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Using the dynamical proton (pseudospin)-heavy ion (lattice) model and the
Green function formalism, the effective total differential cross sections for
both coherent and incoherent neutron scattering are derived. The char-
acteristic interference effects due to both tunnelling of light ions (protons)
and mixed proton-heavy ion scattering processes are expressed by corre-
sponding pseudospin and pseudospin-phonon form-factors. The scattering
intensity pattern in antiferroelectric phase is accomplished by polar mod-
ulation effects and additional interference in the cross sections. The the-
oretical predictions are related to experimental studies of ADP, Rochelle
salt and NaNO.,. Their possible application to test the coexistence of (an-
ti)ferroelectric and superconducting phases in high-T. copper-oxide super-
conductors is briefly discussed too.
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1. Introduction

Like in order-disorder ferroelectrics, a characteristic feature of the theoretical
description of the dynamics of order-disorder antiferroelectrics, particularly of neu-
tron scattering on such crystals, is the strong anharmonicity of the local one-particle
potential as apparently present in them. In the most simple approach both systems
are characterized by the collective motion of ions in a local potential with the two
minima of equal or different depth and equilibrium positions r = pl, (¢ = =%£).
Such a physical image is employed in describing various order-disorder ferroelectrics
[for example, potassium dihydrogen phosphate, KHoPO, (KDP), triglycine-sulphate
acid (TGS), sodium nitrite (NaNOy), etc.] and antiferroelctrics [such as ammonium
dihydrogen phosphate, NHy;H,PO,4 (ADP), Rochelle salt, NaKC,H,Og - 4H,0O (RS),
trihydrogen selenite, CsH3(SeO3)3 and others], together with compounds isomorphic
and related to them [1-5]. In the more traditional approach the small distances 1.
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may just represent stable configurations or equilibrium positions of ions, depend-
ing on how they change owing to statistical or quantum (tunnelling) jumps inside
the one-particle potential. The definition of 1. will be more general, however, if it
is related to equilibrium positions of all the ions in a primitive cell, in accordance
with the notion of local normal coordinate [1,5] (cf. [6,7]). Within the framework of
such a generalized scheme the local normal coordinates practically coincide with the
displacements of those ions that are active at phase transition.

It is well known that the disordering motion of active (“light”) ions, or of all the
ions in the primitive cell, is described by pseudospin variables as introduced by De
Gennes and originally associated with the tunnelling of protons in their local double-
well potentials [7,8], as probably the main characteristic of the hydrogen-bonded fer-
roelectrics. Shortly, the dynamical model of the pseudospin-phonon interaction (i.e.
coupled proton-lattice model) was formulated [9,10] and later on, being developed
by many authors [2,3,7,11-17] it has been widely applied in various order-disorder
systems, predominantly in the studies of hydrogen-bonded ferroelectrics and anti-
ferroelectrics (cf. [1-7] and references therein).

It is generally believed that order-disorder antiferroelectrics can be well repre-
sented by the physical situation as apparently encountered in corresponding hydro-
gen-bonded systems [1,4,5]. Such compounds are typified by ADP-crystal as entirely
KDP-type antiferroelectric, and we shall deal with them predominantly throughout
this paper. The treatment will be extended to another representative hydrogen-
bonded antiferroelectric, to Rochelle salt, as characterized by an asymmetric double-
well single-particle potential and rather resembling the features of a ferroelectric
compound [2,18].

The majority of theoretical examinations in the above mentioned representative
antiferroelectrics are applicable to a number of other systems [like NaH3(SeO3),,
NH4HSOy, etc.], including those in which the tunnelling of active atoms is small (as
in deuterated compounds) or can be neglected (cf. [1-5]). In such cases we are left
with the dynamic picture of a kinetic Ising type being replaced by a pure relaxation-
al one. Note that in this context a very intriguing situation is present in NaNOs:
the ferroelectric phase is separated from the paraelectric one by a very narrow si-
nusoidal antiferroelectric phase (cf. [1,4]). In the context of the neutron dynamical
neutronography, among many unexplained physical characteristics of NaNO, as a
typical non-hydrogenous order-disorder ferroelectric, the appearance of a sinusoidal
antiferroelectric phase particularly deserves a more complete theoretical as well as
a non-conventional and more precise experimental research.

Based on the relatively recent experimental (by neutron scattering and other
techniques) and theoretical analysis [19-21] (and references therein) on possible lat-
tice instability associated with a split position of the “apical” oxygen atoms (denoted
as O4) within their double-well local potentials in YBayCuzO7 superconductor, for
such and related compounds one can perform the analogous derivation of neutron
scattering functions within the framework of a generalized pseudospin-phonon mod-
el of the Rochelle salt type. The possible application of such adjusted expressions for
testing the coexistence of superconducting and (anti)ferroelectric phases in high-T,
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copper-oxide superconductors is proposed and briefly commented in the end of the
paper.

From a formal point of view derivation of the differential neutron scattering
cross sections for order-disorder antiferroelectrics is connected with peculiarities
of computing the corresponding particle-density correlation functions for discrete
(pseudospin) and harmonic-like (phonon) variables taking into account the coupling
between the pseudospin and phonon modes in the system (cf. [5] and references
therein). One must also bear in mind the specific features of the symmetry aspects
of the analysis of scattering cross sections in connection with the physical meaning
of the pseudospin operator and its being different from the real spin with respect to
the time reversal [22].

To clearly present the derivation of expressions for the scattering cross sections
(for coherent, incoherent, elastic and inelastic scattering) of neutrons on antiferro-
electrics of the order-disorder type and to better comprehend the features peculiar
to such scattering, we shall first outline the dynamics of antiferroelectrics with hy-
drogen bonds by making use of the special case of ADP and RS crystals.

2. Basic dynamics in the framework of pseudospin-phonon
model

Antiferroelectrics of ADP-type and antiferroelectrics of the compounds isomor-
phic to them are of great interest due to the relative simplicity of their structure
(although there are enough atoms per unit cell) and their availability, which permits
to investigate the general properties of such hydrogen-bonded crystals. From a prac-
tical standpoint they can be grown easily and being in general of high quality they
yield various technological applications [1]. Besides, such crystals exhibit a number
of features relevant to the theory of phase transitions, particularly being of interest
in the case of order-disorder systems with an antiparallel arrangement of electric
dipoles.

