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We have performed Monte Carlo simulations in the canonical ensemble of
a hard-sphere fluid adsorbed in microporous media. The pressure of the
adsorbed fluid is calculated by using an original procedure that includes
the calculations of the pressure tensor components during the simulation.
In order to confirm the equivalence of bulk and adsorbed fluid pressures,
we have exploited the mechanical condition of equilibrium and performed
additional canonical Monte Carlo simulations in a super system “bulk fluid
+ adsorbed fluid”. When the configuration of a model porous media per-
mits each of its particles to be in contact with adsorbed fluid particles, we
found that these pressures are equal. Unlike the grand canonical Monte
Carlo method, the proposed calculation approach can be used efficient-
ly to obtain adsorption isotherms over a wide range of fluid densities and
porosities of adsorbent.
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1. Introduction

Investigation of adsorption, diffusion and reaction of fluids in porous materials is
of much interest to the basic science and to many applications [1]. It is of relevance
for applications in membrane separations and heterogeneous catalysis by zeolites.
From a simplified view, zeolite structure is characterized by the presence of a regular
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network of pores and cavities, whose diameter is commensurate with the molecular
dimensions [2,3]. Continuum systems with quenched disorder include, for example,
porous and sintered porous materials, gels, amorphous substances, glaces, engineer-
ing composites, etc. A more detailed description of porous systems can be found in
[4].

Computer simulation continues to play an important role in developing a full
understanding of fluid adsorption in porous materials [5,6]. Monte Carlo (MC) and
molecular dynamics studies of the fluid-solid interface probe behaviour are inacces-
sible to experiments and provide essentially exact data for well-defined model po-
tentials. In the absence of accurate information concerning the adsorbate-adsorbate
and adsorbate-solid interactions, such information is of crucial importance to the
theoretical predictions [6–12].

The most commonly used technique for the adsorption study has been the grand
canonical Monte Carlo (GCMC) method [5–9]. In grand canonical ensemble, the
temperature and chemical potential are imposed and the number of particles is
allowed to fluctuate during the simulation. However, the GCMC method is limited
in its range of applicability to the systems where fluid and solid packing fractions
are not too large. In a high packing fraction regime (or/and if the fluid system of
interest contains relatively large molecules) the probability of particle creations and
destructions becomes very low, which leads to poor convergence of the MC averages.
For chain molecules, for example, almost all attempts of insertion result in an overlap
with one of the atoms of the molecules in the system and, therefore, such a move has
an extremely low probability of acceptance. Configurational-bias GCMC technique
proposed recently [5,9], does not sufficiently improve the situation at high packing
fractions.

On the other hand, to study the fluid adsorption in microporous solid (matrix)
the canonical ensemble MC (NVT MC) simulation has been used on a supersystem
which contains both the fluid confined in the porous solid and the bulk fluid phase
outside it [11,12]. However, in such a simulation there is an interface between the
bulk phase and the matrix. In this region the fluid properties differ from both the
bulk and adsorbed fluid properties of interest. Since in the simulation the systems are
small compared with the experimental (hence, the interfacial region is a relatively
large part of such a system), we have to simulate an unnecessarily large system to
minimize the effect of this interfacial region. Such a simulation would, of course, be
appropriate if the interest lay in this very region.

Therefore, it is clearly of interest to develop a simulation approach suitable for
studying the adsorption under a wide variety of states of the bulk fluid and matrix.
This is the primary aim of the present work.

