Higher-order correlation functions of nonuniform Ising chain

S.I.Sorokov
Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine

Received August 13, 2002, in final form November 22, 2002
We suggest algorithms for calculating arbitrary order correlation functions $\left\langle S_{i_{1}} \ldots S_{i_{n}}\right\rangle^{\text {c }}$ and distribution functions $\left\langle S_{i_{1}} \ldots S_{i_{n}}\right\rangle$ of a nonuniform Ising chain.

Key words: nonuniform Ising chain, correlation functions, distribution functions

PACS: 05.50.+q

In this paper we consider a nonuniform Ising chain (free ends) described by the Hamiltonian

$$
\begin{equation*}
-\beta \mathcal{H}=H=\sum_{i=1}^{N} h_{i} S_{i}+\sum_{i=1}^{N-1} K_{i} S_{i} S_{i+1} \tag{1}
\end{equation*}
$$

Partition function of a uniform ring ($h_{i}=h, K_{i}=K$) was originally calculated by Ising [1]. General expressions for distribution functions (DFs) $\left\langle S_{i_{1}} \cdots S_{i_{n}}\right\rangle$ of an arbitrary order were suggested in [2]. Those expressions contain some unknown coefficients to be found from a cumbersome system of equations. They have been calculated only for $n=2,3,4$, while for $n=3,4$ some of the obtained results were incorrect. However, for a nonuniform 1D model, the exact solutions exist only for a few special examples or in some limiting cases, such as zero temperature, certain disorder types, etc (see [3] and references therein). For instance, in [4] the averaged pair DFs were calculated for a binary substitution alloy at $h_{i}=0$. The aim of the present paper is to formulate the diagrammatic rules for calculating arbitrary order DFs and correlation functions (CFs) $\left\langle S_{i_{1}} \cdots S_{i_{n}}\right\rangle^{\text {c }}$ (cumulant average).

We shall proceed from an exact expression for generating \mathcal{F}-function (logarithm of partition function) of the Ising chain

$$
\begin{equation*}
\mathcal{F}(\{h\})=-\sum_{i=2}^{N-1} F_{i}\left(\tilde{h}_{i}\right)+\sum_{i=1}^{N-1} F_{i, i+1}\left(-\left.\tilde{h}_{i}\right|_{+} \tilde{h}_{i+1}\right) . \tag{2}
\end{equation*}
$$

Here, the one-particle F_{i} and two-particle $F_{i, j} \mathcal{F}$-functions are calculated with the one-particle H_{i} and two-particle $H_{i, i+1}$ Hamiltonians

$$
\begin{align*}
& H_{i}=\tilde{h}_{i} S_{i} ; \quad \tilde{h}_{i}=h_{i}+{ }_{-} \varphi_{i}+{ }_{+} \varphi_{i}, \\
& H_{i, i+1}={ }_{-} \tilde{h}_{i} S_{i}+{ }_{+} \tilde{h}_{i+1} S_{i+1}+K_{i} S_{i} S_{i+1} \\
& \tilde{h}_{i}=h_{i}+{ }_{-} \varphi_{i} ; \quad+\quad{ }_{h}^{i+1} \tag{3}
\end{align*}=h_{i+1}+{ }_{+} \varphi_{i+1} .
$$

and read

$$
\begin{align*}
& F_{i}\left(\tilde{h}_{i}\right)=F_{i}^{(0)}=\ln \left\{2 \cosh \tilde{h}_{i}\right\} \tag{4}\\
& \left.F_{i, i+1}=F_{i, i+1}^{(00)}=\ln \left\{2 \mathrm{e}^{K_{i, i+1}} \cosh \left(-\tilde{h}_{i}+{ }_{+} \tilde{h}_{i+1}\right)+2 \mathrm{e}^{-K_{i, i+1}} \cosh \left(-\tilde{h}_{i}-{ }_{+} \tilde{h}_{i+1}\right)\right]\right\} . \tag{5}
\end{align*}
$$

