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Mechanical, electrical and thermal phenomena occurring in piezoelectric
crystals were examined by non-linear approximation. For this purpose,
use was made of the thermodynamic function of state, which describes
an anisotropic body. Considered was the Gibbs function. The calcula-
tions included strain tensor e¢;; = f(ow, En,T), induction vector D,, =
flow, E,,T) and entropy S = f(ow, E,,T) as function of stress oy, field
strength E,, and temperature difference T'. The equations obtained apply to
anisotropic piezoelectric bodies provided that the “forces” o, F,,, T acting
on the crystal are known.
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1. Introduction

The present paper provides a thermodynamic description of elastic (mechanical),
electrical and thermal properties of crystals in a non-linear approximation. The
physical processes and phenomena that occur in a real crystal generally are of a
non-linear character, similarly to those in any other physical body which displays
a certain degree of nonlinearity. It is conventional to describe non-linear properties
(i.e., physical nonlinearity) in terms of higher-order material constants, and such
are the factors of proportionality incorporated in the Taylor series expansion of a
non-linear relation describing the given effect. In general, the mentioned constants
are tensors.

Nonlinearity manifests in the values of the second-order material constants being
the functions of the values of the applied forces which act onto the crystal, e.g. the
elasticity constants can be a function of the applied stress ¢. Thus, the standard
Hooke equation may be written as follows:

e =s(o)o, (1.1)
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where € denotes strain and s(o) is an elasticity constant which varies according to
the stress o applied. Hence, s(o) takes the form

s(0) = 81 + 590 + s30° 4+ ..., (1.2)
where s; is a second-order material constant (modulus of elasticity).
By linear approximation, equation (1.1) becomes as follows: ¢ = s;0, where
s1 = 0e/do.

Using non-linear approximation, we have

Oe 1% , 18 4

T 0" T2 T3908” T
where
8_85 8_1825 8_1835
LT 90 27 21907 ° T 3190%
The coefficients sy, $g, s3, . .. of equation (1.2) can be regarded as material con-

stants which are proportional to the stresses (o) of relevant powers. Hence, they are
material constants of second, third, fourth or higher order. Thus, the Hooke equation
for non-linear effects can be written as [1,2]

e =5(0)0 = 510 + 8907 + 530° + . .. or &= (8 450+ s30°+...)0.
With tensor notation for anisotropic bodies, the relation of
8281+820+8302+...
takes the following form:
§ = Sijkl T SijklpqTpq t SijklpgrsTpqOrs + - - -
and the Hooke equation
e =5(0)0 = 510 + 5207 + 530° + ...

becomes

€ij = SijkiOkl + SijklpqOpqTkl + SijklpqrsOpqOrsOkl + ...

in tensor notation, where s;;1; is a fourth-order tensor (second-order material con-
stant), s;jkipe is a sixth-order tensor (third-order material constant), s;jkipgrs is an
eight-order tensor (fourth-order material constant), and the coefficients i, j, k, [, p,
q, r, s take the values of 1, 2, 3. Summation signs have been omitted [1,3,4].

Higher-order material constants are formally derived from thermodynamic func-
tions. The procedure is similar to that for the linear case. If, for example, strain ¢ is
produced simultaneously by stress o, by electric field E, and temperature variations
T, the equation of state for non-linear processes, which includes material constants
only up to the third order, can be written as

€ =810 + dlE -+ Ole + 820'2 + d2E2 + OéQT2 + ]{?JEO'E + ]CJTO'T + k?ETET,
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where
L0E 0o 1 15
YT o0t YT aET T AT TP 2002 P 20E%
, 10% D%e D%e d%e

=05 ke =gap Fr= g7 T = gpar

Apart from second-order material constants, si,d;, a;, and third-order material
constants So, ds, g, there are also third-order “mixed” material constants k. g, ko7
and kgr. The order of the material constant is defined by the order of the derivative
of the thermodynamic function and not by the order of the “force” acting onto the
crystal or by the order of the material constant tensor.