Theoretical tools for the investigation of the properties of fluids and fluid mix-
tures adsorbed in disordered porous materials have been mainly adapted from the
liquid-state statistical mechanics and include integral equation approach, pioneered
by Madden and Glandt [13,14]. These authors have presented exact Mayer cluster
expansions for the correlation functions for the case when the matrix (quenched
species subsystem) is generated by a quench from an equilibrium distribution, as
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well as for the case of arbitrary distribution of obstacles. However, their integral
equations for the correlation functions appeared to be only approximate. This has
been explicitly demonstrated by Given and Stell [15,16]. By performing a detailed
analysis of the cluster series, they have derived a correct set of equations and called
them the replica Ornstein-Zernike equations. These approaches have been applied for
calculation of structural and thermodynamic properties of a few molecular models of
fluids confined in disordered porous materials [7,8,17–20]. Of particular importance
is the adsorption isotherm which describes how the average density of the adsorbed
fluid changes with the changes in pressure or chemical potential of the bulk fluid
at constant temperature. Since the mentioned integral equation theories deal with
fixed fluid density in the porous material, a relationship between the chemical po-
tential and this averaged density is needed to calculate the adsorption isotherm.
Madden [14] and Fanti et al. [21] have suggested that an appropriate route to this is
to calculate the pressure of the fluid in the porous material via a virial theorem and
then to obtain the chemical potential via integration of the isothermal Gibbs-Duhem
equation. Their expression for the virial pressure consists of the sum of kinetic term,
fluid-fluid and fluid-matrix interaction terms; matrix-matrix interaction term is ab-
sent since matrix particle is fixed.

However, it was shown later on that the corresponding adsorption isotherm cal-
culated via integration of the isothermal Gibbs-Duhem equation was inconsistent
with MC simulation results for a specific example [17]. The origin of this discrepan-
cy has been revealed by Rosinberg et al. [22] who derived the correct expression for
the virial pressure which consists of the additional terms which are not presented in
the equation of Madden [14]. In a parallel study, Dong [23] has suggested that the
expression of the mechanical pressure could be obtained by considering the average
of the microscopic force balance between the fluid inside and outside the porous
matrix. In contrast to previous results, Dong’s expression is simpler and consists of
the kinetic term and only fluid-fluid interaction term. Moreover, it was argued in
[23] that this pressure should coincide with the thermodynamic pressure, although
no formal proof was given. Finally, Kierlik et al. [24] by using the Green-Bogolubov
method for the thermodynamic pressure have shown that applying the condition of
mechanical equilibrium between two systems does not reveal information about the
thermodynamics of adsorbed fluid systems. They concluded, that the application of
the condition of mechanical equilibrium does not provide a route to the calculation
of the thermodynamics of these systems.

As can be seen, there is a controversy in the pressure calculations for an adsorbed
fluid. The simulation approach we propose in this paper, is based on the calculation
of the pressure of the fluid adsorbed inside the porous material using the virial-like
expression, similar to that suggested by Fanti et al. [21] and Madden [14]. Since this
pressure is equal to the bulk fluid pressure (we confirmed this by additional NVT
MC simulation of supersystem “bulk fluid + fluid in matrix”) our method directly
yields the bulk pressure versus adsorbed fluid density. The simple model and the
simulation method are described in the next section. In section 3, as an illustration,
simulation results are presented. Concluding remarks are given in the last section.
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2. Model and simulation approach

In order to present a new technique of pressure tensor calculation during NVT
MC simulation we consider a simple case of hard sphere (HS) fluid particles (f),
interacting through the potential Uff (r), that is,

Uff (r) =

{

∞, r < σ,
0, r > σ.

(1)

The fluid particles are confined to a matrix of HS particles (m) interacting through
the potential

Umm(r) =

{

∞, r < σm,
0, r > σm,

(2)

where σ and σm are the diameters of fluid and matrix species, respectively.
The cross-interaction, Ufm, is given in the same form as in equations (1) and (2)

but with characteristic length σfm, σfm = 0.5(σ + σm). We assume that σ = 1, and
σ is taken as the length unit.

Estimation of the bulk fluid pressure in molecular simulation is usually accom-
plished via calculation of the virial [5]. The bulk pressure of hard sphere fluid in MC
simulations can be obtained through the radial distribution function, g(r), evaluated
at contact distance, r = σ+,

P bulk

kT
= ρ +

2πρ2σ3

3
g(σ+), (3)

where ρ = N/V is the fluid number density. The bulk fluid pressure is obtained at the
end of MC simulations by extrapolation of g(r) to the contact. As has been shown
before [25–27], the bulk pressure of the fluid with discontinues (hard sphere-like)
potential can be calculated during the NVT MC simulation run. Besides, the proce-
dure of pressure tensor calculation of nonadditive hard sphere mixture adsorbed in
a slit-like pore [25] and of square well fluid with liquid-vapor interface [27] has been
recently presented.

