffusion coefficient of water

molecules.

Table 1. Correspondence between the real system geometry and low crossover dimensionality dLCD.

Real 3-dimensional confined A corresponding Low crossover

systems borderline case dimensionality

Plane-parallel layer, slitlike pore, monomolecular 2

plane interphase, membrane, plane

synaptic cleft

Cylindrical pore, long pore with monomolecular 1

square or rectangular sections, filament (line)

ionic channel

Sphere, cube, parallelepiped, Point (one molecule) 0

ellipsoid of rotation, vesicle

Theoretical studies performed in [15] demonstrate the dependence of the self-diffusion coefficient on

the geometric form of a liquid system or, in other words, on its low crossover dimensionality dLCD. This

is briefly summarized in table 1. The low crossover dimensionality dLCD determines the limited spatial

dimension of geometric objects (2nd column) towards which the real investigated system (1st column)

passes if its linear size (sizes) in the direction (directions) of spatial limitation converge to a minimum

possible size, i.e., to the molecule diameter. It is clear that a three-dimensional plane-parallel layer trans-

fers to the monomolecular plane (essentially – 2D object), while a three-dimensional cylindrical pore

passes to the monomolecular filament (essentially – 1D object), while spheres or cubes restricted at three

directions have as its limit only one molecule, i.e., 0D object. The last 3rd column of table 1 contains the

value of dLCD for real spatially limited systems.

The analysis of the dependence of the self-diffusion coefficient on dLCD makes it possible to formu-

late the following conclusion valid for other equilibrium and non-equilibrium properties of nano- and

mesoscale systems: with an increase of dLCD, physical properties of the spatially limited systems tend to

their bulk values.
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Another conclusion concerns the temperature position τM(S)= [Tc(S)−Tc]/Tc of the extremum (pre-

cisely – minimum) of the self-diffusion coefficient depending on the parameter S, i.e., linear size L of the

liquid systems with different crossover dimensionalities.

Figure 3. Dependence of the self-diffusion coefficient D on τ= (T −Tc)/Tc at S = const.

As it follows from figure 3 obtained in [15], the temperature deviation τM(S) has a negative value (in

complete accordance with the scaling theory for spatially-limited systems); increases modulo at dimin-

ishing the dLCD; and tends to zero at increasing the linear sizes of the system.

The above-mentioned results and conclusions are qualitatively confirmed by the data of the heat

capacity temperature dependence in confined liquids of different geometry [20]. It follows that a heat

capacity maximum shifts to the region of lower temperatures and this shift grows from a bulk phase to

the liquids with dLCD changing from 2 to 1 and 0 (see table 1 where the real examples of such spatially

limited liquids are presented).

Table 2. Self-diffusion coefficient forwatermolecules and related properties (see text for the explanation).

τ L∗
R

L∗
S

L∗ (∂µ/∂ρ)∗T D∗ Dwater, m2/s

1.0 1 10−3 1.001 1 1.001 2.30 ·10−9

10−1 1 4 ·10−3 1.004 5.6 ·10−2 5.622 ·10−2 1.29 ·10−10

10−2 1 1.8 ·10−2 1.018 3.3 ·10−3 3.359 ·10−3 7.73 ·10−12

10−3 1 10−1 1.1 1.9 ·10−4 1.945 ·10−4 4.47 ·10−13

10−4 1 3 ·10−1 1.3 1.1 ·10−5 1.43 ·10−5 3.29 ·10−14

10−5 1 1 2.0 6.3 ·10−7 1.26 ·10−6 2.90 ·10−15

10−6 1 6.3 7.3 3.6 ·10−8 2.63 ·10−7 6.05 ·10−16

10−7 1 25 26 2.1 ·10−9 5.46 ·10−8 1.26 ·10−16

Analytical formulae obtained for the self-diffusion coefficient D∗ = D/D0 make it possible to conduct

numeral calculations of the self-diffusion coefficient D of a certain liquid almost in the whole critical

area (0É τÉ 1) using only a single parameter, i.e., the known value of amplitude D0 = L0
R