The problem will be presented more in detail in section 2.

2. Thermodynamic relations in crystals and Gibbs functions

According to the first law of thermodynamics, the total energy U of a body is the
sum of different energy types. In piezoelectric crystals, energy balance is primarily
accounted for by mechanical, electrical and thermal energy. The effect of magnetic
energy or gravitational energy on the phenomena occurring in piezoelectric crystals
may be neglected. In general, there are eight thermodynamic functions that can be
used to describe a piezoelectric phenomenon. The form of the function depends on
the choice of the independent variables, selected according to the conditions under
which the crystal is to be examined [2].

In the present paper we confine ourselves to thermodynamics, that is, Gibbs
function G. Mathematical analysis enables us to define particular material constants,
as well as to establish many interesting relations between them, by linear and non-
linear approximation.

G=U-— €ij0i5 — EmDm — TS, (21)

where 7, 7,m = 1,2, 3.

Let us consider the differential form dG, which describes the state of the crystal
following the application of three different “forces” — stress oy;, electric field E,,,
and temperature T. The forces acting onto the crystal are independent variables.
Thus, we have

dG =dU — 5ijdgij - O'Z‘jdé-fl‘j - EmdDm - Ddem — SdT —TdS. (22)
By virtue of the first and second law of thermodynamics,

where 7, 5,m =1, 2, 3.
Substituting (2.3) into (2.2), we obtain

dG = _5ijd0ij - Ddem — SdT. (24)
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Strain g;;, induction D,,, and entropy S are functions of stress oy, electric field
E,, and temperature 7"

€ij :f(aklaEnaT)a Dm:f(aklaEnaT)a S:f(aklaEnaT)'

Differentiating the function G with respect to individual independent variables,
and having determined the remaining values, we obtain

dG:<8G> dazj—k(ﬁ) dEm+<§> ar. (25)
aaij ET aEm o, T or o,BE

Comparing the coefficients of (2.4) and (2.5), we can derive the relations that
describe particular quantities:

oG

8aij

_ G
" 9K,

_ 9%
T

. 5=

o, T

Eij =

bl
ET o,E

The indices in the lower part of the vertical line show the independent variable,
which takes a constant value during differentiation.

The function €;5, D,,, and S can be expanded into a Taylor series. All derivatives
incorporated in the Taylor’s series are the material constants.

2.1. Material constants derived from function ¢;;

Second-order elasticity constant

Oeij 0 oG 0?G ET
= — | — = - - = 8.5 .
&IM ET &IM &JU 8aklaalj ET RLL
Second-order piezoelectric constant
c%ij . 0 <_ 8G> _ 82G T
(7En 0T (7En aO'Z'j aEnaO'Z‘j T wn
Second-order piezocalorific constant
Oeij 0 < oG ) 0*G B
_ = — | — = — = Q..
oT o,E oT 801-]- 8T80ij E J
Third-order elasticity constant
626ij . 82 _ 8G _ 83G . SE’T
001400pq | 1 0000y, doy; ) 00100,,004 . - Vijklpg
Third-order piezoelectric constant
D%eyj _ 0? _ oG _ PG T
aO'klaEn T aO'klaEn 8az~j 80k18En80ij T ijkin -
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Third-order piezocalorific constant

