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The pseudospin-electron model is formulated for the description of the
correlated proton-electron charge transfer in the complex with hydrogen
bonds. The energy spectrum of the model is obtained. The ground state di-
agram is built. The frequency dependence of the real part of conductivity is
calculated. The time evolution of the proton and electron transfer along the
hydrogen bond is studied. The time dependences of the mean occupancies
of proton positions and electron states are obtained by solving the equa-
tions of motion for the density matrix components. The conditions, at which
the motion of the proton and electron charges are mutually correlated, are
considered.
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1. Introduction

The investigation of the microscopic mechanisms of the charge transfer in hydro-
gen-bonded molecular and crystalline systems and the development of proper models
is an urgent problem in the physics of kinetic processes. Usually this phenomenon
is assumed to be connected with a diffusive or dynamical type motion of protons.
By virtue of the fact that protons are located on hydrogen bonds their transport
is caused by the transfer along the bonds (proton tunnelling between equilibrium
positions in the double well potential) as well as by the hopping between bonds
(which is frequently connected with the ionic groups reorientation). This picture
which corresponds to the Grotthuss mechanism was laid at the basis of the recently
formulated orientational-tunnelling model of the proton transport ([1], see also [2]).

On the other hand, a series of experimental data [3–7] and the results of quantum-
chemical calculations [8,9] show the existence of correlation between the proton
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displacements and the reconstruction of electron states as well as the change of
their occupancy. It turns out that the proton subsystem plays a significant role in the
creation of the charge ordered states in crystals with transition metal ions containing
hydrogen bonds as elements of structure [4]. The changes in optical spectra formed
by electron transitions were detected in BSP and DNP crystals at the redistribution
of protons on hydrogen bonds. The available data provide reason enough to make
a conclusion about the presence of the significant (in some cases) proton-electron
interaction. This interaction can manifest itself as a cooperative proton-electron
transfer (PET) [5–7]. The effect of the proton localization on the electron density
distribution and on the electron states is clearly seen from the results of quantum-
chemical calculations (see, for example, [8], where a simple quantum-chemical model
has been considered).

The simple model was proposed in [10] for the description of the proton-electron
interaction; the proton states on the bonds were represented by means of pseudospin
operators. In this model, however, the dynamical part of this interaction, connected
with the correlation between the hopping of protons and electron transfer, was not
taken into account. This coupling, as it was shown recently [11,12], is significant for
the kinetics of ionic and orientational defects in the hydrogen bond network.

The aim of this work is to analyze the microscopic background of the proton-
electron interaction, which manifests in particular in the correlated proton-electron
hopping. The consideration is performed on the basis of the adiabatic approximation
on the example of the single hydrogen bond problem. As a result, the pseudospin-
electron model is formulated, in which the generalization of the approach used in
[10] is given. The ground energy state of the model is investigated depending on the
relations between proton-electron coupling constant g, on parameters of effective
electron transfer t and on proton tunnelling Ω. The calculations of the complex
dynamical conductivity are performed for the investigation of the model dynamics;
the frequency dispersion of its real part is analyzed.

The time evolution of the proton and electron transfer along the bond is studied.
In particular, the time dependences of the mean occupancies of proton positions
and electron states are obtained by solving the equations of motion for the density
matrix components. The conditions, at which the motions of the proton and electron
charges are mutually correlated, are considered.

2. Hamiltonian of the linear complex with hydrogen bond. Adi-
abatic approximation

Electronic and vibrational states of A-H-A′ linear complex are determined by
Schroedinger equation ĤΨ = εΨ, where

H = KR +Kr + U(R) +W (R, r). (1)

Here KR, Kr is kinetic energy of ions (nuclei) and electrons; U(R) is potential
energy of ions; W (R,r) is energy of the electron subsystem in the field of ions with
an account of interaction between electrons.
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In the adiabatic approximation

Ψ(R, r) = φ(R) · ψR(r), (2)

the electronic problem has the form:

[Kr +W (R, r)]ψRj(r) = λj(r)ψRj(r), (3)

then the ionic (nuclear) problem:

[KR + U(R) + λj(R)]φnj(R) = εnjφnj(R), (4)

here j are the quantum numbers of electron wave function (numbers of sheets of
adiabatic potential); n are the quantum numbers of vibrational states.

Hamiltonian of the electron-ion system in the (2) approximation is of the follow-
ing form:

Ĥ =
∑

nj

εnj|φnj(R)ψRj(r)〉〈φnj(R
′)ψR′j(r

′)|. (5)

For the adiabatic potential λj(R) with the symmetrical double well

φsj(R) =
1√
2

[φαj(R) + φβj(R)] ,

φaj(R) =
1√
2

[φαj(R) − φβj(R)] , (6)

where φα,β(R) are the functions localized in the potential minima.
Let us introduce the pseudospin representation

|φαj(R)〉〈φαj(R
′)| → 1

2
+ Sz,

|φβj(R)〉〈φβj(R
′)| → 1

2
− Sz,

|φαj(R)〉〈φβj(R
′)| → S+,

|φβj(R)〉〈φαj(R
′)| → S−. (7)

Electronic part of (5) expression is formulated in terms of Hubbard operators

|ψRαj〉〈ψRαj| = Xjj
αα , |ψRαj〉〈ψRβj| = Xjj

αβ . (8)

The Xjj′

αβ operator transforms the state j ′ of the electron system at the proton
localization in β well into the state j at the proton localization in α well.