(∂µ/∂ρ)0
T . As an

example, the results of self-diffusion coefficient for water molecules are presented in table 2. The value

of the amplitude of self-diffusion coefficient for water molecules D0 used for this purpose was found in a

regular area far from the critical point: D0 = 2.3 ·10−9 m2/s. This value was obtained experimentally for

the molecules of water at the temperature of T = 293 K, which corresponds to the temperature deviation

τ≈−0.5 from the critical temperature of water of Tc = 647 K. Then, taking into account the value of D0,

as well as data for D∗ from the next to the last column of table 2, we get numerical results for temperature

dependence of the diffusion coefficient of water molecules in the critical region (see the last column of

table 2).

The effects of spatial dispersion (nonlocality) being neglected results in the physical properties in
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the critical points or the points of the 2nd order phase transitions tending to infinity (i.e., isothermal

compressibility, magnetic susceptibility, isobar and isochoric heat capacities and others) or to zero (i.e.,

coefficients of diffusion and thermal diffusivity, speed of sound and others). To take into account the

effects of spatial dispersion, the following idea is used [21]: spatial dispersion terms must be added to the

values which become equal to zero in the critical point (for example, added to the coefficient of diffusion

of D or to the reverse value of the isothermal compressibility). Thus, for the self-diffusion coefficient one

has the following formula:

D∗(ξ∗,S,k) =

{

(G/S)
1
ν +

[

1+ (G/S)
1
ν

]

(ξ∗)−
1
ν signτ

}γ
+Bk2

{

(G/S)
1
ν +

[

1+ (G/S)
1
ν

]

(ξ∗)−
1
ν signτ

}ν
+bk2

. (2.4)

It follows from (2.4) that a minimum nonzero value of the diffusion coefficient is equal to

D∗
min(L) =

(G/S)
γ
ν +4π2B/L2

(G/S)
γ
ν +4π2b/L2

. (2.5)

The same approach could be also used for taking into account the effects of temporal (frequency) dis-

persion of physical properties in the critical region. However, this problem will not be examined herein.

In the critical point (τ= 0), the self-diffusion coefficient of the bulk phase is constant and nonzero: D =

L0
R

(∂µ/∂ρ)0
T

B/b = const where B and b are coefficients of nonlocality. Figure 4 (solid curve) illustrates

this result. Two other graphs demonstrate temperature dependence of the self-diffusion coefficient for

liquids in plane-parallel (dotted curve) and cylindrical (curve with circles) confined geometry.

Figure 4. Temperature dependence of the self-diffusion coefficient.

An important peculiarity of the self-diffusion coefficient was also taken into account. Namely, its

asymmetry (see figure 4), as it follows from the inequality D∗
+ > D∗

−, where D∗
+ = D(|τ|,L,k)/D+

0 and

D∗
− = D(−|τ|,L,k)/D−

0 . There are two reasons for such an inequality D∗
+ > D∗

−: (i) change of sign of tem-

perature deviation τ in expressions for D(±|τ|,L,k); (ii) inequality D+
0 ,D−

0 of self-diffusion amplitudes

in overcritical (T > Tc) and subcritical (T < Tc) regions. The same temperature dependence of the self-

diffusion coefficient (confirmed by independent theoretical calculations [22]) should be expected in ex-

perimental studies of diffusion processes in finite-size liquids.

2.3. Dimensional crossover in finite-size liquid systems

In this section we would like to pay attention to the following problem: how the results of 3D systems

can be transferred to the results of 2D systems and vice versa. Of course, this transition cannot be very
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sharp; it should be smooth and without discontinuities, i.e., crossover-like. Let us call this 3D⇔ 2D tran-

sition as the dimensional crossover. To describe the dimensional crossover we shall take into account (i)

an obvious fact that the critical exponents in 3D and 2D systems have quite different numerical values

(see table 3); (ii) the results of computer experiments [23].

Table 3. Values of the critical exponents in 2D and 3D systems [10] (* Ornstein-Zernike approximation).