The fields ${ }_{\alpha} \varphi_{i},(\alpha=+,-)$ depend on the Hamiltonian parameters for the righthand $(+$) or the left-hand (-) (in respect to the site i) branches of the chain and thus describe the effect of the right (left) branch of the chain on the i th spin. Obviously, $-\varphi_{1}={ }_{+} \varphi_{N}=0$. The rest of $2 N-2$ unknown fields ${ }_{\alpha} \varphi_{i}$ can be found from $2 N-2$ independent relations (because of the imposed $2 N$ relations $\left.\mathrm{Sp}_{S_{i}} \rho_{i}\left(S_{i}\right)=\operatorname{Sp}_{S_{i}, S_{r}} \rho_{i r}\left(S_{i}, S_{r}\right)\right)$ between the one-particle ρ_{i} and the two-particle $\rho_{i, r}$ density matrices

$$
\begin{equation*}
\rho_{i}\left(S_{i}\right)=\operatorname{Sp}_{S_{r}} \rho_{i r}\left(S_{i}, S_{r}\right) ; \quad r=i \pm 1 \tag{6}
\end{equation*}
$$

Here, ρ_{i} and $\rho_{i, r}$ are constructed based on H_{i} and $H_{i, r}$, respectively. They can be written in a different form coinciding with the expressions obtained in [3]

$$
\begin{align*}
& \mathcal{F}(\{h\})=\frac{1}{2} \sum_{i=1}^{N} \ln \left[-X_{i}^{-1}+{ }_{-} X_{i}+2 \cosh 2 K_{i, i+1}\right], \tag{7}\\
& \mathrm{e}^{2-\tilde{h}_{i}}={ }_{-} X_{i}=\left[-X_{i-1} \mathrm{e}^{2 K_{i, i+1}}+1\right]\left[-X_{i-1}+\mathrm{e}^{2 K_{i, i+1}}\right]^{-1} ; \quad 2 \leqslant i \leqslant N . \tag{8}
\end{align*}
$$

Hereafter we use the following notations

$$
\begin{align*}
& \mathcal{F}_{i_{1} \ldots i_{n}}^{(n)}(\{h\})=\left\langle S_{i_{1}} \ldots S_{i_{n}}\right\rangle^{\mathrm{c}}=\frac{\delta}{\delta h_{i_{1}}} \ldots \frac{\delta}{\delta h_{i_{n}}} \mathcal{F}(\{h\}), \tag{9}\\
& F_{i}^{(n)}=\frac{\partial^{n}}{\partial\left(x_{i}\right)^{n}} F_{i}^{(0)}\left(x_{i}\right) ; \quad F_{i, r}^{(n)}=\frac{\partial^{n}}{\partial\left(x_{i}\right)^{n}} \frac{\partial^{m}}{\partial\left(y_{r}\right)^{m}} F_{i, r}^{(00)}\left(x_{i} \mid y_{r}\right) . \tag{10}
\end{align*}
$$

The following form of the system (6) will be used

$$
\begin{equation*}
\mathcal{F}_{i}^{(1)}(\{h\})=F_{i}^{(1)}\left(\tilde{h}_{i}\right)=F_{i, i \pm 1}^{(10)}\left(\left.\mp \tilde{h}_{i}\right|_{ \pm} \tilde{h}_{i \pm 1}\right) \tag{11}
\end{equation*}
$$

Relations (11) can be also obtained proceeding from the stationarity condition for $\mathcal{F}(\{h\})$ with respect to ${ }_{\alpha} \varphi_{1}\left(\frac{\partial}{\partial_{\alpha} \varphi_{i}} \mathcal{F}(\{h\})=0\right)$. In the case of an infinite chain and a uniform field ($h_{i}=h,{ }_{-} \varphi_{i}={ }_{+} \varphi_{i+1}=\varphi$) the thermodynamic quantities in (7), (8) and (11) are independent of the site index i. Solving the equation (8) with respect
to $_\tilde{h}$ and substituting the obtained expression into (7) and (11), we get the known formulas

$$
\begin{align*}
& \frac{\mathcal{F}}{N}=K+\ln [\cosh K+r], \tag{12}\\
& \left\langle S_{i}\right\rangle=\frac{\sinh (h)}{r} ; \quad r=\sqrt{\mathrm{e}^{-2 K}+\sinh ^{2}(h)} \tag{13}
\end{align*}
$$

