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Density field theory to study
association in a Yukawa fluid.
Role of the fluctuations
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In this paper we study the effect of the interaction potential in a liquid where
there is an equilibrium of association of a molecule into dimers. We use a
field theory where the fields represent the densities of the species and
of its dimer. The Hamiltonian is a generalization to binary mixtures of the
Hamiltonian studied in the previous work for a one component liquid in-
teracting with a Yukawa potential. In the binary mixture, the dimerization
equilibrium is taken into account as a condition on the chemical potential
of the monomers and dimers. In this paper we compare the effect of the in-
teraction potentials on the equilibrium densities as predicted by the mean
field approximation to their effect as a consequence of the fluctuations. The
fluctuations play an important role in the field theoretical analysis. To ob-
tain the effect of the fluctuations, we have used a relation equivalent to the
‘equation of motion’ in the field theory for the interacting quantum parti-
cles. We find that in a number of physical cases the mean field analysis
can be entirely modified by the effect of the potential in relation with the
fluctuations.
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potential
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1. Introduction

For the last two decades there has been considerable progress in the extension
and the development of the statistical mechanical description of associative effects in
liquid state theory. Two different but generally equivalent approaches were developed
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in the framework of integral equation techniques. One of them is connected with the
treatment of association as a chemical reaction and is concerned with the calculation
of the chemical equilibrium constant from a statistical mechanical viewpoint [1]. The
second one is connected with the development of the multidensity integral equation
formalism based on the combination of activity and density expansions for the treat-
ment of associative and nonassociative interparticle interactions, respectively [2,3].
The multidensity integral equation formalism was reformulated and applied to the
treatment of associative effects in different fluids such as electrolyte and polyelec-
trolyte solutions, chain and network forming fluids, and different types of molecular
and macromolecular liquids. A short review of the development of the multidensity
integral equation approach in liquid state theory was presented in [4].

In this paper we generalize a field theoretical approach, which has been intro-
duced to describe ionic liquids and liquids interacting with the Yukawa potential
[5,6]. Here, we describe a liquid of monomers which can associate into dimers and
interact amongst each other with a Yukawa potential. The system is treated as a
binary mixture and the dimerization equilibrium is introduced as a condition on the
chemical potential of the two species.

The Hamiltonian in the field theoretical approach is heuristic and includes the
ideal entropy and interaction potential terms. As it is proved [7] in the expansion
in powers of the density fluctuations for the forth order terms, this Hamiltonian
exactly reproduces the results of the collective variables treatments [8].

Our purpose is to study the effect of the interaction potential between the
monomers and dimers on the dimerization equilibrium. As a reference for the den-
sities we consider the equilibrium of dimerization as given by the ideal mass action
law in the absence of interactions. Then our aim is to show that the effect of the po-
tentials on the chemical equilibrium does not always correspond to the intuitive and
simple mean field analysis. The mean field corrections to the equilibrium densities
can, in a number of physical cases, be changed and their sign even modified because
of the fluctuations in the system. The analysis of the fluctuations is rather a natural
tool in the field theoretical framework. This has been seen in an equation, similar
to the equation of motion in quantum field theory [9], introduced in recent papers
and used to find the ionic profile at a neutral hard wall going beyond the quadratic
approximation [10]. Here we use this type of relations to obtain the correction to the
equilibrium densities beyond the quadratic approximation, where it would otherwise
be zero.

The paper is organized as follows. In section 2, we present the model with the
Hamiltonian for the mixture of monomers and dimers. Then we give the condition
on the chemical potentials to describe the association. The mean field approximation
and the quadratic expansion beyond the mean field approximation are presented.
The fluctuations of the density are analyzed in section 3, where we use a relation spe-
cific to the field theory in order to calculate these fluctuations beyond the quadratic
approximation. In section 4, we consider a number of meaningful physical cases for
the parameters: equilibrium densities, amplitude and range of the potential. We
compare the effect of the interaction potentials on the dimerization equilibrium as
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predicted by the mean field approximation and as given by the fluctuations. Finally
we draw some conclusions about the field theoretical framework presented.

2. Field theoretical model

2.1. The Hamiltonian

The system is described in terms of the density fields p;—; 2(r) which represent
the density of the species ‘1" and its dimer ‘2’. In the following the summations
over the index will be over these two labels. We take a finite system of size V' and
systematically consider the thermodynamic limit V' — oo. The Hamiltonian is a
functional of the fields :

BHpi(r)] = BHY[pi(r)] + BH [pi(r)] (1)
with the interaction Hamiltonian
BHY[pi(r Z /UU r)pi(r)pj(r')drdr’
“” (r')drdr, (2)
where r = |r' — r|, 1/a is the range of the interaction which is common for all

interactions and a;; is the amplitude. By symmetry we have a2 = ag; and we define
v;;, the value of the integral of the potential for the ¢, j interaction

aZ
= 47r—j.