Space

dimen Theory or α β γ δ ν η

siona experiment

lity

Landau 0 1/2 1 3 1/2∗ 0∗

2D Ising model +0(ln|τ|) 1/8 7/4 15 1 1/4

3D Ising model 0.125 0.3125 1.250 5 0.638 0.041

3D RG 0.110 0.325 1.241 4.8 0.63 0.031

3D Experimental 0.11± 0.33± 1.23± 4.6± 0.63± 0.04±

data 0.01 0.01 0.02 0.2 0.01 0.02

Let us consider a confined liquid system with, say, the geometry of a plane-parallel layer. While re-

ducing its width L [or the number of monolayers S, see formulae (3)–(5) in our approach], the system

will transfer from 3D to 2D geometry. This transition should result in the change of critical exponents of

classical liquids which belong to the universality class of Ising model. The critical index ν will shift its

value from 0.63 to 1.0, the critical index γ – from 1.24 to 1.75, etc. (table 3, [10]).

To receive a smooth transition between two fixed quantities we would like to use the idea of Kawasaki

from the theory of mode coupling [24]. It permits to receive the so-called Kawasaki-like formula for the

critical exponents inside 3D⇔ 2D dimensional crossover:

y = n3 +

[

2

π
arctan(ax −b)−1

]

n3 −n2

2
. (2.6)

Equation (2.6) provides an interpolation for any effective critical exponent y between its 3D and 2D values

(n3 and n2, respectively). Here, x = L/L0 is the dimensionless width of the plane-parallel layer; L0 is the

linear size of the system in restricted geometry at which the crossover occurs (authors [23] consider

L0 ≈ 2.4 nm for the slitlike pore); and a, b are the dimensionless parameters characterizing the slope

Figure 5. Dependence of the critical exponent ν on S.
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and position of the 3D ⇔ 2D crossover along the S-axis. Figure 5 provides the theoretical dependence

of the effective critical exponent ν on the number of monolayers S in accordance with equation (2.6).

Parameters a = 20 and b = 8 were chosen to fit the condition that the limiting 2D value of the critical

exponent ν= 1 corresponds to a system containing approximately one monolayer.

The computer simulation experiment [23] demonstrates the dependence of the dimensionless pore

critical temperature T
pore
c /T3D on the pore size, i.e., the thickness H of a slitlike pore or radius R of a

cylindrical pore (figure 6). Closed squares and open circles correspond, respectively, to slitlike and cylin-

drical pores filled with water molecules. Dashed lines show the critical temperatures of the bulk 3Dwater

(upper line) and the 2D water (lower line). The lowest square corresponds to the critical temperature of

nearly 2D water in slitlike pore with its thickness H = 0.5 nm. This value of thickness H refers to nearly

one monolayer plane with taking into account that the diameter of water molecule is equal to d ≈0.3 nm.

Figure 6. Size dependence of the pore critical temperature (computer experiment [23]).

Figure 7. Size dependence of the critical temperature in slitlike pore [finite-size scaling + formula (2.6)

for ν].

The finite-size scaling theory [6–8, 11, 16, 25] provides the following formula for the shift of the critical

temperature T
pore
c = Tc(H) in comparison with its bulk value T 3D = Tc(∞):

τ∗ = [Tc(H)−Tc(∞)]/Tc(∞)∼ H− 1
ν . (2.7)
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The quite equivalent formula is as follows:

Tc(H)

Tc(∞)
= 1+kH− 1

ν , (2.8)

where k is the coefficient of proportionality.

In order to check our interpolation formula (2.6) using the results of computer experiment [23],we

substituted the size dependence of the critical exponent ν(H) [see (2.6) and figure 5] into the formula

(2.8). It yields the size dependence of the critical temperature Tc(H) in slitlike pores shown by figure 7.

The agreement between the computer experiment data and theoretical calculations seems to be quite

good. An additional curvature near the 3rd left-hand point (figure 6) is even observed in the theoretical

dependence Tc(H) in figure 7.