Hereafter we consider only the right-hand (in respect to the site i) branch of a chain. Differentiating (11) with respect to $h_{i+n},(n \geqslant 0)$ and taking into account the fact that $\frac{\delta}{\delta h_{i+n}}-\tilde{h}_{i}=\delta_{i, i+n}$, we obtain an equation for $\frac{\delta}{\delta h_{i+n}}+\tilde{h}_{i}=\frac{\delta}{\delta h_{i+n}} \tilde{h}_{i}$. It can be solved by iterating procedure and permits to find the expression for the pair CF

$$
\begin{equation*}
\mathcal{F}_{i, i+n}^{(2)}=\frac{\delta}{\delta h_{i+n}} F_{i}^{(1)}=F_{i}^{(2)} \frac{\delta}{\delta h_{i+n}} \tilde{h}_{i}=F_{i}^{(2)} f_{i, i+1} \cdots f_{i+n-1, i+n} \stackrel{h_{i}=h}{\Rightarrow} F^{(2)} f^{n}, \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{i, i+1}=\frac{F_{i, i+1}^{(11)}}{F_{i, i+1}^{(20)}} \stackrel{h_{i}=h}{\Rightarrow} f=[\cosh (h)-r][\cosh (h)+r]^{-1} . \tag{15}
\end{equation*}
$$

The expression for ternary CF is derived by differentiating (14)

$$
\begin{equation*}
\mathcal{F}_{i, i+n, i+k}^{(3)}=\frac{\delta}{\delta h_{i+k}} \mathcal{F}_{i, i+n}^{(2)}=-2 \mathcal{F}_{i+n}^{(1)} \mathcal{F}_{i, i+k}^{(2)} \stackrel{h_{i}=h}{\Rightarrow} F^{(3)} f^{k} . \tag{16}
\end{equation*}
$$

As follows from relations (14) and (16), the higher CFs invoke only the single-particle $\mathcal{F}_{i}^{(1)}$ and the pair $\mathcal{F}_{i, j}^{(2)}$ CFs. It is convenient to present these relations in a diagram form (below we use the notations $i_{1}=1 \leqslant i_{2}=2 \leqslant i_{3}=3 \leqslant \cdots$)

$$
\begin{array}{ll}
\mathcal{F}_{1,2}^{(2)}=\frac{\delta}{\delta h_{2}} \mathcal{F}_{1}^{(1)} & \Longleftrightarrow 1-2=\frac{\delta}{\delta h_{2}}(1) \\
\mathcal{F}_{1,2,3}^{(3)}=\frac{\delta}{\delta h_{3}} \mathcal{F}_{1,2}^{(2)}=-2 \mathcal{F}_{2}^{(1)} \mathcal{F}_{1,3}^{(2)} & \Longleftrightarrow \\
\left.1 \ll\right|_{3} ^{2}=\frac{\delta}{\delta h_{3}} 1-2=-2 \cdot 1
\end{array}
$$

First, we find the higher DFs from the recurrent relation

$$
\begin{equation*}
\left\langle S_{1} \cdots S_{n} S_{n+1}\right\rangle=\frac{\delta}{\delta h_{n+1}}\left\langle S_{1} \cdots S_{n}\right\rangle+\left\langle S_{1} \cdots S_{n}\right\rangle\left\langle S_{n+1}\right\rangle \tag{17}
\end{equation*}
$$

Thus, we obtain expressions for $\left\langle S_{1} S_{2} S_{3}\right\rangle$ and $\left\langle S_{1} S_{2} S_{3} S_{4}\right\rangle$

$$
\begin{aligned}
& K_{3}^{2}=(1){ }_{(3)}^{(2)}+1_{(3)}^{2}+\left.(1)\right|_{3} ^{2}-1_{\backslash_{3}}^{(2)}
\end{aligned}
$$