The phase transition in ADP has been known for almost 65 years, although
for a long time it was thought to be basically different from the KDP-type fer-
roelectrics. The ADP structure was established by X-rays and neutron diffraction
both in paraelectric (tetragonal) and antiferroelectric (orthorhombic) phases (cf.
[1,2]). The survey of structural, symmetry and physical properties in general, e.g.
the corresponding data for ADP and all KDP-type ferroelectrics, can be found in
special books, reviews or articles, for example in monographs and papers cited herein
[1-5,22] (and references therein). Therefore, only the main physical characteristics
of ADP are quoted hereto as mostly important for the following. Thus, the primitive
cell in the high temperature phase (7" > Ty ~ 150 K) contains two formula units, the
unit cell (with four formula units) in turn being doubled below the phase transition.
In the antiferroelectric (antipolar) phase, unlike KDP, one “upper” and one “lower”
proton sites are filled in off-center positions nearer to an arbitrary PO, group. While
the hydrogen bonds are always nearly perpendicular to the c-axis, the displacements
of ammonium and phosphate groups below the critical temperature are in the a — b
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planes resulting in an antipolar ordering (in the c-direction) of these neighboring
groups. In turn, either the a- or b-directions can become antiferroelectric axes be-
low Tx. The principle role of protons is manifested in the large isotope effect (for
instance, in sharp changes of the transition temperature and the tunnelling energy
when hydrogen is substituted by deuterium: Ty ~ 242 K, 2Qp ~ (0.60 = 0.70)2Qy)
[1-3].

Rather more than in case of the hydrogen-bonded ferroelectrics, the description
and experimental investigations of the complete dynamics of isomorphic antifer-
roelectric compounds represents an extremely difficult task [1,4]. For instance, a
determination of the actual atomic movements in the antiferroelectric mode would
require a fit of 20 amplitude parameters [1,5]. In this respect, there are not too
many papers in the field of research concerned. Although being not too much no-
ticeable in the current literature, extension of the pseudospin [23,24] and dynamical
(coupling) tunnelling proton-lattice [25] models in the antiferroelectric context had
been probably developed long time ago. Later on these models were applied in the
corresponding theory of neutron scattering, by ferroelectrics and antiferroelectrics
(mainly by ADP) [26,27] (cf. [5]).

As it was mentioned in the previous section, from the model point of view and its
efficiency as well, i.e. to overcome the standard difficulties in solving the eigenvalue
problem whereby applying the symmetry analysis (cf. [5]), it is convenient to utilize
the representation of local normal coordinates: the first one is associated with the
tunnelling motion of all ions (mainly of protons) in each unit cell (n =1,..., N), be-
ing further related to the pseudospin variables S (a = z,y, z ) and the corresponding
mode of energy ¢, = hw,; the other two (j = 1,2) describe phonon vibrations (in
the a — b planes), i.e. the modes of the same frequencies (w, = wyp = A;) but of
different polarizations (e, # e,2), both perpendicular to the c-axis. Thus, taking
advantage of local normal coordinate and pseudospin representations the Hamilto-
nian of the system can be written in the convenient Fourier-transformed form [9-11]
as specified for three interacting modes [25],

H=—VNQQS; + AS;) = JS:57 =Y [@g(bf; +b_gj) S, + hAgibbgs]. (1)
q qJ

Here, the transverse field 2Q = (Rn|V(n)|nL) describes tunnelling of the n-th

primitive cell from a state of the “left-hand”, |[nL), to a state of the “right hand”

configuration, [nR), and A is the parallel field as a measure of the asymmetry of

a local double-well potential; .J; is the Fourier transform of the effective exchange

interaction between the cells n and n', @4, is the Fourier transform of the proton

(pseudospin) — heavy ion interaction (for phonon branches j = 1,2). The Coulomb

nature of the interaction @,; was dealt with in [10,11]. Particularly, it was represented

as the difference of two terms 7,;(£) corresponding, respectively, to the left (-) and
right (+) minima of a hydrogen bond [11],

rf rf rf —_ =
by = [T5; (+) = T4 (=) = 255, (2)
where T(Lf (1) are given by almost exact expressions in the convenient lattice-ion-site

summation form. In the continuous approximation (R, — R), @g (indexes r and
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f labelling the light and heavy ions, respectively, in a primitive cell) can be cast in
the form which is more suitable for particular evaluations [28],

8re*? h . . .
@Tf _: . ef. iql,— _ —iqly+ 1q(Ror—Rof)' 3
=@ e e ®)

Here e* is the effective charge measuring the Coulomb interaction between hydrogens
and heavy ions, and Vj is the volume of the unit cell, while R,, and R,s denote the
positions of light and heavy ions in it, respectively.

In the local normal coordinate representation the above quantity (3) acquires a

simpler form,
8re*? | R . .
b =i A . iql. _ _—iqly G* 4
q7 1‘/0|q‘2 Qquj (q eQU)(e e ) (q>> ( )

where G(q) = > ;exp(iqRyy) is the structure factor of heavy ions in the primitive
cell and m is the reduced mass of heavy-ion complex [NH;—PO,].

The dispersion law for two mixed modes in the model (1) was obtained by several
equivalent methods. Firstly, the Mori method of moments was used [9], then the
method of equations of motion [10] and, eventually, the method of Green functions
was applied [11,29], of which we shall further take advantage.

In the pseudospin space it is convenient to pass from the xyz-coordinate system
to the coordinates {y(, such that the average value (S) is directed along the O(-axis
so that values (S¢) = (S¥) = 0. The transformation has the form [25]

z _ Q¢ € . z _ b
Sy =8;sinp+ S COS p; Sz2=2_5

(a—qB) q (q—qg) COS P T 5§ sin ; (5)

the critical wave vector qp is the wave vector on the boundary of the Brillouin zone
(BZ) and ¢ is the angle between the Oz- and O(-axes,

¢ = arctan(H,/H.). (6)

The transformation (5) means that in one sublattice the rotation angle is ¢ while
in the other one is (7 —). Note that S¢t, = Si = since 2qg is the reciprocal lattice
vector.