It is interesting to stress that the beginning of the dimensional crossover from 3D to 2D critical be-

havior takes place at the slitlike pore thickness H cross ≈ 2.4 nm. This value of H cross is mentioned in [23]

and can be observed in figure 7. It corresponds to approximately 8 monolayers of water molecules in a

slitlike pore.

3. Neutron studies and its medical applications

The method of quasi-elastic neutron scattering (QENS) is a powerful physical method of studying the

dynamic properties of liquids and aquatic suspensions of membrane mesostructures [19]. In particular,

the direct relationship between the change of the diffusion coefficient D of water molecules and the

sensitivity of biological cells to antitumor drugs was examined based on the theoretical calculations and

precise QENS experimental information in [26, 27].

The corresponding theoretical background includes both contributions of the collective and single-

particle diffusion of water molecules. The width of the quasi-elastic peak of slow neutron scattering

△E (q2) can be presented by the following formula [19, 26, 27]:

△E (q2) = 2ħDcoll q2
+

2ħ

τ0

[

1−
exp(−2W )

1+ (D −Dcoll)q2τ−1
0

]

. (3.1)

Here, Dcoll is the collective contribution to the diffusion coefficient of water molecules, D is the diffusion

coefficient with collective and single-particle contributions, W is the energy of activation (Debay-Waller

factor), q = (4π/λ)sinθ/2 is the change of neutron wave vector, θ is the scattering angle of a neutron

beam, τ0 ≈ 10−10 ÷10−12 s is the mean lifetime of hydrogen bonds.

Thus, the width of the neutron quasi-elastic scattering peak △E (q2) makes it possible to calculate D

and τ0, i.e., the dynamic characteristics of interaction between water molecules and its environment.

Neutron analysis of the width△E (q2,τ) in aquatic solutions of plasmatic membranes of tumor cells is

a promising biomedical direction of studies near structural phase transitions such as the cell proliferation

[28]. It is known (see, for example, [29–31]) that the mobility of polar groups as well as rotational mobility

of carbohydrate chains changes near the phase transitions of cell structures. Cooperative processes in

the membranes which are isomorphous to phase transitions in liquid mixtures play an important role

in the mechanisms of ionic transport, amplification of external stimuli, diffusion processes in membrane

memory, etc.

The plasmatic membranes of cells are typical mesostructures with a characteristic thickness about

10 nm. Therefore, in accordance with the hypothesis of dynamic scaling and expressions for kinetic co-

efficients in spatially limited liquids (see the previous results in this paper), we may write the following

formula for thewidth of quasi-elastic peak of slow neutron scattering in slitlike poreswith its thickness H :

△E (q2,τ) =△E0(q2)
{

(G/S)
1
ν +

[

1+ (G/S)
1
ν

]

(ξ∗)−
1
ν signτ

}γ
. (3.2)

Here, △E0(q2) = 2ħD0q2 and D0 are the amplitudes of the width of quasi-elastic peak and diffusion

coefficient.
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The main theoretical result of equations (3.2) is as follows: the width △E of quasi-elastic peak of

slow neutrons scattering narrows (as well as the diffusion coefficient D decreases), while the process of

proliferation with increasing S ∼ H takes place in the mesostructure of plasmatic membranes.

Such a size dependence of width △E in bulk aquatic suspensions of plasmatic membranes for the

case H/ξ É 1 can be explained as follows. If H > HD, i.e., for sizes H larger than the characteristic

size HD at which the dynamic crossover region is realized [18, 32], one has the following expression:

△E (q2,τ)/△E0(q2) ∼ H−γ/ν ≈ H−2, while γ/ν= 2−η≈ 1.96. In the fluctuation region (H < HD), at which

singular parts of the kinetic Onsager coefficients should be taken into account, the size dependence of

△E becomes smoother: △E (q2,τ)/△E0(q2) ∼ H (−γ+ν)/ν ≈ H−1.

Thus, the studies of the width of quasi-elastic peak of slow neutron scattering depending on the thick-

ness of the membrane mesostructures, which changes in the process of the cell proliferation, can serve

as an additional diagnostic test for the process of tumor formation.