In a uniform case, these diagrams are rewritten as follows:

$$
\begin{align*}
\left\langle S_{1} S_{2} S_{3}\right\rangle= & {\left[F^{(1)}\right]^{3}+F^{(1)} F^{(2)}\left[f^{2-1}+f^{3-2}-f^{3-1}\right] } \tag{18}\\
\left\langle S_{1} S_{2} S_{3} S_{4}\right\rangle= & {\left[F^{(1)}\right]^{4}+\left[F^{(1)}\right]^{2} F^{(2)}\left[f^{2-1}+f^{3-2}+f^{4-3}+f^{4-1}-f^{3-1}-f^{4-2}\right] } \\
& +\left[F^{(2)}\right]^{2} f^{2-1} f^{4-3} . \tag{19}
\end{align*}
$$

In the particular case of the nearest neighbors, the DFs (18) and (19) coincide with those obtained in [5]. The same formulae can be also derived by using the transfer matrix method. In contrast to the present results, all the terms in the expressions for $\left\langle S_{1} S_{2} S_{3}\right\rangle$ and $\left\langle S_{1} S_{2} S_{3} S_{4}\right\rangle$ obtained in [2] occur only with the plus signs and are incorrect, as we have already mentioned earlier.

Starting from (17) and using the mathematic induction method, we can formulate general rules for calculating the DFs of an arbitrary order. The DFs $\left\langle S_{1} S_{2} \cdots S_{n}\right\rangle$ are the sums of all diagrams with n vertices, obeying the following conditions.

- A diagram should consist of free vertices (i) $=\left\langle S_{i}\right\rangle$ and bonds $\mathrm{i}-\mathrm{j}=$ $\left\langle S_{i} S_{j}\right\rangle^{\mathrm{c}}$.
- A diagram is unconnected along the line $1,2, \cdots, n$.

- Each bond $\mathbf{i}-\mathrm{j}$ gives the coefficient $(-1)^{j-i-1}$ where $(j-i-1)$ is the number of vertices between the sites i and j .

Similar rules can be also derived by using the transfer matrix method.
The higher CFs are obtained from (9), (14) and (16). For instance, $\left\langle S_{1} S_{2} S_{3} S_{4}\right\rangle^{\text {c }}$ reads

$$
\begin{aligned}
\left.4_{4}^{\mathrm{c}}\right]_{3}^{2} & =2^{2} \cdot \dagger_{4}^{(2)}-2 \cdot{ }_{4}^{1} \chi_{3}^{2} \stackrel{h_{i}=h}{\Rightarrow} \\
& \stackrel{h_{i}=h}{\Rightarrow}\left\langle S_{1} S_{2} S_{3} S_{4}\right\rangle^{\mathrm{c}}=2^{2}\left[F^{(1)}\right]^{2} F^{(2)} f^{4-1}-2\left[F^{(2)}\right]^{2} f^{3-1} f^{4-2}
\end{aligned}
$$

As one can see, the CF, unlike the DEF, contains only the diagrams connected along the line $1,2, \cdots, n$. A thorough diagrammatic analysis of the CFs permitted to formulate the following general rules. The CF $\left\langle S_{1} S_{2} \cdots S_{n}\right\rangle^{\text {c }}$ is a sum of all diagrams with n vertices, obeying the following conditions.

- A diagram should consist of free vertices (i) $=\left\langle S_{i}\right\rangle$ and bonds $\mathrm{i}-\mathrm{j}=$ $\left\langle S_{i} S_{j}\right\rangle^{\mathrm{c}}$.
- A diagram should be connected along the line $1,2, \cdots, n$.
- There is always a bond $1-\mathrm{n}$. The bonds $\mathrm{i}-(\mathrm{i}+1)$ for the neighbouring vertices are absent.
- A prefactor at each diagram is $(-2)^{(n-l-1)}$ where l is the number of bonds in diagram.
- There is an additional coefficient, arising at the differentiation and defined by a special rule.