The molecular field components in equation (6) are:

H, = 2Q; H, =27,.(S%) + A; (7)
761 = Jq""Z@qj‘Q/)‘qj; (8)

J

(S%) = (Hy/2H)tanh(H/2T), (a=uwx,2);  H=[H>+ HIY? (9)

J, is the Fourier transform of the effective pseudospin interaction; (S®) and (S*) are
related as (S*)H, = (S*)H,. For the further computation of the neutron scattering
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cross sections the necessary Green functions in the random-phase approximation
[11,25,29] (cf. [5]) are stated as follows:

—H(S5)(w? = \2)

G (q,w) = —((S51S5 ) = : (10)
o (w? = E§j+)(a’2 - Egjf)
. —2¢* H\,(S¢) sin ¢
(g, w) = —((Ay[SE))e = o : (11)
W B )W B
671(0 ) = ~((AplA_y) = ——otls 1) (12)
qQ,w)=— j —qjllw — )
B (w? = Eg; ) (w? = B )
where A,; = by + bt o; and the frequency of the pseudospin mode is given by
wg = H* — 2H(S%)J,sin’ ¢. (13)

The frequencies of coupled pseudospin-phonon modes are determined by the poles
of any one of the Green functions (10)—(12):

1/2
22 42 /

A2 — 2 2
EZ, = 5 i[(q2 "> +2H)\q<SC>Z|Q5qj/|2sin2<p . (14)
]‘l

Here the parameter (S¢) is calculated from the mean field equations (7)—(9), or, to
be more precise, (S¢) = 1/2— N~'37 (S7,SF), where the correlator is computed
with the aid of the Green function ((SZ,|S;)) [11].

As one can see from equation (14), with account of equations (6)—(9) and equa-
tion (13), the pseudospin-like mode (E,- = E,;_), often named “antiferroelec-
tric”, condenses at the edge of BZ, while the frequencies of the phonon-like ones
(Eyj+; B+ = Ego4) remain finite attaining their minimum when 77 — Ty from
above (cf. [25]). This indicates that at T = Ty and for q = gp the instability of
the paraelectric phase occurs; the antiferroelectric phase begins to develop and the
unit cell is doubled (BZ becomes twice smaller). Therefore, all functions of quasimo-
mentum should be referred to the new BZ. Caused by such a reduction, all modes
become doubled (E(g145);+ appear in common to Fg;1) and all summations over g,
>, f(q), have to be substituted by [ f(q) + f(q+ gp)] [25]. The antiferroelectric

(antipolar) phase is represented by the pseudospin (polarization) modulation [2,5],
(S;) = exp(igs - n)(5%), (15)

meaning that a sinusoidal structure below Ty is stable rather than the homogeneous
one ((S7) = (5%)). In turn all three (i.e. two) modes E,;+ (14) depend on the
sublattice mean values (labelled by index r = 1,2), (S7.) = (57) = (S7,) = £(5%);
the corresponding z-components of the fields H, are given by:

Hy = 2J11(S5,) + J12(S5,) £ A; (16)

711 = 722a 712 = 721 . (17)
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In the absence of an external field (Ey), for all temperatures there holds (S?) =
—(S%). It should be emphasized that in the case of Rochelle salt (S}) # —(S3)
resulting in a net polarization in the ferroelectric-like (polarized) phase T < T <
Teo. The relevant numerical calculations of mean values (S7) and (S3) including two
relaxation times, 7,4, corresponding to two (degenerated) modes wyr = wy, Wetgy
(equation (13)) for deutered RS have been done whereby a good agreement with
experimental data has been obtained [18] (cf. [2]).

A more pronounced dynamical theory of antiferroelectric phase transitions in
crystals with asymmetric hydrogen bonds (or other single-particle potentials of a
double-well type) and several proton sublattices as well, has been developed and
applied to Rochelle salt-type compounds [15]. It should be stressed that apart from
a series of original derivations, numerical estimations, discussions and auxiliary de-
tails in widely conceived content of qualitative and quantitative predictions, in the
above mentioned paper [15] the frequencies of the mixed “soft phonon-proton” and
“pseudo-soft, proton-phonon” modes in RS are calculated within the suitably gen-
eralized pseudospin-phonon model. Without going too much into details, several
crucial points should be outlined. First, the ferroelectric dipole moments in the sys-
tem are associated with the ordering of protons on hydrogen bonds O)—(H20)q0)
or with hydroxyl groups (OH) ) within their local potentials ( the ordering elements
of another more complex nature is possible). Since an isomorphous substitution (in
a very small extent) of Rb, T1 and NH, for K eliminates the net-polarized phase,
it seems that K-atoms (alone or with their surroundings) play an active role in the
phonon subsystem and in the proton (pseudospin)-heavy ion (phonon) interaction as
the ones responsible for the phase transitions (at Tty and Tee). It is interesting that in
comparison with ADP, the antiferroelectric-like mode in RS is of the phonon-proton-
like (displacive) type, while the proton-phonon-like (pseudo-soft) one remains stable
by approaching both the critical temperature and the critical wave vector. More-
over, the temperature behavior of the soft mode is essentially determined by the
competition of two “fields”: the transverse field of tunnelling and the parallel field
of asymmetry, since both of them present the temperature dependent characteristics
of the local particle (site) potential. Besides, as usual, at temperatures close to T¢,
the damping of the soft mode may appear to be large since the dispersion of the
dielectric permeability £(w) is rather of a relaxation type. It is quite intriguing that
the parameters of the phonon subsystem also change with deuteration. Therefore,
the experimental study of all these predictions in general and particularly using
neutron scattering, would be of great interest.

Qualitative and quantitative estimations of the damping factors, I',., of the
respective mixed modes (14) as functions of temperature and of the wave vector
represent one of the most important problems in the dynamics of ferroelectrics and
antiferroelectrics with hydrogen bonds [5]. Of utmost interest is the study of critical
damping which has not been explained completely so far. Numerous experiments uti-
lizing various methods of measurements show that, as the critical point of the phase
transition 7, (Tx) is approached, the damping factor I',_ increases significantly, and
thus the soft mode becomes relaxational. Theoretical analysis of such a large damp-
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ing isn’t easy due to the strong interaction between elementary excitations and large
fluctuations of the order parameter in the system near 7.