The component P bulk
xx of the bulk fluid pressure, P bulk, can be calculated using

the mechanical definition [28]

P bulk
xx = ρkT − V −1

N−1
∑

i

N
∑

j>i

xijF
x
ij, (4)

where xij = xi − xj, xi is the coordinate of atom i in X direction. The force compo-
nent between atoms i and j in the X direction is

F x
ij = −

dUff (r)

dr

xij

r
. (5)

For the hard sphere potential [26],

dUff (r)

dr
= −kTδ(r − σ). (6)
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As has been shown, the derivative of the potential can be obtained during MC
simulations [26] if the Dirak δ function is calculated numerically,

δ(r − σ) =
Θ(r − σ) − Θ(r − [σ + ∆σ])

∆σ

, (7)

where Θ(x) is the step function. The approximation in equation (7) is valid when
∆σ → 0.

Substitution of equations (5–7) into equation (4) gives the P bulk
xx component of

pressure tensor for the hard sphere fluid,

P bulk
xx = ρkT + V −1

N−1
∑

i

N
∑

j>i

x2
ij

r

{

Θ(r − σ) − Θ(r − [σ + ∆σ])

∆σ

}

. (8)

The double sum in equation (8) is calculated for the distances between particles i
and j that lie within the interval σ 6 r < σ + ∆σ. In a simulation P bulk

xx is obtained
at different values of ∆σ to estimate its value when ∆σ → 0. In this work we have
taken ∆σ equal to 0.005, 0.01 and 0.015. The procedure of pressure value estimation
when ∆σ → 0, as well as its dependence on the choice of ∆σ have been discussed in
[27].

When HS fluid is adsorbed into the HS matrix, in order to calculate total fluid
pressure component, P T

xx, the additional term should be added to equation (8),

P fm
xx = V −1

N−1
∑

i

N
∑

j>i

x2
ij

r

{

Θ(r − σfm) − Θ(r − [σfm + ∆σ])

∆σ

}

, (9)

which represents the sum of x-components of the matrix-fluid forces. Such a def-
inition of the pressure treats the matrix-fluid interaction as a contribution to the
intermolecular forces in a system consisting of the fluid and solid, rather than as an
external field acting on the fluid.

Therefore, the total fluid pressure component is

P T
xx = P bulk

xx + P fm
xx . (10)

The components P T
yy and P T

zz are obtained by applying the same procedure as that
of P T

xx. In homogeneous fluids the three components of the pressure are equivalent

P T
xx = P T

yy = P T
zz, (11)

and the total pressure is

P T = (P T
xx + P T

yy + P T
zz)/3. (12)
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3. Applications

To illustrate the use of the simulation approach described in this work, the HS
fluid adsorption isotherms in different matrices have been calculated.

The model adsorbent (matrix) has been prepared by a random distribution of
nonoverlapping hard-sphere particles of diameter σ∗

m = σm + L, inside the cubic
simulation cell with periodic boundary conditions. From 30 to 160 matrix particles
have been used, depending on the values of particle diameters and number den-
sity, ρm. Such number of matrix particles is believed to be large enough to form
a statistically representative sample of a macroscopic porous medium while it is
small enough to accommodate a manageable number of adsorbed fluid molecules.
The matrix particles are rigidly fixed in their positions. In the case of disordered
matrix, for some cases we have repeated our calculations for three different matrix
particle configurations but this does not change the results to a marked degree (at
least for the presented parameters of the model). For high matrix packing fraction,
ηm = π/6ρmσ3

m, the particles were allocated using the fcc crystalline array. The
extended matrix particle diameter σ∗

m, (when L > 0), allows to form the channels
between the matrix spheres such that the fluid particles can pass through and touch
each matrix particle. If L = 0, some of the matrix particles may be “hidden” from
the contact with the fluid (especially at high matrix packing fraction). In this case,
we have found that P T

xx 6= P T
yy 6= P T

zz. Although L in the interval σ > L > 0 can also
guarantee the nonzero probability of fluid contact with each solid particle (depend-
ing on σm), in our calculations, presented in the next section, the parameter L has
been chosen to be equal σ.