= Q4

The entropy is written [5,11]

BH®[pi(r /pz [

where p{ are reference values of the density. The functional integral over the fields
yields the partition function

= [TIDpu(r) e o [ (4)

11 dr, (3)

p; is the chemical potential of the species i. Expression —kgT In©lp] is the usual
thermodynamic grand potential —PV'.
2.2. Association. Mean field equilibrium

The association is then modelled in the system by imposing that the chemical
potentials of the monomer and of the dimer are related to one another by

2/,61 = Ha. (5)
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In fact this relation describes the effect of the short range potential which is respon-
sible for the association and has not been written explicitly in the Hamiltonian.

In the absence of interaction the condition (5) gives the usual mass action law
equilibrium

'6—% = (p1)2 = K. (6)

P2 P

The constant x includes all the details of the short range potential which leads
to the dimerization and this equilibrium is specific to the reaction described. This
equilibrium is naturally displaced when there are interactions between the species.
In the following, we assume that the potentials are sufficiently small, p;v;; < 1 for
all 7,7, so that their effect on the densities can be treated perturbatively. In the
mean field approximation the densities noted p; = p; + dp; are given by the chemical
potentials according to

1 = hl% + p1011 + P22,
1

fo = ln% + p1U12 + P2U2 (7)
2

and the mass action law (6) is modified and becomes

=2
In (—) + (2011 — T12)p1 + (2012 — T2) 2 = 0. (8)
P2k

The relative variations of the density with respect to p; are given perturbatively as
/o \ P1U11 + P2U12

O e o 9)
P2/ po P1U21 + P20U22

and in the limit of small interactions we can use indifferently p; or p;. Note that these
density corrections are linear in the interaction potential, and therefore depend on
its sign. Moreover, the overall negative sign is consistent with the fact that, at a
given chemical potential, an attractive potential increases the density. In section 4,
these corrections dp; will be discussed according to the amplitude and sign of the
interactions and the value of the equilibrium densities.

2.3. Fluctuations. Quadratic Hamiltonian

Beyond the mean field approximation, we expand the Hamiltonian with respect
to the densities: p;(r) = p; +9p;(r). At the quadratic level of approximation, it reads

1
2pi

BH =B s [ px)ar = BHM [+ o [ dp2(r)ar

+ % Z/Uij(r)épi(r)épj(r’)drdr’ + B6H, (10)
i,J

696



Density field theory to study association. ..

where the mean field term is

Di 1__
BHMY[p] = §  Di <1H _pPO — 1) V + E QPin'UijVa (11)
i L 1,J

(2

where the linear terms have not been written as far as expanding around p; they can-
cel with the chemical potential and SdH represents the terms higher than quadratic
ones. Using the translational invariance in the system, it is convenient to expand
the densities in the Fourier components §p;(r) = 3, €¥"dp; k. In this basis we have

BH— B> / pi(r)dr = BHM" [p] + % D Gi(k)opirdps—x + BOH,  (12)
g w5 k

where the quadratic term is

1/_1 + Ull(k) Uu(li])
G(k) = ( pv12(k) 1/pa + vao (k) )
4

. T4
with Uij(k’) = m

(13)

3. Density and fluctuations

In the homogeneous system, the density is p; = p;+ (dp;) where (§p;) corresponds
to the effect of the fluctuations. Calculated directly with the quadratic Hamiltonian
this correction is zero, but we can go beyond the quadratic approximation. In order to
do this we use the relations presented in [6,10] which are the equations specific to the
field theory, generally known as the equation of movement for interacting quantum
particles [9]. These relations express the invariance of the functional integral with
respect to the dummy integration variable. They are written as follows:

<1n jj—<>> #3 f Bute)oepa =0 (14

Equation (14) is an exact relation. It can be expanded to the quadratic order and
taking the local approximation for the potential we have

< (op1)/p1 ) _ B ( L+ paaa —p2li2 ) ( (0p7) /7 ) (15)
<5p2>/ﬁ2 2Ga =12 1+ pion <5p§>/ﬁ§ ’

where
Ga = p1p2 det[Gro] = (14 p1011)(1 + p2lzz) — f1p2¥iy-
We introduce the new scale length

& = (1+ P10 + Pavian)’, Ua = p1po det(D).