The simplest way is to take the damping into account phenomenologically by
substituting the time dependent phase factor exp(£iE, .t — ;4 |t]) for exp(£iE,.t)
in the corresponding pseudospin correlators. Then the J-function will be replaced
by the Lorentz curve, so that information can be derived from the neutron energy
distribution concerning damping factors I'jy of the respective modes. Within the
framework of the pseudospin-phonon model, the damping was included in [27,30].
Then, it can be chosen to be such that the behavior of the modes is either weakly
damping or relaxational. Thus, for example, when the damping is independent of
the frequency, the soft mode is assumed to be of a relaxational nature in the close
vicinity of T.. More sophisticated approaches to the pseudospin-phonon dynamics
utilizing the method of Green functions and of relaxational functions lead to a
more complicated behavior of the modes (of their frequencies and widths). In this
approach, under certain conditions (definite values of the model parameters) in the
region T' > T, the central peak is also reproduced with the aid of approximations
being beyond the framework of random phase approximation and also by utilizing
numerical calculations [7,31] (cf. [5] and references therein).

3. Differential cross sections

Most theoretical works on neutron scattering in KDP hydrogen-bonded ferro-
electrics were performed by applying the Blinc — de Gennes model in which the
effect of heavy ion vibrations on the proton subsystem is taken into account on-
ly by renormalization (due to pseudospin-phonon interaction) (cf. [5]). Within the
framework of such an approach inelastic incoherent scattering has been considered
in [8,30], while inelastic coherent scattering in pseudospin-phonon model was pro-
posed in ref [29] and subsequently it was studied in greater detail in ref [27]. Such a
theory of the elastic and one-quantum inelastic neutron scattering was formulated
in order to take into account the real structure of hydrogen-bonded ferro- and an-
tiferroelectrics. In this fashion, the interference scattering term due to the light ion
(proton)-heavy ion interaction has been taken into account as well. Moreover, the
account was taken of the adiabatic change of positions of the minima of the double
well, considering them as the ones “attached” to the nearest (i.e. the nearest oxygen)
ions [27]. However, in the local-pseudospin-coordinate representation, from a formal
mathematical point of view, the scattering functions are greatly reduced since the
pseudospin operator acquires the physical meaning of a cell variable. The respective
pseudospin-form factors are refined correspondingly, while the contribution of crit-
ical (pseudospin-like antiferroelectric hereto) mode (indicated by the index ¢) will
be excluded from the scattering function for the subsystem of heavy ions [5,7]. By
ignoring the usually small asymmetry of the one-cell potential, the scattering func-
tions are significantly simplified in the approximation of interaction of the critical
mode with two optical phonon modes [as proposed by Stasyuk and Levitskii [25],
equation (1)] (cf. [5]).
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By using the standard notation and slightly modified Green functions as given
by equations (10)-(12), the total differential cross section for coherent (ch) and
incoherent (ic) scattering of neutrons by order-disorder antiferroelectrics is cast in

the form [33] (cf. [5,27])

¥ (d?z(fg) = 5u(8)8() + (5™ (s,) + 5¥(s,)) (18)

where hx = p, — p, hw = E, — E are the neutron transferred momentum and en-
ergy, Po, F,, and p, E being initial and final momenta and energies, respectively.
The first term in equation (18) is referred to the elastic differential cross section,
while the scattering functions S”(k,w) (v = —,+) describing the one-quantum in-
elastic scattering correspond to E,, modes (E,_, E,+ = E,+). Upon integrating
over the energies of the scattered neutrons the following expressions for the angular
distribution of the elastic coherent and incoherent scattering are obtained:

(%) = wawie e ]+ e e
+Zbch Lo i WIRe [FY (k)G ()], (19)
V() - wi

Here the variation of the neutron wave vector due to scattering satisfies the
following conservation law:

2

WC

K

+ Z 2 72W] (20)

_ %Zem'n = Oup, (21)
n b

where the summation runs over the reciprocal lattice vectors b. Note once more
that index ¢ (actually identical with the index v = —) points to the effective one-
particle potential, while one must make the index j correspond to the index f
(both, ¢ and j are associated with the pseudospin-like and local normal coordinate
as previously explained). The scattering amplitudes (i.e. the lengths) bihj and bfc’j
herein and henceforth have to be referred to the amplitudes obtained as a result of
averaging over the ions participating in the given mode vibrations (E,_ or E;).
The Debye-Waller factors, exp (—W?7), are the usual phonon ones, while the factor
exp (—=W¢<) = exp (=W ) is more specific and corresponds to the pseudospin-like

K

mode (E,. = E,- = E,;_) [5,28]:

Z%ZWS ZZW 2 (q), (22)

Wig) = ;;’:T%/Ooocoth(%T)KZ( w)dw. (23)
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Here the coefficients A% (y1) come from an expansion of the momentary positions
of double-well minima in power of heavy ion displacements (introducing boson oper-
ators bfj for phonons) [30]. As pointed out in [5,30], they can be expressed through
the Fourier components of the pseudospin-phonon interaction @,;(1), i.e. the terms
T,;(1) in equation (2):

T,

L) - pei) < 1 (24)

A (1) = Agj(p) = o

k. = mew? is the force constant of one of the two interacting harmonic oscillators
at the n-th site (m. is the effective mass of all ions in the cell participating in the
pseudospin mode, and w, is the corresponding classical frequency of the oscillator).
Otherwise in the adiabatic model adopted in [27] a strong correlation between the
motion of light and heavy ions is assumed, i.e. |A,;(+)| = [Ay(—)] = 1. However,
this approximation is justified with difficulty in he case of long-wave phonons [4,5].
We note that in the Debye-Waller factor (22) which effectively takes account of
the effect of vibrations of heavy ions on light particles, averaging is performed over
i = (+,—). In a more rigorous approach, factors such as exp (=W ) should be
retained under the sum sign over p in the form factor (25).

The elastic pseudospin form factor Fi.(k) in equations (19) and (20) is given by
[27,30] (cf. [5])

F.(k) == Z [ei”“'l“oz,w + 2(S%) By + 2M<Sz>oz,wei”’“'l“} Z ol Ror (25)

“w T

in which the asymmetry of double-well potential is taken into account in terms
of 1,. One of the distances |1,| = [, (say right, © = +) could be dependent on
the asymmetry parameter, B = A 4+ H,, simply as [, = /{?> — (2B/k.) or on the
parameter H, only, depending on the model chosen [33].

