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A microscopic analogue of the Landau free energy for a three-dimensional
one-component spin system is found below the critical temperature as a
result of direct calculations. The obtained explicit expressions make it pos-
sible to analyse the dependence of coefficients of the analogue on temper-
ature and microscopic parameters of the system. In contrast to the case
for the Landau theory, the temperature dependence of these coefficients
is nonanalytic. The quantities determining the coefficients in the expres-
sion for a microscopic analogue of the Landau free energy as well as the
temperature-dependence curves for the order parameter of the system are
given for different values of the effective radius of the exponentially de-
creasing interaction potential.
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1. Object of investigation and method

We consider a three-dimensional (3D) Ising-like system on a simple cubic lattice
with period c. The interaction potential is an exponentially decreasing function
O () = Aexp(—rj/b). Here, A is a constant, r; is the interparticle distance, and
b is the radius of effective interaction. The approximation for the Fourier transform
of the interaction potential is taken in the form [1]

= o [ ®0)(1—20%k?), kK< B,

k) = { 0, B <k<B, M)
where B is the boundary of Brillouin half-zone (B = 7/c), B’ = (bv/2)7!, ®(0) =
8rA(b/c)?.
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A microscopic analogue of the Landau free energy for 3D Ising-like systems is
calculated in the present paper using the collective variables (CV) method (see [1]).

The CV method allows us to calculate the partition function of the system and
to obtain not only the universal quantities (critical exponents) but also the nonuni-
versal characteristics. The methods existing at present make it possible to calculate
universal quantities to a quite high degree of accuracy (see, for example, [2-5]). The
advantage of the proposed method is the possibility of deriving analytic expressions
for the phase transition temperature and the amplitudes of thermodynamic char-
acteristics as functions of microscopic parameters of the initial system (the lattice
constant and parameters of the interaction potential), which makes this method
useful in describing the phase transitions in a wide class of 3D systems.

The term collective variables is applied to a special class of variables specific for
each individual physical system. The set of CV contains variables associated with
order parameters. For this reason, the phase space of CV is the most natural one
to use for describing a phase transition. For magnetic systems, the CV py are the
variables associated with modes of spin moment density oscillations, while the order
parameter is associated with the variable pg, in which the subscript “0” corresponds
to the peak of the Fourier transform of the interaction potential. An important
factor in describing the system behaviour near the phase transition temperature T,
by the CV method is the use of non-Gaussian measure densities. A non-Gaussian
density of measure at a zero external field is represented as an exponential function of
the CV, the argument of which contains, along with the quadratic term, even higher
powers of the variable with the corresponding coupling constants. The simplest non-
Gaussian measure density is the quartic one (the p* model) with the second and the
fourth powers of the variable in the exponent. The sextic measure density (the p°
model) includes the sixth power of the variable in addition to the second and the
fourth powers, etc. The quartic approximaton allows us to describe all qualitative
aspects of the second-order phase transition, while the sextic approximaton ensures
a more adequate quantitative description of the critical properties of a spin system.
This is confirmed by calculations as well as by the analysis of the behaviour of the
coefficients in the initial expression for partition function and the critical exponent
of the correlation length for the sequence of p*, p°, p8, and p'® models [1,6-8] as well
as by the calculation and comparison of thermodynamic functions for the models p*
and p% [9] and by comparison of the results of our calculations with other available
data (see, for example, [9,10]).

In this paper, the critical behaviour of a 3D Ising-like system is studied on the
basis of the higher non-Gaussian approximation (the p% model) taking into account
the correction-to-scaling terms.

The starting point of the problem statement in the CV method is the Hamil-
tonian of a 3D Ising-like system. After passing to the CV set, the Jacobian of the
transition from the spin variables to the CV is calculated to obtain a partition func-
tion functional similar to the Ginzburg-Landau functional. The partition function of
the spin system is integrated over the layers of the CV phase space. The correspond-
ing renormalization group (RG) transformation can be related to the Wilson type.
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Although the CV method like the Wilson approach exploits the RG ideas, it is based
on the use of a non-Gaussian density of measure. The main feature is the integration
of short-wave spin density oscillation modes, which is generally done without using
perturbation theory. For this purpose, we divide the phase space of the CV py into
layers with the division parameter s. In each n-th layer (corresponding to the region
of wave vectors B, < k < B, Byy1 = B,/s,s > 1), the Fourier transform of the
potential é(k) is replaced by its average value (the arithmetic mean in the given
case). To simplify the presentation, we assume that the correction for the potential
averaging is zero, although it can be taken into account if necessary [1]. Including
this correction leads to a nonzero value of the critical exponent n characterizing the
behaviour of the pair correlation function for 7' = T,. As a result of step-by-step cal-
culation of partition function, the number of integration variables in the expression
for this quantity decreases gradually. The partition function is then represented as
a product of partial partition functions (),, of separate layers and the integral of the
“smoothed” effective measure density VV("Jrl (p):

