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What can we learn about ferroelectrics
using methods of nonlinear dynamics?
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The nonlinear series resonance circuit with ferroelectric capacitor has been
extensively investigated. If the ferroelectric within the capacitor is in its polar
phase many of the features well known from model systems of nonlinear
dynamics may be observed. These characteristics are the shift of reso-
nance frequency with increasing driving voltage, bifurcations and chaotic
behaviour. Considerations of the system on the basis of simple Landau-
theory suggest to describe the resonance circuit by means of a Duffing-
equation. Because of the switching process during the nonlinear vibrations
the real situation is more complicated as can be shown by nonlinear time
series analysis [1].
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1. Introduction

Switching processes in ferroelectrics are caused by electric fields of magnitudes
above the coercive field strength E¢. One of the characteristics of switching is the
occurrence of hysteresis-loops which can be observed below the so-called Curie-
temperature T. They are accompanied by large dielectric nonlinearities [2]. The
description of these switching processes is one of the problems to be solved in the
physics of ferroelectricity and in the other fields of condensed matter physics. On the
other hand, great efforts have been made during the recent years to analyse nonlinear
dynamic systems [3]. So, the motivation of our work is twofold. Using ferroelectric
materials like TGS in its polar phase as a capacitor in a series resonance circuit we
have a nonlinear dynamic system that makes it possible to test the predictions of the
results of the theory of nonlinear dynamics, e.g. bifurcations and chaotic behaviour.
Another problem is the very switching process of the ferroelectrics underlying these
bifurcations. Therefore, we are interested in answering the question whether it is
possible to draw some conclusions concerning the ferroelectric switching by analysing
the experimentally recorded time series of our nonlinear resonance circuit.
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Figure 1. The nonlinear series resonance circuit with ferroelectric capacitor.

2. Experimental setup

The nonlinear series resonance circuit is shown in figure 1. It consists of a linear
inductance L, and a nonlinear capacitance Cyr,, which is a ferroelectric crystal. In
our special case we used triglycine sulfate (TGS) as ferroelectric. The driving voltage
Uext = Up cos(wt + ¢) may be varied both in amplitude and frequency to force the
circuit in order to exhibit bifurcations and chaotic behaviour.

The linear capacitor C' and the resistor R have been added to derive signals
proportional to the charge of the TGS-capacitor and the current of the circuit,
respectively. To minimize the influence of these two elements it is necessary to fulfill
the condition R < 1/C <« 1/Cyy, which reminds of the Sawyer-Tower circuit. So,
two signals U ~ D and Uy ~ D = j may be derived [1,4], where D and j are
the dielectric displacement and the current density, respectively. These signals are
recorded by a digital storage oscilloscope and can be used for direct observation of
the phase portrait as demonstrated in figure 2. Alternatively, it is possible to record
only the signal Uc and to calculate the temporal derivatives numerically [1,5].

According to Kirchhoff’s laws and neglecting the small voltages Ug and Ug, the
behaviour of the circuit may be written by the following equation:

Uext = Ur, + Ur,, + Unt, (1)

where Uj, and Uy, are the voltage drops in the inductance and the ferroelectric,
respectively, and Ug,, is a voltage drop both across the ferroelectric and the induc-
tance. From equation (1) one gets a second order differential equation [1,5,6], that
is the equation of motion in the sense of the theory of dynamic systems:

.. h . RV . Uext (t)

D=—FE(D,D)— —D+ —/~. 2
Here, D, D, D are the dielectric displacement and its temporal derivatives, Exr, is
the electric field strength in the ferroelectric which is assumed to depend on both D
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Figure 2. Experimentally observed phase portrait constructed from the two time
series D(t) and j(t) (both in arbitrary units).

and D in general case. S and h are the electroded surface and the thickness of the
ferroelectric sample, respectively.

For a further analysis, time series of D and D were recorded at different tem-
peratures of the ferroelectric (see figure 3). The ferroelectric was a rectangular TGS
sample with thickness h = 0.28 mm and the electroded surface S = 7.31 x 4.66 mm?.
The other parameters were as follows: inductance L = 100 mH, amplitude of the si-
nusoidal driving voltage Uy = 15.5 V and frequency f = 2369 Hz. The temperatures
were T, = 311.65 K, T, = 308.67 K and T, = 306.67 K.