The scattering functions in equation (18)

" (w,w) = [L+n(w)] Y _[NA(k — q) A%, (r,w) + Af, (5,0)], (26)

are expressed through the pseudospin-like (P)(k,w)), the phonon-like (Fy(k,w))
and the mixed-interacting (I (k,w)) terms:

A g(rw) = (ag)* Py (r,w) + (ag,)* Fy (K, w) + agagy (k,w),
v _ P\2 pv F\2 v .
Ain,q("ia w) - (aic) Pq (’%7 w) + (aic> Fq ("17 w)a (27>

here the squares of the scattering amplitudes contain the corresponding structure
factor of the primitive cell:

2

(aG)? = (DRl (ah)? = b b, Y e R,
d " f

G=PF; g=2c,J; d=r,f
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G)Q;

and similarly for (ag;

Prr,w) = 4{|F(k)Pe 2V K5 )+ S RIL (s, @) P I ()

+ 1|F,(mq)|2e_2ng (@ w)}},
FY(k,w) = Z| (k, q)Pe K77 (qw),
Iy(sw) = Zz{me[ () oy, @)™ e G (g, )
+ RelF (k, @) Fy (1, @)™ o "4 K" (q,w)). (28)

In the above expressions (28), the imaginary parts of the Green functions K& K7¢"
and K77" are determined by the following expressions:

\ H(S)
33 — 2 2
KV (q7 w) - _VE3+ _ E2 [Equ )\q]fll(q7 CU),
v (qa w) - _VE§+ — Eg_ [ ajv 8q]fj'/(q7 w)?
o 207 N\ H(S¢) sin ¢
K (qw) = —v—"5 — fiv(a,w). (29)
B2, — L2

The widths of the pseudospin-like [I'_(q,w) = I';_] and phonon-like [I';;(q,w) =
I',+] modes [as being studied, for instance, in [14] (cf. also [5,7])] are introduced with
the aid of the response function for the damped harmonic oscillator [27],

wl'y(q,w)
(W B+ T (@ @)

folq,w) = (30)

If, for the sake of simplicity, the local-potential asymmetry is neglected, the peculiar
pseudospin, phonon and mixed form-factors in equations (28) are given by [27,30]

(cf. [5]):
F(k) = pfcosp —ia,sin(k-1)siny,
F(k,q) = {a.cos|(k—q)- 1] +28,.(S)sin¢cos(q-1)
+ 2, (S°) cos psin[(k — q) - 1]},
Li(k,q) = (1/2)axcos|(x —a) 1] Fy(, q),
Fi(r,q) = F(k, q)Fo(k, q)|Agl,
Foj(h,a) = (k- eqj)//2mjwy;. (31)

The parameters o, and [, depend on the model double-well potential. In the
simplest model of a double-harmonic oscillator,

a, = exp(—k°al/4), B = axexp[—(le/ac)?],
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where a, = (h/mew.)'/? [29,30]. If the asymmetry of the one-particle potential is de-
termined only by the difference between the well depths, then it is automatically tak-
en into account by the pseudospin formalism in the calculation of (S®) = (S¢) sin ¢,
(S%) = (S%) cos ¢, occurring in equations (25) and (31).

3.1. Characteristics of elastic scattering

The coherent elastic scattering exhibits sharp Bragg intensity peaks determined
by the condition: ik = p’ — p = hb, and they are modulated by the pseudospin
form factor (25) which strongly depends on the direction of the vector . The be-
havior peculiar to light ions (hydrogens) in double-well potentials (characterized
by the interference effect) manifests itself most explicitly in the case of incoherent
scattering. For sufficiently small x (k < 7/l) the phase factors exp(iuql,) lead to
a special periodic dependence in equations (19) and (20), i.e. to a characteristic
“autocorrelating interference effect” due to neutron scattering on tunnelling light
ions inside the single particle potentials. This has stimulated extremely thorough
and subtle neutronographic investigations which enabled experimental verification
of the contemporary physical concepts of the order-disorder ferroelectrics in general
(cf. [5]). The temperature dependence of the scattering intensity is determined by
the statistical averages (S*) and (S%). As it follows from equations (19) and (20),
in the antiferroelectric phase (7' < Ty) the expressive angular dependence vanishes,
but the effective cross section increases. On the other hand, the temperature depen-
dence (if one neglects small term proportional to (S*)) vanishes for the scattering
vector k perpendicular to the direction of motion of light ions in the double-well
potential. This allows for direct observation of the temperature dependence of the
Debye-Waller factor in elastic incoherent scattering experiments.

The intensity of the corresponding coherent scattering is significantly enhanced
on deuterated specimens. That makes possible the well-refined determination of
the position and nature of the motion of the light atoms (H or D) in the fami-
ly of hydrogen-containing compounds. Note also the significant contribution of the
pseudospin-phonon interference term in equation (19), exhibiting quite complicated
angular dependence which can be partially removed by an appropriate choice of the
scattering geometry (for example x L 1,. At the same time, coherent elastic scatter-
ing on heavy ions is described by the usual structure factor, while incoherent elastic
scattering (neglecting the Debye-Waller factor) is independent of the scattering angle
and is similar to a background, as in the case of X-ray scattering.

In the antiferroelectric phase (7" < Ty), as pointed in the previous section, one
must take into account the pseudospin modulation (equation (15)) which leads to
modification of the form-factors (25) [and (31), for the case of inelastic scatter-
ing] and accordingly the additional term proportional to A(k + qg) appears in
equation (19). Almost the same relationship holds in the case of an incommensu-
rate transition which, instead of wave vector on the boundary of BZ, qg, is de-
scribed by the vector qu (0 < qu < qg), corresponding to a given modulated
structure. For incommensurate transitions the respective modulation of pseudospins
(Sz,.) = (S?) exp(iqys - n) leads to the adequate changes owing to the redefinition of
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the effective form factor Fi.(x) (25). The main difference consists in the fact that,
besides the Bragg reflections, there also arise peaks at kK = b — qyy, i.e. in the cross
section corresponding to light ions only (index c) there appears the term

()., = N+ an) ) F ) )

N dQ2 am

where F! (k) = Im F.(k). At incommensurate transitions, a more complicated mod-
ulation of the structure may take place. One of such situations is encountered in the
crystal NaNOy in which the nature of structural transitions is still unclarified (cf.