Z = 2NN =000, - - Q[Q(P,)) N / WE ™ (p) (dp)Ne. (2)

Here N, = N's73+D) N’ = Ns;3 sy = B/B’' = m/2b/c. The sextic density of
measure of the (n + 1)th block structure Wén+1)(p) has the form

n 1
Wet(p) =exsp |5 D dua(k)peri

kanJrl

n+1)

S Y et O

Nl gy kg <Bnyt

where Oy, ;.11 is the Kronecker symbol, B, = B's~ ™Y d. . (k) = agnﬂ) —
BO(k), B = 1/(kT). The coefficients aé?H) are renormalized values of the initial
coefficients a;, after integration over m + 1 layers of the phase space of CV. The
quantities al, are determined by special functions [9,10] and are functions of sy, i.e.,
of the ratio b/c.

The basic idea of the calculation of explicit expressions for free energy and other
thermodynamic functions of the system near 7. on a microscopic level (7 < 7% ~
10727 = (T — T.)/T.) lies in the separate inclusion of contributions from short-
wave and long-wave modes of spin moment density oscillations [1,11]. The short-
wave modes are characterized by the presence of RG symmetry and are described
by a non-Gaussian measure density. Here, the RG method is used (see, for example,
[12]). These modes are responsible for the formation of critical exponents and for
renormalization of the coefficient of the distribution describing the long-wave modes.
The way in which the contribution from long-wave modes of oscillations to the free
energy of the system is taken into account differs qualitatively from the method
of calculating the short-wave part of the partition function. The calculation of this
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contribution is based on using the Gaussian density of measure as the basis density.
We have developed a direct method of calculation with the results obtained by taking
into account the short-wave modes as initial parameters.

Calculating separately the contributions to the free energy from short- and long-
wave modes of spin density oscillations, we can obtain a complete expression for the
free energy of the system. Detailed calculations of the contributions to the free ener-
gy of the system from short- and long-wave modes and the coefficients of complete
expressions for the entropy, internal energy, specific heat are presented in [13,14]. A
calculation technique for the first correction to scaling is elaborated in the course of
determining the thermodynamic functions of the system in the p® model approxima-
tion. It is shown that each of the leading critical amplitudes and confluent correction
amplitudes can be represented as a product of a universal factor not depending on
the microscopic parameters of the system and a nonuniversal factor depending on
these parameters.

The suggested approach makes it possible to investigate the dependences of ther-
modynamic characteristics of a 3D Ising-like system on its microscopic parameters
[15].

2. Microscopic analogue of the Landau free energy and order
parameter of a 3D Ising-like system

The role of the order parameter for the system under investigation is played by
the average spin moment. It is associated with the existence of a nonzero value py
below the phase transition temperature, for which the integrand of the expression
for the long-wave part of the partition function

Zypp1 = @ Puria / exp {B\/ﬁpoh + Bpj — % Po — % Po| deo (4)
attains its extremum value. Here 3 is the inverse temperature, h is determined by the
value of the constant external magnetic field H introduced in our analysis (h = upH,
ps being the Bohr magneton). The expression for —3F) ,, corresponding to the
contribution to the free energy of the system from CV py with the values of wave
vectors k — 0 (but not equal to zero) as well as the coefficients of the expressions

B = BORpo0)(1+ BV,
¢ = GO (ER0) (1 + GV,
D = DOBE0) L+ DO (5)

are given in [15,16]. Here v and A are the critical exponent of the correlation length
and the exponent of the first correction to scaling, respectively. Carrying out in (4)
the substitution of the variable

po = VNp, (6)
we obtain

Ly 41 :e_ﬂFﬁTH\/N/ e NEol)qp, (7)
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Table 1. Values of quantities determining the coefficients in the expression for a
microscopic analogue of the Landau free energy.

b bI bH bIH C 2c
s = 2.0000
B 1.0106  0.9530  0.9305  0.7258  0.7149
BW —0.2733 —0.3959 —0.4420 —0.8188 —0.8375
GO 0.0550  0.0857  0.1010  1.9382 15.3880
G —0.8919 —1.2918 —1.4423 —2.6720 —2.7330
DO 0.0009  0.0023  0.0033  1.5614 99.9318
DW —0.6952 —0.9377 —1.0470 —1.9396 —1.9839
s = 2.7349
B©) 0.9417  0.8888  0.8683  0.6865  0.6768
BW —0.4451 —0.5124 —0.5377 —0.7445 —0.7550
GO 0.0690  0.1074  0.1267  2.4478 19.4434
GWo —1.1718 —1.3491 —1.4157 —1.9601 —1.9876
DO 0.0012  0.0031  0.0044  2.0825 133.281
D —0.8853 —1.0193 —1.0696 —1.4809 —1.5017
s = 3.0000
B© 0.9115  0.8610  0.8415  0.6697  0.6605
BW —0.4755 —0.5321 —0.5533 —0.7261 —0.7348
GO 0.0732  0.1141  0.1346  2.6087 20.7264
GWo —1.1967 —1.3392 —1.3926 —1.8275 —1.8495
DO 0.0013  0.0033  0.0047  2.2185 141.986
D —0.9113 —1.0199 —1.0606 —1.3918 —1.4085

and the evaluation of the order parameter is reduced to determining the extremum
point p of the expression