3. Analysis of the experimental data

As mentioned above, this relatively simple circuit is interesting both from the
viewpoint of nonlinear dynamics and ferroelectricity. In our case we can combine
these fields and hope to get additional information for the characterization of the
ferroelectric switching process using the methods proposed in order to extract the
parameters of the equation of motion. For a review of such methods see [3] and
references therein.

As is well known, many properties of ferroelectrics in its polar phases are dom-
inated by the effect of the domain structure (see e.g. [2,7,8]). Nevertheless, already
the simple Landau-theory of second order phase transitions motivates the consider-
ation of the resonance circuit with ferroelectric TGS-capacitor as an experimental
realization of a nonlinear dynamic system.

Using the relation Exp, = ao(T — Te)D + vD? equation (2) yields directly:

D= —L—Z(QO(T—TC)D+7D3)—%D+U‘*LX—;@ (3)
This equation is the so-called Duffing-equation which is one of the model equations of
nonlinear dynamics [9,10]. An interesting feature of equation (3) is that it represents
a single-well oscillator above T and a double-well oscillator if the temperature of the
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Figure 3. Three phase portraits which
were recorded experimentally at differ-
ent temperatures of the TGS-crystal [5].
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ferroelectric is below T. A wide variety of theoretical results for that model could
be confirmed experimentally in our circuit. So, it was possible to measure the shift of
resonance frequency with the increasing amplitude of the driving voltage [11] as well
as period-doubling bifurcations and chaotic behaviour by tuning the parameters of
the circuit such as temperature of the ferroelectric, amplitude and frequency of the
driving voltage [4,6]. But more detailed investigations revealed that the situation is
more complicated [12]. So, it is not possible to describe the behaviour of the circuit
with TGS in its ferroelectric phase by parameters ay and v determined from the shift
of resonance frequency at temperatures of the same TGS capacitor above T. The
reason is that linear and nonlinear dielectric properties in the paraelectric phase are
not affected by domain switching processes. This is a confirmation of the well-known
fact that Landau-theory is not capable of describing the switching [2].

The task is now to modify the model such that it becomes capable of characteriz-
ing the nonlinear resonance circuit in the polar region of the ferroelectric. Therefore,
we tested the possibilities of time series analysis of chaotic signals from the view-
point of an experimentalist which may be a little questionable at first glance. But
as we have checked even in the regime of chaotic vibrations, the behaviour of the
circuit is reproducible. It means that bifurcations, chaos and periodic windows [13]
occur at the same control parameters (temperature of the ferroelectric, amplitude
and frequency of the driving voltage) even when the ferroelectric is heated above
the phase-transition temperature and cooled back to the initial temperature. A first
attempt was made to get a better agreement between the experimental data and a
model equation of extended Duffing-type:

Sy By Us(t)
D=>aD -=YD+ 4
ga@ 7 T3 (4)

F(D,D)

where the degree of the polynomial in D was increased up to n =9 [1].

What follows is a short description of the fitting procedure. For a detailed outline
see [1,5]. Having recorded a long time series of Uc ~ D (129907 data points D,, per
time series in our experiments) it is possible to estimate the temporal derivatives D,
and D,, from adjacent data points of the time series D,, according to the following
formulas:

: 1
D, = @(DnJrB - 9Dn+2 =+ 45Dn+1
—45D,, 1 +9D,_» — D, _3) + O(7),
.. 1
Dn = 1555 ———(2Dp43 — 27Dy 40 + 270D, 44
—490D,, +270D,,_1 — 27D,,_5 + 2D, _3) + O(7°). (5)

Having calculated the derivatives for each point of time ¢, = nT we have quadruples
(D, Dn,Dn,n) which are used to determine the parameters in the ansatz equa-
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tion (4) by a least-squares fit which minimizes:

=3 (B, F(Dy) - P ) -5 ©)

The ansatz equation (3) yielded a relative error of the fit ey of 30%—27% for N =
5—9, where €y is calculated as

100/ .
RN

A further improvement of the fit was achieved with a more general ansatz for the
function F(D, D) (see underbrace in equation (4)). Taking into account possible
couplings between D and D which may be physically motivated by various attempts
of modelling the nucleation processes [2] we made an ansatz of a complete bivariate
polynomial with the terms up to the power k in D and [ in D, including all mixed
terms:
kol
F(D,D)=%"% a;D'D’. (8)
=0 j=0