[1,4]).

3.2. Characteristics of the inelastic scattering

Since the inelastic part of the scattering function for a heavy-ion subsystem is
of the form usual for a phonon system, we shall consider only the parts which cor-
respond to the dominant contribution of scattering on a light-ion system and to the
interference term describing scattering by both subsystems. We note that no corre-
lation functions are present in the scattering function F(x,w) (28) other than the
phonon ones. This is the consequence of neglecting the effect of the motion of light
ions on the vibrations of heavy ions which is physically justifiable. Hence, however,
one cannot draw the conclusion that the motion of heavy ions is not anharmonic;
just because of the coupling (sometimes very strong) between the two subsystems
at a structural phase transition, the equilibrium positions of the heavy ions are no-
ticeably shifted, leading to the macroscopic effect of spontaneous antipolarization
arising in the system.

Unlike the “inertial” heavy-ion subsystem, as one can see from the expression
P} (k,w) (28), scattering on the “active” light-ion subsystem is determined, besides
pseudospin correlators, by correlators of the phonon and mixed types as well. In
the local-normal-coordinate and in the related cell-pseudospin-variable representa-
tion such contributions of correlators were obtained in [7] and, subsequently, with
account of the real structure in [27] (for describing scattering processes of neutrons
in ferroelectrics and antiferroelectrics with hydrogen bonds). It is easy to demon-
strate that in the local-normal-coordinate representation the part of the scattering
function PJ(k,w) connected with the phonon correlator, if the asymmetry in the
form factors (31) is neglected, has a form similar to that of the scattering function
on phonons with the effective cross sections:

(b6)° = )| E5 (k@) (B)* = (bie) [ F(w @) (33)

provided that for the symmetric wells vibrating in unison with the center of their
joining distance holds Agy;(+) = Agi(—) = A,;. Consequently, the scattering pro-
cesses described by the function K7(q,w) in Py (x,w) are related to the energy
transfer, lost by the neutrons, from the light-ion subsystem to the heavy ions (lat-
tice). This energy is transferred from the pseudospin mode to the phonon modes
of the system [“(anti)ferroelectro-vibrational scattering”] [25]. Such scattering may
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sometimes turn out to be more convenient for determining the phonon frequency
distribution function, at least in the paraelectric phase (cf. [5,27]).

In the antiferroelectric phase, as pointed out in the section 2, all summations over
q have to be substituted by [>° f(q) + f(q + gp) ] over new BZ. The modifications

in the form factor F(k,q) (i.e. F(k,q)) take place and accordingly in the scatter-
ing terms P)(k,w) and I}'(k,w). Thus, the additional peaks around x = b — qg
(modulation terms) appear, which, in common with autocorrelation and interaction
interference terms, brings us to very complex but more proper expressions to be
used in fitting the experimental data.

4. Comments and possible applications

Theoretical and experimental problems in the examination of antiferroelectrics
and ferroelectrics of the order-disorder type are long standing ones and there is
no substantial progress in their resolving during the last few years. Here we recall
some of them assuming that they may be overcome within the framework of the
improved and the adjusted dynamical model of pseudospin-phonon interaction and
its application in more sophisticated neutronografic analysis. Herein below we list a
few most characteristic examples.

(I) Application to ADP (NH4H,PO,): Besides the results similar to the ones
for hydrogen-bonded ferroelectrics (KH,PO4 and its family), the difficulties
related to the presence of a significant contribution to the incoherent neutron
scattering from NH, molecules and to the assignment of acoustical, optical,
torsional and librational motions of all ions in the system are noted (cf. [5]).
Also, the existence of the NDy-librational soft mode coupled with deuteron
fluctuations on O...D-O bonds (by both incoherent neutron scattering and
deuteron NMR [34]) as well as of an over-damped antiferroelectric-soft mode
(by quasi-elastic coherent neutron scattering, in the vicinity of the point (504)
at the reciprocal lattice space and T' = 244 K [35]) was observed. However, a
detailed (near “satellite” reflections) analysis of ion displacements (and of their
symmetry) should be carried out as relied on both the improved theoretical
predictions (just as the presented ones) and on the experimental refinements

(ct. [5)).

(IT) Application to Rochelle salt (NaKC,H,Og - 4H50): The situation in
this antiferroelectric is much more complicated (cf. [2,5,36]). Although sev-
eral peaks as attributed to H-vibrations were indicated (in inelastic neutron
scattering), only two of them converged significantly on the transition from
non-polar to polar (ferrielectric) phase being attributed to the shortest hydro-
gen bonds. In accord to structural data [2,36] the tunnelling motion could be
attributed to protons within O)—(H20)a0) bonds or (OH)) dipoles and in
some extent to water molecules (H;O)). Tentatively such dipoles could be
coupled with heavy ions of distorted octahedra of tartrate groups (C2Og) in
common with Na- and K-ions. Based on more reliable structural data and on
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refined experimental studies, neutron scattering intensities should be fitted by
the expressions presented, using very successful numerical estimations as giv-
en in [15,18]. In such a way, the controversy about the nature (i.e. the origin)
of dipoles and in what kind of a double-well potential they tunnel might be
overcome.

(III) Application to NaNQO,: Although the structure of NaNOy is simple in com-
parison to other order-disorder ferroelectrics, this crystal is probably the most
complex non-hydrogenous substance for which a rather complete neutrono-
graphic investigation of vibrational modes has been undertaken [1]. The mea-
surements of critical dynamics show that changes in ferroelectric fluctuations
are much slower than any vibrations of a phonon subsystem and involve large
displacements of all the atoms in the cell. This resembles the feature of the
double-well local-mode model as discussed heretofore. For the analysis of such
long-wavelength fluctuations the other experimental techniques have been em-
ployed (cf. [1]). However, there is no direct confirmation of the mode softening,
neither of the phonon nor of the tunnelling type. There were also many contra-
dictions in assigning the rotational flipping around the a- or c-axis. Further-
more, it is still unclear whether and when one of these two possibilities prevails.
Unlike the neutronographic studies, in X-ray scattering the appearance of the
antiferroelectric configuration of the sinusoidal pattern near Ty =~ 437.5 K has
been observed closer to q = qu = a*/8, moving towards the theoretically
predicted value a*/5 (cf. [1]). Thus, although there was no clear evidence in
favor of another subtle (rather exotic) polar phase, which may exist between
ferroelectric and the sinusoidal antiferroelectric phase, some deeper insight has
been gained in the qualitative understanding of the respective competition of
the latter two phases.