Equation (15) is equivalent to introducing cubic terms from 36H in the calculation
of the density.
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The expression of the quadratic fluctuations is

o) /o1 \ 1 (1+K+)1(111K)
( ) dn(Ky + K) ’UppUa ’ (16)

I+ K1+ k)

where
_ a2 o 22 .
01 = p101; + P2y, 01 = P1iiy + P2y

and where we define new length scales in o units:

1 a?
Ki = 3 <1 + 2T \/(517711 — Palin2)? + plpgv%2> '

Finally, we have the corrections to the densities:

< (6p1)/p1 ) _ o’
(0p2)/p2 ) 8m(Ky + K )Ga
(1 4 PoUa2)V11 — Paliolsg _ o o
1+ K )(1+K_) Ua + (1 + pavia2)d1 — Patiaby

(1 + p1011) V22 — P1U12022 _ - o
A + (14 p1071)09 — D110
AI+K)Q+K) ° (14 p1011)03 — prv120y

In the limit p;v;; < 1, we have

( (501)/ 7 ) 1 < (602 7% ) @ ( b ) -
(0p2)/ P2 2\ (0p3)/75 167 \ 0y
Note that the corrections due to the fluctuations in this limit are always positive.

4. Some examples of physical regimes

In this section we analyze the previous results for a few cases of interest. A
complete analysis is beyond the scope of this paper as it would involve discussing at
least six parameters: the average densities, the interaction parameters. Our aim is to
compare the effect of the interactions as predicted by the mean field approximation
to their effect as a consequence of the fluctuations.

4.1. Interactions between alike species

We consider in this first case that there is no direct coupling of the species from
the potential as if we had two independent Yukawa systems. In the mean field we

have
dp1/p1 P1011
PR ~—| " _ . 19
< dp2/ P2V22 (19)
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For the fluctuations we have

< (0p1)/ 1 ) b ( P11 ) (20)
(0p2)/p2 16w \ py03,

The two types of corrections become similar when a;a/4 ~ O(1), the amplitude in
length units and the range of the Yukawa potential are comparable. We can verify
that in this regime both relative corrections remain small compared to the one, which
justifies the perturbative expansion. Note that the mean field predictions depend on
the sign of the interactions as opposed to the correction from the fluctuations which
remain positive. Thus, for some values of the parameters we can have a competition

between the two contributions. Also, as expected, there is no coupling between the
corrections for the two species.

4.2. Coupling between different species

We consider the case a1; = ass = 0. In this case the effect of the potential is to
couple the two species. In the mean field we have for the correction to the densities

p1/p1 p2012
NP B A e : 21
< dpa/ pa P1V12 (21)

For the fluctuations we have

(6p1)/p1 \ _ @*1y Pty
= o . (22)

(0p2)/ P2 167 \ p1v12
The correction from the fluctuations is comparable to the effect of the potential
in mean field approximation if ajsa/4 =~ O(1) and there can be a competition
between the two corrections as the mean field predictions effect depends on the
sign of the interactions as opposed to the correction from the fluctuations which

remain positive. Note that as expected there is a symmetry for the corrections as
they depend on the product pips.

4.3. Symmetry for the interactions v, =0
4.3.1. Degenerate case v;; = ¥

We consider the degenerate case when all interactions a;; = a are equal. Thus,
the determinant of the interactions is zero. The mean field density correction is

op1/p1 _ ]
o ~ —(p; + . 23
(078 ) = o | (23)
The fluctuations give

[omin )~ (1) »

Again the two corrections are comparable if aa/4 ~ O(1) and the mean field cor-
rection which depends on the sign of the interaction can be in competition with the
effect of the fluctuations.
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4.3.2. One interaction is dominating: 022 > 012 > 013

Here we consider the case when interaction 2 — 2 is much greater than all the
others and vy5 is determined as an algebraic average of the interactions 1 — 1 and
2 —2. One can consider the case of a half hydrophilic / half hydrophobic molecule in
water such that when it dimerises, the hydrophilic parts join and are concealed to
the surrounding environment. Then the dimer becomes essentially hydrophobic and
its effective interaction corresponds to a strong attraction with another hydrophobic
dimer.

1. First we assume that the original average densities are of the same order

p1 = p2. In this case the mean field correction is

0p1/p1 P2U12
J ~—| __ 25
( P2/ pa P2U22 (25)

and the density correction relative to the fluctuations is

( (0p1)/p1 ) _a < P2ty ) (26)
(0p2)/ P2 167 \ fovi,

If the interactions are such that the assa &~ O(1) we can then have a com-
petition between the mean field correction and the fluctuations for 2, but for
1 the main effect is given by the mean field correction. We could also have
ajzcv &= O(1). In this case we have to verify that for the strongest interaction
we are still in the regime pyU5y < 1 and in this case for 2 the density correction

is dominated by the fluctuations and for 1 there can be a competition between
the mean field and the fluctuations effect.