An initial configuration for the fluid is prepared by inserting the f -particles into
the available space. For the high fluid density we apply the algorithm of particle
insertion and growing [5].

In order to verify that the fluid pressure in bulk phase is the same as the pres-
sure of an adsorbed fluid we have performed NVT MC simulation on a supersystem
(“bulk fluid + matrix fluid”). In this case, the simulation cell was a parallelepiped in
shape with the central part occupied by the matrix particles [12]. Periodic boundary
conditions were imposed in all three directions and neighbor listing was used. Each
f -particle was chosen in turn and randomly displaced for Neq configurations to equi-
librate the system. The displacement parameter was chosen to provide an acceptance
ratio around 40%. Equilibration of the supersystem is more time consuming than
the adsorbed fluid system in cubic cell and was performed from over Neq = 105 to
over 4× 105 trials to displace each fluid particle and an equal number for obtaining
the ensemble averages. Care was taken so that equilibration was reached. We have
evaluated the symmetry of the density profiles with respect to the matrix center and
the stability of the averaged bulk and adsorbed fluid density from run to run. For
the fluid densities that were considered, we have taken care to obtain a sufficiently
wide “bulk” region for the bulk fluid and fluid inside the matrix. We have defined the
“bulk” regions of the cell as that in which the density profile is constant up to fluctu-
ations. In that regions we have calculated the pressure by using equations 8 and 10.
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For each of the isotherms presented below, we have performed two NVT MC
simulations of the supersystem “bulk fluid + fluid in matrix” at different bulk fluid
densities. In these simulations we have confirmed that the pressure of bulk fluid (cal-
culated from equation 8) and the pressure of fluid adsorbed in the matrix (calculated
from equation 12) are the same. Note that the simulation of the supersystem “bulk
fluid + matrix fluid” is 6–9 times more timeconsuming than our new simulation
approach at the same conditions.

Initially, in figure 1 we present the adsorption isotherms of HS fluid into the HS
disordered medium with packing fraction ηm = 0.3077 and different sizes of matrix
particles, σm. In both cases considered here we use σ∗

m = σm+L, (L = σ), in order to
form the channels inside the matrix. In order to obtain the porous medium of high
packing fraction, the matrix of σm = 3 has been formed by allocation of the particles
with σ∗

m = 4 using the fcc crystalline array. Such allocation allows us to form the
matrix with initial packing fraction η∗

m = πρmσ∗
m/6 ≈ 0.74. Thus, the matrix with

σm = 3 has the fcc structure and ηm = 0.3077. Meanwhile, the second matrix with
σm = 4 has been formed by random insertion of HS particles with σ∗

m = 5 into a
cubic simulation cell.

As expected, the adsorption of a hard sphere fluid is slightly higher into a matrix
made of the large particles. The difference in adsorption increases for higher bulk
pressure.
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Figure 1. Adsorption isotherms of a
hard sphere fluid in hard sphere ma-
trices with the packing fraction ηm =
0.3077. The matrix is made of the par-
ticles with the diameter σm = 4 (stars)
and σm = 3 (circles). The accuracy of
the calculations (error bar) does not
extend the size of symbols.

Figure 2. Adsorption isotherms of a
hard sphere fluid with density ρ =
0.42035 in a hard sphere matrices. The
matrix is made of the particles with the
diameter σm = 4 (stars) and σm = 3
(circles). The accuracy of the calcula-
tions (error bar) does not extend the
size of symbols.

579



P.Orea, Yu.Duda

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5

 η
m
 = 0.3745

 σ
m
 = 4

pressure, P
ad

so
rb

ed
 fl

ui
d 

de
ns

ity
, ρ

Figure 3. Adsorption isotherms of a
hard sphere fluid in a matrix of hard
spheres with diameter σm = 4 and ηm =
0.3745. The accuracy of the calculations
(error bar) does not extend the size of
symbols.

In figure 2 we study the adsorption of
HS fluid as a function of matrix packing
fraction, ηm. The fluid density is fixed,
ρ = 0.42035. As in the previous case
one can see that adsorption is higher in
a matrix made of large particles. When
the packing fraction decreases this dif-
ference disappears. The matrices with
the highest ηm has the fcc structure (due
to the reasons described above) while
the other matrices are disordered.