For instance, the expression for $\left\langle S_{1} \cdots S_{8}\right\rangle^{\text {c }}$ (for simplicity at $h_{i}=0$) reads

Here, the notation $P(n)$ at the diagrams stands for a sum of all nonequivalent diagrams with the same symmetry of lines. The boxes contain digital notations of the diagrams. The index i in the upper row corresponds to one of the vertices (i) $=$ $\left\langle S_{i}\right\rangle$ or bonds $\mathrm{i}-\mathrm{j}=\left\langle S_{i} S_{j}\right\rangle^{\mathrm{c}}$ which are differentiated with respect to h_{k} given by the index k in the lower row. Thus, the digital diagram reflects the differentiation procedure. For example, the expressions for $\left\langle S_{1} S_{2} S_{3}\right\rangle^{\mathrm{c}}$ and $\left\langle S_{1} S_{2} S_{3} S_{4}\right\rangle^{\mathrm{c}}$ in digital
notations are as follows:

$$
\begin{aligned}
& 1<{\underset{3}{2}}_{2}^{2}=-2 \cdot 1_{3}^{(2)}=-2 \cdot \begin{array}{|l}
111 \\
123 \\
\hline
\end{array}=-2 \cdot \begin{array}{l}
1 \\
3
\end{array} \\
& { }_{4}^{1} \mathrm{c}_{3}^{2}=2^{2} \cdot{\underset{4}{4}{ }_{4}^{(2)}-2 \cdot{ }_{4}^{1} X_{3}^{2}=2^{2} \cdot \boxed{11}}_{34}-2 \cdot \begin{array}{l}
12 \\
34
\end{array}
\end{aligned}
$$

At a certain step of differentiation, the derivatives of different diagrams can be identical. Consider, for example, the origin of the last diagram in $\left\langle S_{1} \cdots S_{8}\right\rangle^{\text {c }}$. The two different diagrams from $\left\langle S_{1} \cdots S_{5}\right\rangle^{\text {c }}$ at the differentiation with respect to h_{6} yield

Here, an additional coefficient $\mathbf{2}$ emerged due to the differentiation. At the differentiation of the vertices $\left\langle S_{3}\right\rangle$ and $\left\langle S_{4}\right\rangle$ in the present diagram with respect to h_{7} and h_{8}, correspondingly, we obtain the last diagram in $\left\langle S_{1} \cdots S_{8}\right\rangle^{c}$.

Acknowledgement

The author wishes to thank the Editorial Board for their invitation to participate in the special issue of the journal dedicated to the 60th anniversary of Prof. R.R.Levitskii and expresses his gratitude for the kind interest to the present work, for valuable discussions and useful comments.

References

1. Ising E. // Zs. Physik, 1925, vol. 31, p. 253 (in German).
2. Zhelifonov M.P. // Teor. Mat. Fiz., 1971, vol. 8, p. 401 (in Russian).
3. Derrida M.P., Mendes France M., Peyriere J. // J. Stat. Phys., 1986, vol. 45, p. 439.
4. Balagurov J., Vaks V.G., Zajtsev R.O. // Fiz. Tver. Tela, 1974, vol. 16, p. 2302 (in Russian).
5. A.R. Kessel, A.R. Berim. Magnetic Resonance of Ising Magnets. Nauka, Moscow, 1982 (in Russian).

Кореляційні функцїї Ізінгового ланцюжка вищих порядків

С.І.Сороков

Інститут фізики конденсованих систем НАН України, 79011 Львів, вул. Свєнціцького, 1

Отримано 13 серпня 2002 р., в остаточному вигляді 22 листопада 2002 р.

Запропоновано алгоритми розрахунку кореляційний функцій ($\left\langle S_{i_{1}} \ldots S_{i_{n}}\right\rangle^{\text {c }}$) та функцій розподілу ($\left\langle S_{i_{1}} \ldots S_{i_{n}}\right\rangle$) довільного порядку для неоднорідного Ізінгового ланцюжка.

Ключові слова: неоднорідний Ізінговий ланцюжок, кореляційні функції, функції розподілу

PACS: 05.50.+ q