Ey(p) = Dp® + Gp* — Bp* — Bhp. (8)

The value of p coincides with the average value of p corresponding to the equilibrium
value of the order parameter [1,9,10]. The expression for Fy(p) defines the fraction
of free energy associated with the order parameter. It corresponds to a microscopic
analogue of the Landau free energy. The quantity Z,, .1 will be expressed in terms of
Ey(p) (coinciding in form with the expansion of the free energy into a power series
in the order parameter) by using the steepest descent method for evaluating the
integral (7) (see [16]).

The expression (8) was derived by successive elimination of “insignificant” vari-
ables px with k& # 0, which allowed us to calculate the coefficients of Ey(p) (see
table 1). Numerical values in table 1 are given for some values of the effective ra-
dius b of the potential and optimal values of the RG parameter s [9]. The value of
b = by = ¢/(2V/3) corresponds to the interaction between the nearest neighbours,
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b = b = 0.3379¢ corresponds to the interaction between the nearest and next-
nearest neighbours, and b = by;; = 0.3584c¢ corresponds to the nearest, next-nearest,
and third neighbours [17]. At these values of b and at small values of the wave vec-
tors k, the parabolic approximation of the Fourier transform of the exponentially
decreasing interaction potential corresponds to the analogous approximation of the
Fourier transform for the interaction potentials of the above-mentioned neighbours.
For s = s* = 2.7349, the average value of the coefficient in the term with the second
power of the variable in the expression for the effective measure density is equal to
zero at a fixed point (in the p* model, this corresponds to s* = 3.5862). Thus, there
is no need to postulate a temperature dependence of the coefficients in equation (8)
(as in the case of the Landau expansion) since the analytic form of their depen-
dence on temperature and microscopic parameters of the system has been obtained
as a result of direct calculations. Unlike the Landau theory case, the temperature
dependence of these coefficients is nonanalytic (see (5)).

Let us go over to direct calculations of the average spin moment. The point p
can be determined from the condition for the extremum 0FEy(p)/0p = 0 or

~ h
6Dp° +4Gp® — 2Bp — — = 0. 9
p’ +4Gp P= 17 (9)
For h = 0, we obtain the biquadratic equation
6Dp* +4Gp* — 2B = 0. (10)

Solving this equation and separating temperature explicitly, we arrive at the follow-
ing formula for the average spin moment (o) = p:

(0) = (@)@ I (L+ () 7). (11)

Here, § = v/2 is the critical exponent of the average spin moment, and the coeffi-
cients (o)) are given in [15,16]. The curves describing the dependence of (¢) on 7
for various values of b are shown in figure 1 for s = 3.

3. Conclusions

The partition function of a 3D Ising-like system is integrated over the layers of
the CV phase space using the sextic measure density. Integration is performed over
all variables except for the variable py connected with the order parameter. Partition
function is reduced to a single integral. The exponent of the integrand contains the
energy Fo(p) (see (7), (8)), which corresponds to a microscopic analogue of the
Landau free energy. The expression for Fy(p) can be regarded as the part of free
energy associated with the order parameter.

The coefficients of a microscopic analogue of the Landau free energy as functions
of temperature and microscopic parameters of the system are obtained on the basis
of analytic calculations. In contrast to the Landau theory, the dependence of these
coefficients on the temperature is nonanalytic. Numerical values of the quantities
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Figure 1. The temperature dependence of the average spin moment of the system
in the p® model approximation for various values of the effective radius b of the
potential: by = ¢/(2v/3), b1 = 0.3379¢, by = 0.3584¢, ¢, and 2c.

determining the coefficients of a microscopic analogue of the Landau free energy are
given for various values of the interaction potential range.

Due to the factor N in the exponent, the integrand in (7) possesses a sharp

maximum at the point p, which corresponds to the equilibrium value of the order
parameter. The average spin moment playing the role of the order parameter for the
investigated system is found.

The proposed method for computing a one-component spin system may be gen-

eralized to the case of a system with an n-component order parameter.

References

SN

Yukhnovskii I.R. Phase Transitions of the Second Order. Collective Variables Method.
Singapore, World Scientific, 1987.