In order to overcome numerous confusions concerning the nature of phase tran-
sitions in NaNQO,, a part of which was stated above, the critical dynamics in
this crystal could be described by the pseudospin variables associated either
with the large-scale motion of nitrogen atoms of each NOy-group or with the
slow librational reorientations of the NOg-groups themselves (along the b-axis)
(cf. [1,4]. The picture is completed by the coupling (probably not too rigid)
between the flipping of nitrite ions (or groups as a whole) and the displace-
ments of sodium ions (possibly of nitrite groups as well). Thus, a very complex
pseudospin-phonon model should be postulated and applied in the dynamic
neutronographic examinations in accordance with the theory presented.

(IV) Application to high-T, superconducting copper-oxide compounds:
The pseudospin model of Rochelle salt-type (associated with the apical oxy-
gen O4) was developed several years ago (cf. [19-21] and references therein). It
was supplemented by Miiller’s (electron-pseudospin) “field” [H7 = ¢ >, (ni)
— representing the role of electron carrier density n;;; of four oxygens (index
[) in CuOy sheet near the i-th O4] as well as by the coupling of the O4-
tunnelling motion with Cuy-Os,03-vibrations (modes) of A,- or By-symmetry
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(analogous to Eg;+ modes) [19,21,33]. Unlike the present neutron scattering
analysis, it is tempting to conclude that the well-enough refined cross sections
lequations (18-31)] could be applied to dismiss many controversies in testing
the existence of structural, dielectric and charge instabilities, asymmetry of
the local Cuy—04—Cu,y potential, vibronic states, etc., up to the problem of
the mutual origin of superconducting and (anti)ferroelectric phases, i.e. their
possible coexistence. As for the adjustment of the cross sections presented, it
might be in the fashion of papers devoted to the studies of some interference
and unusual effects in LaBaCuO and YBaCuO compounds [37] as observed in
neutron scattering experiments (cf. [19-21]).

Concluding this paper it should be emphasized that although it is mainly confined to
the neutron scattering properties of hydrogen-bonded antiferroelectrics, it is clear
enough that the derived expressions hereto, as based on the pseudospin-phonon
formalism and its extensions, do hold equally well for diverse physical systems when
suitable adaptations and interpretations are made.

Acknowledgement

I would like to express my gratitude to Academician Igor V. Stasyuk for his
invitation to contribute to the special issue of Condensed Matter Physics in tribute of
60th anniversary of Professor Roman R. Levitskii. I also acknowledge Mr. V.Stojano-
vi¢, Dr. Z.Ivi¢ and Dr. J.Raicevi¢ for their help in preparing this manuscript.

This work was supported by the Serbian Ministry of Science and Technology
under the contract number 1961.

References

1. Lines M.E., Glass A.M. Principles and Applications of Ferroelectrics and Related
Materials. Oxford, Clarendon Press, 1977.

2. Blinc R., Zeks B. Soft Modes in Ferroelectrics and Antiferroelectrics. Amsterdam,
North Holland, 1974.

3. Vaks V.G. Introduction to the Microscopic Theory of Ferroelectrics. Moscow, Nauka,
1973 (in Russian).

4. Bruce A.D., Cowley R.A. Stuctural Phase Transition. London, Taylor and Francis
Ltd., 1981.

5. Aksenov V.L., Plakida N.M., Stamenkovi¢ S. Neutron Scattering by Ferroelectrics.
Singapore, World Scientific, 1989.

6. Thomas H. Structural Phase Transitions and Soft Modes. — In: Structural Phase Tran-

sitions and Soft Modes. Eds. Samuelsen E.J., Andersen E. and Feder J. Oslo-Bergen-

Tromso, Universitetsforlaget, 1971, p. 15-45.

Moore M.A., Williams H.C.W.L. // J. Phys. C, 1972, vol. 5, No. 22, p. 3168-3184.

De Gennes P.G. // Solid State Commun., 1963, vol. 1, p. 132-137.

Villain J., Stamenkovi¢ S. // Phys. Stat. Solidi, 1966, vol. 15, p. 585-596.

10. Kobayashi K.K. // J. Phys. Soc. Japan, 1968, vol. 24, No. 3, p. 497-508.

© o N

656



Peculiarities of neutron scattering

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Stasyuk I.V., Levitskii R.R. // Ukr. Fiz. Zhurn., 1970, vol. 15, No. 3, p. 460469 (in
Russian).

Stasyuk I1.V., Levitskii R.R. // Phys. Stat. Solidi, 1970, vol. 39, p. K35-K37;
Stasyuk I.V. // Teor. Mat. Fiz., 1971. vol. 9, No. 3, p. 431-439.

Stasyuk 1.V., Kaminskaya N.M. // Ukr. Fiz. Zhurn., 1974, vol. 19, No. 2, p. 237-243
(in Russian); // Ukr. Fiz. Zhurn., 1974, vol. 19, No. 2, p. 243-252 (in Russian).
Levitskii R.R., Kozitskii Yu.V. Preprint of the Institute of Theoretical Physics, I[ITP—
74-108P, Kiev, 1974 (in Russian); Levitskii R.R., Sorokov S.T. Preprint of the Institute
of Theoretical Physics, ITP-77-53P, Kiev, 1977, 43 p. (in Russian).

Konsin P.I. // Phys. Stat. Solidi (b), 1975, vol. 70, p. 451-459.

Aksenov V.L., Schreiber J. // Phys. Stat. Solidi (b), 1977, vol. 81, p. 371-378.

Blinc R., Zeks B. // J. Phys. C, 1982 vol. 15, No. 22, p. 4661-4670.

Zeks B., Shukla G.C., Blinc R. // Phys. Rev. B, 1971, vol. 3, No. 7, p. 2306-2309.
Plakida N.M. High-Temperature Superconductors. Berlin, Springer, 1995.