626ij

B 0? B 0G L ot _
c%kléT E B BaklaT aO'ij B adklaTadzj E L
Third-order electrostriction constant
625@’ . 62 _ 8G _ 83G . OT
8En8Et o.T n aEnaEt 8aij n aEnﬁEtﬁaij T - ignt
Third-order constant
82€ij . 82 B 8G . _673 o /{j
8En8T o N aEnaT 80”» N 8En8T80” o
Third-order thermal expansion constant
Peyy | 0 ([ G\ PG _LE
8T8T1 o E - 8T8T1 8aij n 8T8T180ij E S
2.2. Material constants derived from function D,,,
Second-order piezoelectric constant
ODw| _ 0 (OGN _ &G | _
&IM ET - &IM 8Em n 8ak18Em T - kime
Second-order permittivity constant
oD,, 0 B oG\ B 0*G _ oT
OE, | . OE,\ 0E,)  0E.0BE.|,, ™
Second-order electric heat constant
oD,, _i _aG L 0*G .
or | .~ orT\ 0E,) 0T9E, '™
Third-order piezoelectric constant
0*D,, B 0? B 0G L PG _
aaklaapq ET N aaklaapq 8Em N 8akl80pq8Em T — klpgm:
Third-order electrostriction constant
oD, | @ (o de |,
000E, |, 00w0E, \ 0E,)  0onx0BE,0E,|, ™"
Third-order constant
0*D,, B 0? _ oG\ B o3 .
aaklaT E N aaklE?T 6Em B adklaTaEm o hme
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Third-order permittivity constant

FDu| _ P (0G\_ PC |
0E,0E,|,, O0BE,0E, \ OE,)  0E,0E0E,| , ™
Third-order electric heat constant
D, | & oG PG .
0E,0T| ~ 0B,0T \ 0B, ) ~ 0E,0T0E,| '™
Third-order pyroelectric constant
9?D,, s oG ael e
onor|, , Oonor\ 0E,)  OLOTOE,| ™
2.3. Material constants derived from function S
Second-order piezocalorific constant
o5 _ 0 (L9G)__ &G | _ ok
&IM ET N &IM or N &IklﬁT E kL
Second-order electric heat constant
oS 0 (oG ale o
OE,| . 0E,\ oT)  ~ oE,0r| ™
Second-order thermal capacity constant
2 2 (8) e e
or o.E aoT aT; oToT; o.E '
Third-order piezocalorific constant
oS | & (LG ___8G | _ r
0010004 |y 001400, \ 0T ) 00100, 0T |, "
Third-order constant
rs | __o& (G & _,
adklaEn T N 8aklE9En oT n aaklaEnaT o i
Third-order thermal expansion constant
0?S s oG\ PG _ B
0owdT |, 0owdT \ 0Ty)  00w0TOT|, ™
Third-order electric heat constant
028 o oG\ PG o
OE,0F,| .  0B,0E \ oT )  0E,0E0T| I
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Third-order pyroelectric constant

= Oklmn »

o*s | 9 ( 9G) = &G o
OE,0T|, ~ 0E, 0T \ 90Tv)  0E0TOI|, "
Third-order thermal capacity constant
S 9 (L0GN __OG | p
OTIT|,, 0TI \ 9T,)  OTONITy|,, ~
2.4. Equalities between material constants
oD,, ey . %S e E
) )5 I LR e = 90,,0T |, e
Okl |pT m | T OktY0pq | g OpqUL |
8Dm . 82€kl T 825 o 8Dn
001000pg |y 00p OBy |, P OE,JT|, — OTOT|,
oS . 8Dn 5 825 . 625kl . TE
OE,| , OT|, '™  0owdl|, 0TOTi|,, ™
825 . 8Dn s 8Dm . 82€kl
OE,0F,| . OEOT| '™ 0owdE,|, 0E.0E,| .
98| _ Oem| _ p Oy | 0*D.| S
Oow|y, OT| , ™ 0B0T|, 00,0T|, 00;0E,

= kijn .

With the material constants (tensors) defined above, we can rewrite function ¢;;,

D,, and S from Taylor series into form:

_ ET 1 . BT 14T 1 E
g = (Sijit T 35ikipgpa T 38ij0in En + 5055 T) 0

+ (dz;n + %d{lijnakl + %oiijEt + %k:ijnT)En
+ () + 508 om + skijnEn + 35T,
Dy = (danl + %d%klpqapq + %kmle + %O%}mnEn)akl
+ (5:;; + %5Z£tEt + %OZWMUM + %pzmT)En
+ (9], + 3kmmiOkt + 5050 En + 5u, T1)T,
S = (o + %a,ﬁpqapq + %k‘klnEn + %r,flT)gkl
+ (0] + 2kprow + 305, Er + 3ulT)E,

+ (SE" + %T,flakl + %u%En + pE"’Tl)T.