4. Conclusion

In this review paper, we have investigated the specific features of mesoscale liquids in the critical

region. We have shown that, having taken into account the actual factors of a liquid system at restricted

geometry, such as number monolayers in confined systems, low crossover dimensionality, etc., the hy-

pothesis of the universality may be essentially generalized for the finite-size systems of different nature.

There is another important problem discussed in this paper, namely, the 3D ⇔ 2D dimensional crossover.

We have proposed the interpolation formula (2.6) to get a smooth transition from 3D to 2D values of the

critical exponent ν confirming the results of computer experiments. We also hope that the further de-

velopment of the physics of the 1st and continuous the 2nd order phase transitions will make a great

contribution to biomedical applications; especially it will help to formulate new ideas and methods of

diagnostics and to prevent the process of tumor formation.
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Класи унiверсальностi та критичнi явища в обмежених

рiдинних системах

О.В. Чалий1, Л.О. Булавiн2, В.Ф. Чехун3, К.О. Чалий1, Л.М. Черненко4,

О.М. Васильєв2, О.В. Зайцева1, Г.В. Храпiйчук1, О.В. Северин2, М.В. Коваленко2

1 Нацiональний медичний унiверситет iменi О.О.Богомольця

2 Київський нацiональний унiверситет iменi Тараса Шевченка
3 Iнститут експериментальної патологiї, онкологiї та радiологiї iменi Кавецького НАН України
4 Iнститут хiмiї поверхнi iменi О.О.Чуйко НАН України

Подiбнiсть унiверсальної поведiнки систем великих розмiрiв рiзної природи вимагає однаковостi таких

основних умов: вимiрностi простору, числа компонент параметра порядку; коротко- або далекодiючих

мiжмолекулярних взаємодiй; симетрiї флуктуацiйної частини термодинамiчного потенцiалу. Основнi умо-

ви подiбностi унiверсальної поведiнки для просторово обмежених систем доповнюються однаковими до-

датковими умовами: кiлькiстю моношарiв у напрямку просторового обмеження системи; нижньою кро-

соверною вимiрнiстю, тобто геометричною формою обмеженого об’му; граничними умовами на обме-

жуючих поверхнях; фiзичними властивостями, якi розглядаються. Метою цiєї оглядової статтi було ви-

вчення умов подiбностi унiверсальної поведiнки процесiв дифузiї у просторово обмежених рiдинних

системах. Особливу увагу було придiлено ефектам просторової дисперсiї i нижньої кросоверної вимiр-

ностi. Це дозволило отримати правильнi ненульовi вирази для коефiцiєнта дифузiї у критичнiй точцi з

урахуванням конкретної геометричної форми обмеженого об’єму рiдини. При розглядi проблеми 3D ⇔

2D вимiрного кросовера були отриманi оригiнальнi результати для плавного переходу критичних iнде-

ксiв за допомогою пiдходу, схожого на метод Кавасакi в теорiї динамiчного скейлiнгу. Це призвело до

гарного узгодження мiж даними комп’ютерного експерименту i теоретичними розрахунками залежностi

величини критичної температури Tc(H) води вiд товщини щiлиноподiбних пор. Було дослiджено шири-

ну квазiпружного пiку розсiяння повiльних нейтронiв поблизу структурного фазового переходу в водних

суспензiях плазматичних мембран (мезоструктур з типовою товщиною до 10 нм). Доведено, що ширина

квазiпружного пiку розсiяння нейтронiв повинна зменшитися внаслiдок процесу клiтинної пролiферацiї,

тобто iз збiльшенням розмiру мембрани (у тому числi товщин мембран). Таким чином, нейтроннi дослi-

дження можуть слугувати додатковим дiагностичним тестом для виявлення процесу утворення пухлини.

Ключовi слова: класи унiверсальностi, обмеженi рiдиннi системи, просторова дисперсiя, нижня

кросоверна вимiрнiсть, вимiрний кросовер, ширина квазiпружного пiку, нейтронне розсiяння
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