Galbaatar T., Plakida N.M., Drechsler S.L. Preprint JINR E17-94-299, Dubna, 1994,
16 p.

Stasyuk I.V., Shvaika A.M. // Acta Physica Polonica A, 1993, vol. 84, No. 2, p. 293—
313; Ferroelectrics, 1997, vol. 192, p. 1-10.

Montgomery H., Paul G.L. // Proc. Roy. Soc. (Edinbrough), 1972, vol. 70, No. 11,
p. 107-124.

Stasyuk I. V., Levitskii R.R. // Fiz. Elektronika, 1970, vol. 2, p. 3-11 (in Ukrainian).
Stamenkovié¢ S. A quasi-spin model and frequency spectrum in NH4PO, antiferroelec-
tric crystal. — In: Book of Abstracts of Europ. Meeting on Ferroelectricity, Saarbriicken,
March 27-29, 1989, p. 6.

Stasyuk I.V., Levitskii R.R. // Izv. Akademii Nauk SSSR, 1971, vol. 35, No. 9, p. 1775~
1778 (in Russian).

Stamenkovi¢ S. On the neutron scattering in KHoPOy ferroelectric crystal. — In: Book
of Abstracts of Europ. Meeting on Ferroelectricity, Saarbriicken, March 27-29, 1969,
p- 6.

Levitskii R.R., Perekresnii S.M. Preprint of the Institute of Theoretical Physics, I'TP-
79-59P, 1979, Kiev, 43 p. (in Russian); Preprint of the Institute of Theoretical Physics,
ITP-80-15P, 1980, Kiev, 31 p. (in Russian); Preprint of the Institute of Theoretical
Physics, ITP-80-16P, 1980, Kiev, 31 p. (in Russian).

Stamenkovi¢ S. Single-particle potential assymetry effects in the theory of the neutron
scattering by order-disorder feroelectrics (to be published).

Aksenov V.L., Stamenkovi¢ S. // Solid State Physics, 1979, vol. 19, No. 8, p. 1366—
1372 (in Russian).

Stamenkovi¢ S. // Journal Low Temp. Phys., 1972, vol. 9, No. 5/6, p. 475-483; ibid.
p. 485-493.

Ribeiro L.A.A., Pires A.S.T., Barreto F.C. // Ferroelectrics, 1981, vol. 31, p. 1-7.
Cochrane W. // Adv. Phys., 1969, vol. 18, p. 157-192.

Stamenkovi¢ S. Interferrence effects and polar modulation in dynamical neutronogra-
phy of hydrogen-bonded antiferroelectrics. — In: Proccedings of the National Sympo-
sium of Condensed Matter Physics, Arandjelovac, October 5-11, 2001 (in press).
Dimic V., Osredkar M., Slak J., Kandusar A. // Phys. Stat. Solidi (b), 1973, vol. 59,
p. 471-478.

Meister H., Skalyo J., Jr., Frazer B.C., Shirane G. // Phys. Rev., 1969, vol. 184,

657



S.Stamenkovic¢

36.

37.

p. 550-555.

Zheludev 1.S. Foundations of ferroelectricity. Moscow, Atomizdat, 1973 (in Russian);
Jona F., Shirane G. Ferroelectric Crystals. Moscow, Mir, 1965 (in Russian).

Plakida N.M., Aksenov V.L., Drechsler S.L., Galbaatar T., Stamenkovi¢ S. // Modern
Physics Lett. B, 1990, vol. 4, No. 5, p. 341-346; Plakida N.M., Stamenkovi¢ S. //
Modern Physics Lett. B, 1991, vol. 5, No. 10, p. 717-719.

Oco6numBocCTi po3ciloBaHHA HEUTPOHIB
aHTUCerHeToesieKTpuKkamMmu Tuny nap-6eanapg,

C.CtameHkoBUY

[HCTUTYT aaepHUX gocniaxkeHb “BiHua”,
lOrocnagia, Cep06is, Benrpapn,

OtpumaHo 7 cepnHsa 2002 p., B OCTAaTOYHOMY BUMNSALj — 25 cepnHs
2002 p.

3 BUKOPMCTAHHAM AMHAMIYHOI NPOTOH (MCeBAOCHiH)-iOHHOT (rpaTka) Mo-
neni ta opmaniamy yHKuUin [piHa, po3paxoBaHi edeKTUBHI NOBHI Ande-
pPeHUianbHi nepepi3n ansg KOrepeHTHOro i HEKOrepeHTHOro PO3CitoBaH-
HS HEMTPOHIB. XapakTepHi iHTepdepeHLirHi edekTn, NOB'a3aHi Sk 3 Ty-
HENIOBAHHAM NErkmnx iOHIB (MPOTOHIB), TakK i 3i 3MilLaHUMUK PO3CitoBasb-
HVYMUW NpoLecamMun NPOTOH-BAXKNUM iOH, BUPaXeHi Yepea BiaNoBiaHI NCeB-
[0CNiHOBI | NCeBAOCNIH-POHOHHI GopM-dakTopn. Kpim TOro, 3arasnbHuin
BUMAL iIHTEHCUBHOCTI PO3CitOBaHHSA B aHTUCErHETOENIEKTPUYHIN ¢asi Bu-
3HavYa€eTbCs TakoX epekTamMmn MoaynsaLUii nonspusaadji Ta 40AaTKOBOIO iH-
TepdepeHLieo y nepepidax po3cisHHA. MNMepenbdbayeHHs Teopii o6roeo-
PIOETBLCS Y 3B’S3KY 3 EKCNEPUMEHTANbHUMW OOCAIAXEHHSIMN KpUcTanis
ADP, cerHetoBoi coniiNaNQO , . KopoTko 06roBOpIOETLCS iX MOXJIMBE 3a-
CTOCYBAHH$ 0151 MEPEBIPKM CNiBICHYBAHHS (QHTW)CErHETOENIEKTPUYHOI Ta
HaANPOBIAHOI a3 y BUCOKOTEMMNEPATYPHUX HAAMNPOBIAHMKAX HA OCHOBI
okcuay mig,.

Kno4oBi cnoBa: po3citoBaHHsS HEUTPOHIB, aHTUCErHETOEJIEKTPUKU,
ncesBAoCniH-pOHOHHa MOAEJb

PACS: 61.12.Bt
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