(2.6)

(2.8)
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3. Linear and non-linear effects of the equations of state

Considering, for example, the equation of state derived from the Gibbs function
G for non-linear effects, we can easily obtain the equations of state for linear effects
by neglecting higher-order tensors. Thus, by virtue of (2.6), (2.7) and (2.8) we have

€ij = siEj}gakl + dg;nEn + aij,
D,, = dbuou+eslE, + 3T,
S = abou+p°E, +5°T (3.1)

which are valid for linear effects [7,8,9].

By virtue of the symmetry of some tensors (tensor components in matrix tables),
the relations of (3.1) can be presented in matrix form.

Hooke’s law is often expressed in its contracted notation. Then, the equivalence
between the components of the compliance fourth-rank tensor s;;x; and the compo-
nents of the 6 x 6 matrix s is shown to be:

Sijkl =  Smn m,n=1,2,3,
25ijkl = Smn, m = 1;2737 n= 475767
48ijkl = Smn, m,n = 47 57 6

in which the following contraction rule is applied for replacing a pair of indices by a
single contracted index: 11 — 1, 22 — 2, 33 — 3, (23, 32) — 4, (13, 31) — 5, (12,
21) — 6.

Furthermore, the full tensor suffixes of the stresses ¢ and strains € are contracted
according to the scheme:

011 = 01, O922 = 02, 033 = 03,
(023,032) = 04, (0137031) = 05, (012,021) = 06,
€11 = €1, €22 = €2, €33 = €3,
(2693, 2e32) = €4, (2613, 2¢e31) = €5, (2612, 26€91) = €6
and
dijk = dmn7 m,n =1,2,3,
2dZJk = dmn? m = 17 27 37 n = 47 57 67
11 = O, Qg = Qi , Q33 = A3,
(0423, 0432) = Quy, (0413, 0431) = O, (06127 0421) = Qg .

The relations of (3.1) constitute the starting set of the equations of state, which
describe the environment, and they are widely used to solve the problems dealt with
in piezoelectricity. Basic effects are described by the material constants (tensors)

35}5, elo ¢E9 that occur at the diagonal of the set of equations, whereas conjugate
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effects are defined by the remaining constants. On rewriting the material constants
of (3.1) in a matrix form, we obtain a symmetrical matrix of linear effects:

ET
) dT E

€ij Sijkl  Qijn Qg5 Okl
_ T T
Dm - dmkl En;g p(rfn En . (3 2)
E E,
S ag P &7 T

The equivalence between the components of the compliance sixth-rank tensor s;;xipq
and the components of the 6 x 21 matrix is shown to be:

Sijklpq = Smno m = 1)2737 n=o0= 172737
2Sijkipg = Smmo, m=123 n#o0, n=12 0=2,3,
43ijklpq = Smno, m:172737 n:1a273a 02475767 712024,5,67
88ijklpq = Smno> m = ]-7 27 37 n = 4a 57 0= 57 6,
2Sijklpq = Smno, m = 47 57 67 n=o0= 1, 27 Sa
4Siikipg = Smno s m=4,56,n#o0, n=12 0=23,
Ssijklpq = Smno, m=4,506,n=1,23, 0=4,56, n=0=4,5,6,
16Sijkipg = Smno, M =4,5,6,n=4,5 0=5,6.
The equation
1 .
Cij = 582‘Ej€lpqo-klo-pq7 2, 7, k7lap7q: 1a273
can be written in the form
1
Em = asmnoanao, m,n,o=1,2,3,....

Considering equations (2.6), (2.7) and (2.8) we obtain in a non-linear approximation:

1
€ij = SijkiOki T 5SijkipgOkiOpg + -+,
1 .
Dm = dmklakl + §dmklpqgklgpq + ... s if En = 0, AT = O,
1
S = QR0 + §aklpqgklgpq + ...