In order to investigate the effect of
matrix configuration on fluid adsorption
we performed the following computer
experiment. We prepared two matrices
with the same packing fraction ηm =
0.3745 and particle size σm = 4. The
first one has the fcc structure (σ∗ = 5).
While the second matrix contains sheet-
like pores (as in carbonate rocks or clays
[1]), i.e. the matrix particles are ran-
domly allocated on the n squares in Y Z plane. The distance between neighbouring
square planes in X direction is Lx = 4.7 which allows the entrance of fluid particles
inside the pores and their possible contact with each matrix particle. In other words,
the xi coordinate of i matrix particle must be equal to n × Lx, (n = 0, 1, 2, ...).

As can be seen in figure 3, the configuration of matrix HS particles does affect
the adsorption isotherm of HS fluid. Namely, at low pressure the fluid is better
adsorbed into the sheet-like structure porous material than in the fcc structure
porous material. This is just opposite at high pressure.

It is worth noting, that at some cases of the highest adsorbed fluid density
presented above the value of the total packing fraction in the simulation box, ηT =
ηm + η, is around 0.55–0.6. As well known, it is very problematic or even impossible
to use GC MC simulation at these values of packing fractions [5].

4. Conclusions

In this paper the adsorption of a hard sphere fluid in a hard sphere porous
material has been studied applying a new approach to the pressure calculation during
NVT MC simulation. This approach has two features which make it a useful tool
for studying the adsorption in porous material. Firstly, one omits the calculation of
bulk fluid pressure. Secondly, this method may be efficiently used over a wide range
of conditions. The first advantage makes this method desirable for the investigation
of adsorption from mixture and adsorption of chain molecules. Besides, the proposed
method is considerably less timeconsuming than other MC methods that used to be
applied for adsorption investigations.
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We should stress that, the present NVT MC approach, like all simulation meth-
ods, has also got its own disadvantages. The method imposes certain restrictions
on the model matrix particle configurations: the distance between matrix particles
(size of channels) must permit the entrance of fluid particles. In other words, none
of matrix particles can be “hidden” from the contact with fluid particle. Only then,
there is an equivalence of bulk and adsorbed fluid pressures within our calculation
approach. This might be a reason why the simulation investigation made by Vega,
Kaminsky, and Monson [17] has shown that the virial expression of pressure giv-
en by Madden [14] fails to produce thermodynamically consistent results for the
adsorption isotherm calculated from Gibbs-Duhem equation.

We are in the progress of extending the calculation reported here to a variety of
other systems including fluid mixture, macromolecules, and more realistic model of
the fluid-solid interactions. Our preliminary calculations for the dimer fluid adsorp-
tion in porous media give promising results [29] in a wide range of fluid densities
and structure of matrix.
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Адсорбція плину твердих сфер у пористому

матеріалі: розрахунок тиску методом Монте-Карло
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79011 Львів, вул. Свєнціцького, 1

Отримано 23 травня 2003 р., в остаточному вигляді – 21 липня

2003 р.

Ми виконали моделювання методом Монте-Карло канонічного ан-
самблю плину твердих сфер, адсорбованого в пористому середо-
вищі. Тиск адсорбованого плину визначено з використанням оригі-
нального підходу, що включає розрахунок компонент тензора тиску

впродовж моделювання. Для того, щоб підтвердити рівність тисків

вільного й адсорбованого плинів, ми скористалися умовою меха-
нічної рівноваги і виконали додаткове канонічне моделювання ме-
тодом Монте-Карло в надсистемі “вільний плин + адсорбований

плин”. Встановлено, що ці тиски рівні, коли конфігурація модельова-
ного пористого середовища дозволяє кожній з його частинок кон-
тактувати з частинками адсорбованого плину. На відміну від мето-
ду Монте-Карло в канонічному ансамблі, запропонований обчислю-
вальний підхід можна ефективно використовувати для отримання

ізотерм адсорбції у широкій області густин плину і пористості ад-
сорбента.

Ключові слова: адсорбція, пористий матеріал, тиск, моделювання
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