It could be shown ([5]) that the relative error ey saturates at approximately 8.5%
for k > 12 and [ > 5. A further increase of the degree of the polynomial F(D, D) to
k =15 and [ = 7 gave no significant reduction of the error. But the model contains
a lot of parameters (128 «;; for the basis functions DD plus 2 parameters for
amplitude and phase of the driving voltage Uy ). So, the question arises whether it
is possible to reduce the number of coefficients without significantly increasing the
relative error eyv omitting the terms which give only a small contribution to the
model. The first step towards such a simplified model results from the knowledge of
the symmetry of the system. From the symmetry of the driving voltage Uey(t) =
—Uext(t +T/2), where T is the period of the driving, it can be concluded that the
attractor in the phase space X = (D, D) has the same symmetry or there exist two
attractors related to each other by the relation Xy, (¢) = —Xa,(t + 7'/2). Taking
into account this symmetry we can neglect all the basis functions D?D7 where i + j
equals an even number except agg to describe an asymmetry (e.g. inner field) in the
ferroelectric. The result of this reduction was a small increase of the relative errors
€N,uq ~ €N,y +0.5% for the three different cases. Further reduction of the number of
the remaining 65 «;; was achieved by a modified backward elimination algorithm (for
details see [5]). Nevertheless, it was necessary to keep about 20-30 basis functions
to avoid a dramatic increase of the error. As a result of the procedure, we present
the numerically calculated phase portraits for the “optimal” models for the three
experimental time series (figure 4). Obviously, the main features of the experimental
data are correctly reproduced. Additionally, figure 4 contains the absolute values of
the one-step prediction errors x, (see equation (6)) in color coding over the phase
portrait. It is not surprising that the largest errors occur at the normalised values
|D| > 0.5, that is in the vicinity of the values of the spontaneous polarization, where
nucleation processes cannot be neglected.

194



Learn ferroelectrics using methods of nonlinear dynamics

The most surprising result was the fact that we can extract a nonlinear relation

Exi(D, D) for the ferroelectic TGS from our model with no significant indication
of a double-well potential [5]. Nevertheless, we showed that it is possible to fit even
chaotic time series of the nonlinear resonance circuit with high accuracy with only
few assumptions concerning the ferroelectric. Further steps towards an improvement
of the model will follow including more physically motivated models of ferroelectric
switching processes.
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LLLlo moXHa gi3HaTUCSH NPO CerHeToesIeKTPUKn
MeToAaMu HeniHiMHOT AuHaMIKn?

M.[ictenbxopcTt

YHiBepcuTeT iM. MaprTiHa JTioTepa, @i3nyHmin dpakynbsTerT,
HimeuumHa, D-06114 lanne, nn. ®pinemaHa-baxa, 6

OTtpumaHo 3 BepecHs 2002 p.

O6’ekTOM J0OCNiOKEHHS Y AaHi pOBOTi € HENIHIMHWIA NOCNIAOBHNI pe3o-
HaHCHWN KOHTYP 3 CerHeToeNIeKpU4HNM KOHOEHCATOPOM. AKLLO cerHe-
TOENEKTPUK Y KOHAEHCATOPI 3HaX0ANTLCS Y NOJSIIPHOMY CTaHi, CnocTepi-
ratoTbCs BACTUBOCTI, BiAOMI AN MOAENBHUX CUCTEM Y HENIHIMHIN ANHA-
Miui. Lle, 3okpema, 3cyB pe30HaHCHOi 4aCTOTU 3i 36iNbLLIEHHSIM MpUKa-
[EeHoi Hanpyru, Bidgypkalii Ta xaoTMyHa noBediHka. Po3rnag cuctemu B
pamkax NpocToi Teopii JlaHoay Bege 40 ONUCY PE30HAHCHOIO KOHTypa
3a JonoMororo pisHaHHA dyddiHra. Hacnpasai X, sk nokasaHo 3 Jono-
MOTOI0 aHani3y HeNiHINHKX YaCoBUX MOCNIJOBHOCTEN [1], npouecn nepe-
MMWKAHHS Mig4ac HeMiHINHMX KOAMBAHb 3HAYHO YCKNAAHIOKTb CUTYaLLIo.

Knio4voBi cnoea: cerHetoenektpuku, gomenu, TI'C, HeniHiviHa
AnHamika, pisHsaHHS Ay iHra, xaoc

PACS: 05.45.a, 05.45.Tp, 77.80.-e, 77.84.Fa
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