€ij = dpijBn+ 505mBEnEL+ ...,

D,, = eumb,+ %&LmtEnEt +..., if 03, =0, AT =0,
S = puEn+ 5pmE B+ ...

gij = oyl + %rijTT + ...,

Dy = puT +iu, 7T+ ..., if o =0, E, = 0.

S = T+ 3pTT + ...

An analogical matrix equation can be derived for non-linear effects (equations
(2.6), (2.7) and (2.8)):

Dn|=|D B F||E, |, (3.3)
S EF F C T
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where the basic effects are given by the following constants:

_ BT | 1_ET 17 1 B

A = St 3SijkipeOpa T 5k En + 305507
o T,0 1 To 1.7 1,0

B = Enmt + §€nmtEn + Qonmklakl + Qpana

C = P74 pPT + B, + trfoy
and the conjugate effects are described by
D = d}, + 3dbm0m + 305 B + $kijnT,

_ _E | 1 E 1,.E 17,

F = p’ + %pZmEn + %kzmklakl + %ufnT

As we can see, the matrix of non-linear effects is also a symmetrical one.

4. Summary

Using the Gibbs function (G), the equations describing the physical quantities ;;,
D,,, S have been derived for the non-linear effects of piezoelectric bodies. Relevant
equations are included in section 3. It has been demonstrated that the relations
between the material constants, which are tensors of zeroth to sixth order, can be
written in non-linear approximation in the form of material equations where the
elements of the matrices are the sums of appropriate matrices which represent the
tensors (relation of (3.3)). The relations of (3.3) were used to derive the linear effects
(relations of (3.2)).

The equations describing linear and non-linear phenomena for particular crystal-
lographic point groups reduce because of monocrystal symmetry [5,6,12,13,14,15,16].

From the rewritten relations of (2.6, 2.7, 2.8) in the matrix notation (table 1)
we can easily identify the interrelations of the tensor components, especially for
separate physical effects. Further simplifications and decays of some components of
higher order tensors may be obtained for appropriate point groups (crystal classes).

Table 1. Matrices of the coefficients (tensor components) in non-linear expansion.

On OnCo E, o, o, E, E.E, | E,T T T?
Smn Smno dmno amnl dnm Omnt kmn am rm
Em

6xXx6|6x21 |6Xx15|6X6|6x3|]6x6|6x3|6x1|6x1

D dmn dan 00mn knm 5mn 5mnt pnm pm um
"13x6]3x21[3x15(3x6|3x3|3x6|3x3|3x1|3x1

S (679 Opo kon Tn pn pnt Unp, f P
I1x6 | 1x21 | 1x15|1x6]1x3|1x6|1x3]1x1]1xl1

(6+34+1)x(6+214+154+6+3+6+3+1+1)=10x 62
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In 1952, with the aim to interpret the properties of the tetragonal antiferroelectric
crystal ND4DoPO,, Mason [10,11] made use of the elastic Gibbs function Gy :

G1 =U— €ij045 — TS5
in its differential form:
dG1 = —Sz‘de'kl + Enan — 5dT.

The equations and formulae describing ¢;;, F, and S, which have been derived by
Mason [10], depend on oy, D,, and T. So it is not surprising that they differ from
the equations presented in this paper (equations (2.6), (2.7) and (2.8)) both in linear
and non-linear approximations. In our calculations we used a Gibbs function which
had the form of G:

G=U- €ijO0kl — EnDn -TS

and a differential form of
dG = —¢;;doy — D, dE, — SdT.

The equations obtained for ¢;;, D,, and S depend on oy, E, and T. There is a
definite sense in which our results differ from those achieved by Mason. For example,
according to Mason (function G) [10] we have the following relations for the linear
effects:

Eij = % D’TUM + gg:n . Dy, + %672] . T,
S = E?Tiz D,Tgkl + 68,% J’TDm—I— g—g U,DT'
Our results (based on function G) take the form
S = ;Til E,Takl + ;—5} U,TEn+ g—; J’ET.