Liu A.J., Fisher M.E. // Physica A, 1989, vol. 156, p. 35.

Landau D.P. // Physica A, 1994, vol. 205, p. 41.

Guida R., Zinn-Justin J. // J. Phys. A, 1998, vol. 31, p. 8103.

Pelissetto A., Vicari E. // Phys. Reports, 2002, vol. 368, p. 549.

Kozlovskii M.P., Pylyuk I.V. Calculation of the correlation length critical exponent of
the three-dimensional Ising model with the use of non-Gaussian basis measures. — In:
Proc. of the All-Union Conf. on Modern Problems in Statistical Physics. Vol. 2, Lviv,
3-5 February 1987, p. 50 (in Russian).

Kozlovskii M.P. // Teor. Mat. Fiz., 1989, vol. 78, p. 422 (in Russian).

Kozlovskii M.P., Pylyuk I.V. // Ukr. Fiz. Zh., 1990, vol. 35, p. 146 (in Ukrainian).

203



M.P.Kozlovskii, I.V.Pylyuk, O.O.Prytula

10.
11.
12.
13.
14.
15.

16.

17.

Kozlovskii M.P., Pylyuk I.V., Dukhovii V.V. // Condens. Matter Phys., 1997, No. 11,
p. 17.

Kozlovskii M.P., Pylyuk I.V., Dukhovii V.V. Calculation method for the three-
dimensional Ising ferromagnet thermodynamics within the frames of p® model.
Preprint cond-mat,/9907468, 1999, 41 p.

Yukhnovskii I.R., Kozlovskii M.P., Pylyuk I.V. // Z. Naturforsch., 1991, vol. 46a, p. 1.
Ma S. Modern Theory of Critical Phenomena. Reading, Massachusetts, Benjamin,
1976.

Pylyuk I.V. // Low Temp. Phys., 1999, vol. 25, p. 877.

Pylyuk I.V. // Low Temp. Phys., 1999, vol. 25, p. 953.

Yukhnovskii I.R., Kozlovskii M.P., Pylyuk I.V. Microscopic Theory of Phase Transi-
tions in the Three-Dimensional Systems. Lviv, Eurosvit, 2001 (in Ukrainian).
Pylyuk I.V., Kozlovskii M.P. Thermodynamic characteristics of the 3D Ising system
in p% model approximation taking into account the confluent correction. II. Low-
temperature region. Preprint of the Institute for Condensed Matter Physics, ICMP—
97-07U, Lviv, 1997, 32 p. (in Ukrainian).

Kozlovskii M.P., Pylyuk I.V., Usatenko Z.E. // Phys. Status Solidi (b), 1996, vol. 197,
p. 465.

Mikpockoni4yHni aHanor BisibHOI eHepril JlTaHaay ans
TPUBUMIPHUX i3IHrONOAiIOHUX cucTem

M.MN.Ko3noscbkuia, |.B.Muntok, O.0.Mputyna

IHCTUTYT i3nkm koHaeHcoBaHMX cmcteMm HAH Ykpainm,
79011 JlbBiB, Byn. CBEHLiLUbKOrO, 1

OtpumaHo 14 xoBTHsa 2002 p., B OCTaTO4HOMY BUMNALI —
12 moTtoro 2003 p.

MikpockoniyHuin aHanor BinbHOI eHeprii JlaHgoay ang TpMBUMIPHOT O4HO-
KOMMOHEHTHOT CNiIHOBOT CUCTEMM 3HANOEHO HUXYE KPUTUYHOI Temnepa-
Typu B pe3ynbTaTi NpsiMUX po3paxyHkiB. OTpuMaHi SiBHi BUpasun J03BO-
N910Tb JOCNIAUTU 3anexHiCTb KoedilieHTiB aHanory Big Temneparypu
Ta MiKpOCKonMiYHMX NnapameTpis cuctemun. Ha BigmiHy Big Teopii JlTaHpoay
TemnepartypHa 3anexHiCTb UyxX KOediLlieHTIB € HeaHaniTUYHo. Bennym-
HU, LLO BM3HAYaloTb KOedilieHTn y BUpasi 4na MikpoCKOMNiYHOro aHanory
BiNIbHOI eHeprii JTaHaay, a TakoX TeMnepaTypHO 3anexHi Kpuei anga na-
pamMeTpa nopsaKy CUCTEMM, NoAaHi ANnga PisHUX 3HaYyeHb paaiyca edek-
TUBHOI Aji eKCNOHEHLjanbHO CNaaHOro NOTEeHLiany B3aeMOoii.

Kniwouogi cnoBa: iziHronoaibHa cuctema, KOAeKTUBHI 3MIiHHI, BiflbHa
eHepria JlaHaay, napameTp rnopsiaky
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