. In this second case we assume that it is not the densities which are compara-

ble but the dimensionless parameter describing the effect of the interactions
|p1011] & | paviaz| and p1 > po. It is like having a few dimers, but with a strong
interaction so that their effect is as important as that of the monomers. In this
case for the mean field we have

0p1/p1 P1V11
N ~—| __ . 27
( 502/P2 P1V12 ( )
For the fluctuations we have

( Eg%%; ) ~ ag(pwlfes: palr) ( o ) - (28)

It is more likely that agear &~ O(1) as the interaction between 2 — 2 is larger,
then the correction on 1 from the fluctuation is negligible. And on 2 the mean
field correction is also dominant as |p101a| >> |piUs]-
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In this study, we have not described all possible cases, but we have shown that
for non-extreme cases it is possible to have an effect from the fluctuations which can
modify the density as predicted by the mean field theory. More precisely, the density
correction related to the fluctuations is always positive. It can be in competition with
the mean field correction when we have a repulsive potential which decreases the
density at a given chemical potential.

5. Conclusions

In this paper we use a field theoretical framework to describe the association of
monomers into dimers in a fluid of particles interacting with the Yukawa potential.
We focus on the effect of the interaction potential on the dimerization equilibrium.
We discuss two effects of this potential, one related to the mean field analysis, the
second related to the density fluctuations.

In this paper, we focus on the density fluctuations which appear naturally in the
field theory formalism. To calculate them we use an equation characteristic of the
field theory which relates the fluctuations at a given point to the interactions. Thus
we are able to describe effects from the fluctuations beyond the quadratic model.
We find that the fluctuations in the system can alter the simple predictions as given
by the mean field analysis of the interactions.

We have considered different physical cases, which vary with the average density
of the dimerization equilibrium and the range and amplitude of the interactions.
We find that the mean field density correction can be completely modified by the
fluctuations for the conditions which can be easily obtained. In particular, at a given
chemical potential and for repulsive potentials, the effect of the fluctuations is to
increase the density which is to be opposed to the repulsive effect of the potential
which decreases the density.
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3acToCcyBaHHS N'YCTUHHO-NOJIbOBOI TEOPIl 0 BUBYEHHSA
acouiauii B lokaBiBcbkomy pnwoiai. Ponb pnykryauin

0. ni Kanpio!, M.®.lonosko 2, X.-M.Bagjani’

YHisepcuteT 1. i M. Kiopi, Mapux VI

®paHuis, 75230 Mapwx, nn. Xycbe, 4

IHCTUTYT i3nkm koHaeHcoBaHMX cmcteMm HAH Ykpainm,
79011 JlbBiB, Byn. CBEHLiUbKOrO, 1

OtpumaHo 13 xoBTHsa 2003 p.

B paHini cTaTtTi MM 4OCNIgXYEMO BNAMB NOTEHLUiaNny B3aeMOogji Ha Bnac-
TUBOCTI PiANHN, B SKi € PiIBHOBaXKHA acoujauiga monekyn B aumepun. Bu-
KOPMCTOBYETLCHA TEOPETMKO-MONBLOBUM Nigxia, B AKOMY rnons signosiga-
I0Tb F'YCTUHAM MOJIEKYN Ta iX ANMepiB. [aMifibTOHIaH cCUCTEMIN € y3arasb-
HEHHsIM Ha BiHapHi CyMilLi raminbTOHIaHy, WO BMKOPUCTOBYBABCH B MO-
nepefHix poboTax Npu A0CNIOXKEHHI BNACTUBOCTEN OAHOKOMMOHEHTHOI
pianHu 3 noTeHujianom B3aemogaii KOkasu. B 6iHapHil cymilli piBHOBaXKHa
OVMepu3aLia BPpaxOBYETLCH Yepes3 YMOBY Ha XiMidHi NOTeHLUjanm MOHO-
MepiB i AMMepiB. B gaxinn ctatti M1 NOPIBHIOEMO BIMJIMB NOTEHLaniB B3a-
€eMofji Ha PiBHOBaXHi N'YCTUHWN B paMkax Hab/IMXXeHHS CepeaHbLOro nons i
3 BpaxyBaHHAM GaykTyauin. @nykTyauii BigirpaioTb BXIMBY POJb B MO-
JIbOBOMY TEOpETUYHOMY aHanisi. MNMpu gocnigkeHHi Bnavey ¢nykTyauin
BMKOPWUCTAHO CMiBBIAHOLUEHHS, €KBIBaNIEHTHE “PDIBHAHHIO PyXy” B Teopii
nonst onsi KBAHTOBUX B3AEMOSjOUMX YacTUHOK. MokasaHo, wo B Gara-
TbOX (Pi3NYHMX BMMAAKax CcepenHbO-NoboBUIiA aHania Mmoxe OyTy nos-
HiCTIO MOOVdiKOBaHMI edekTaMu, NOB’s3aHNMN 3 IIYKTyaLIIMU.

Knwouoei cnoBa: acouiadisi, Teopis nons, ayktyauii ryCtuHu,
noteHuian KOkaBu

PACS: 61.20.Qg, 03.50.-z, 05.40.-a
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