Relevant differences have been underlined.

Considering the physical properties of the crystals, the symmetries of the tensor
components and the order of differentiation of the thermodynamic function of state
as a total differential, we can use a more concise matrix notation, e.g:
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Sijkl  —  Smn (m,n=1,...,6), fourth-order tensor, second-order physical
constant;

Sijkipg  —  Smno (m,n,0=1,...,6), sixth-order tensor, third-order physical
constant;

dijkin  —  dyno (m,n=1,...,6, o =1,2,3), fifth-order tensor, third-order
physical constant;

dnij  —  dpm (n=1,2,3, m=1,...,6), third-order tensor, second-order
physical constant;

Oijnt —  Omnt (m =1,...,6, n,t = 1,2,3), fourth-order tensor, third-
order physical constant;

Qi = Qy (m =1,...,6), second-order tensor, second-order physical
constant, etc.

During transition from tensor to matrix notation we neglected the coefficients
that were different for relevant components (those for s;;x and s,k are listed in
section 3).

Equally concise are the matrices of the coefficients (tensor components) in non-
linear expansion. All of the coefficients (tensor components) incorporated in equa-
tions (2.6), (2.7) and (2.8), which occur on the right-hand side of table 1, are pre-
sented in the form of matrix 10 x 62:

6+3+1)x(64+21+15+6+3+6+3+1+1)=10 x 62.
For linear effects we have matrix 10 x 10:
(6+3+1)x(6+34+1)=10x 10.

Matrix notation is clear and very convenient, and in its external form it is similar for
all (eight) thermodynamic functions, which have been used to describe the physical
quantities for piezoelectric crystals. Making use of the data reported in the litera-
ture [1,3,5,13,14,15,16], we can establish the number of independent components of
particular tensors for each point group, as well as define the relations between some
elements of these matrices.
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HeniHinHI MexaHi4yHi, eNeKTPpU4Hi Ta TepMiyHi aBMLLA B
n’e€30eneKTPUYHNX KpucTtanax

®.Bapkyw, A JliHek

IHCTUTYT di3uKkn, yHiBepcuteT M. Onone, 45—-052 Onone, Monbuwa

OtpumaHo 25 cepnHsa 2002 p., B OCTaTO4HOMY BUMNALI —
31 6epesHa 2003 p.

MexaHiuHi, enekTpnyHi Ta TePMidHi ABULLA Y ME30ENEKTPUYHUX KPUCTa-
Nax BUBYAKOTLCS Y HENiHIMHOMY HaBNMXKeHHI. 3 L€ MeTolo BUKOPUCTa-
HO TepPMOAVHAMIYHMNIA NMOTeHUian, AKUA ONMUCYE aHi3oTponHe Tino. Po3s-
rMSAHYTO noTeHuian i6oca. Po3paxyHKM OXOMoTb TEH30p Aedopma-
uii e;; = f(og, En, T), BEKTOP iHAYKWIT D,, = f(ok, En,T) Ta eHTPONIto
S = f(oki, En, T) 9K OYHKLIIO MEXAHIYHOrO HaMpPYXeHHS oy, BENNYMHN
nonsa E, i pisHuui temnepatyp 7. OTpUMaHO PIiBHSHHS, SIKi OMUCYIOTb
aHIBOTPONHI M'€30eNeKTPUYHI Tina, aKkwo Bigomi “cunn” og, E,, T, WO
Li0Tb Ha KpucTan.

Knio4oBi cnoBa: r1'e30esi1ekTpuyHi Kpuctanu, TepMmoguHamika,
aHI30TPOnNHI Tina, TeH30pu

PACS: 65.40.-b, 77.65.+j, 77.65.Bn, 77.65.Ly, 05.70.Ce
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