As a result, Hamiltonian (5) is written in the form:

Ĥeff =
∑

j

εsj + εaj

2

[(

1

2
+ Sz

)

Xjj
αα +

(

1

2
− Sz

)

Xjj
ββ

]

+
∑

j

εsj − εaj

2

[

S+Xjj
αβ + S−Xjj

βα

]

, (9)
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where

εsj = λj + δj −
1

2
Ωj , εaj = λj + δj +

1

2
Ωj , λj ≡ λj(Rα) = λj(Rβ),

δj is a shift of eigenvalue, connected with zero vibration energy; Ωj is a tunnelling
splitting.

The operators of physical quantities in such a representation are rewritten in the
following way:

• electronic operator

Âel =
∑

jj′

[

〈αj|Â|αj ′〉
(

1

2
+ Sz

)

Xjj′

αα + 〈βj|Â|βj ′〉
(

1

2
− Sz

)

Xjj′

ββ

]

, (10)

• ionic operator

Âion =
∑

j

[

〈α|Â|α〉j
(

1

2
+ Sz

)

Xjj
αα + 〈β|Â|β〉j

(

1

2
− Sz

)

Xjj
ββ

+ 〈α|Â|β〉jS+Xjj
αβ + 〈β|Â|α〉jS−Xjj

βα

]

. (11)

In the case, when 〈α|A|α〉j = Aα, 〈β|A|β〉j = Aβ and 〈α|A|β〉j = 0, we have

Âion =
1

2
(Aα + Aβ) + (Aα − Aβ)Sz. (12)

3. Pseudospin-electron model of proton-electron transfer of
complex with hydrogen bond

Let us apply the approach described in the item 2 to the simplified case, when
only two electron orbitals on the end of the A-H-A′ H-bonded cluster are taken into
account explicitly. The effective electron transfer

t
∑

σ

(

a+
1σa2σ + a+

2σa1σ

)

, (13)

where σ =↑, ↓, is electron spin, and shift of energy levels due to proton displacement

(ε+ ∆)
∑

σ

n1σ + (ε− ∆)
∑

σ

n2σ (14)

are included into consideration.
It leads to the adiabatic potential in the following form (formed by the lowest

electron term)

V (∆) = ε−
√
t2 + ∆2 +

1

2
K∆2, (15)

here the last term stands for the elastic strain energy.
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The tunnelling between equilibrium states of proton in the V (∆) field is taken
into account. Effective Hamiltonian analogous to the (5) can be expressed as:

Ĥ =
1

2
(ε− ∆t)

∑

σ

{

n1σ + n2σ − t

∆t

(

a+
1σa2σ + a+

2σa1σ

)

}

+ (ε− ∆t)
∆0

∆t

∑

σ

(n2σ − n1σ)SZ

− Ω

2

[(

1 − ∆0

∆t

)

a+
1σa2σ +

(

1 +
∆0

∆t

)

a+
2σa1σ − t

∆t
(n1σ + n2σ)

]

S+

− Ω

2

[(

1 +
∆0

∆t

)

a+
1σa2σ +

(

1 − ∆0

∆t

)

a+
2σa1σ − t

∆t
(n1σ + n2σ)

]

S−, (16)

here ∆t =
√

t2 + ∆2
0, ∆0 is defined by the minimum of proton adiabatic potential:

∆2
0 =

1

K2
− t2. (17)

The tunnelling hopping of proton (between minima which correspond to ±∆0

values) described by the operators S+, S− is correlated in this case with electron
transfer from one end of the cluster to another.

4. Simplified pseudospin-electron model

In the limit t� ∆0, Hamiltonian (16) can be written in the form:

Ĥ =
∑

σ

[

E0(n1σ + n2σ) + gSz(n2σ − n1σ) − Ω(a+
2σa1σS

+ + a+
1σa2σS

−)
]

, (18)

the parameter E0 = ε− ∆0/2 hereinafter can play a role of chemical potential
(E0 = −µ); g = ε− ∆0 has a meaning of proton-electron coupling constant.

The second term in (18) describes shift of electron levels at proton displacement
(see figure 1); the third term characterizes electron jumps connected with proton
tunnelling (figure 2).

g :

E0 - g/2
S = -1/2

z

RAA'

E0 + g/2

δ

Figure 1. Shift of energy levels caused by proton displacement.
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Figure 2. Proton tunnelling correlated with electron transfer.

A model of the (18) type in the case Ω = 0 has been introduced before [10] at the
description of [M(H2DAG)(HDAG)]TCNQ, M = Ni, Pd, Pt crystals, having chain-
like sublattice of metal ion and hydrogen bonds as links between them; the proton
tunnelling was not taken into account. The model similar to (18) (but without cor-
related proton-electron tunnelling) is used at the description of locally anharmonic
phenomena in high-Tc superconductors, where the gSz ∑

σ niσ term characterizes the
interaction of conducting electrons with the anharmonic apex oxygen ion subsystem
[13].

5. Numerical values of model parameters

Numerical values of model parameters were chosen using the experimental data
and also based on the results of direct quantum-chemical calculations, performed by
us and by other authors. In particular, the value of electron transfer t is determined
through some factors. At the increase of hydrogen bond length R00, parameter t
decreases. The value of t also depends on orbitals involved in electron transfer. In
the case of the (pσ, pσ) orbitals, which are parallel to the hydrogen bond, the value
of transfer integral t is 5–7 times larger than for (pπ, pπ)-orbitals, perpendicular to
the hydrogen bond. We obtained this relation using calculations of overlap integrals
(pσ, pσ) and (pπ, pπ) between p-orbitals of oxygen at the ends of hydrogen bonds
and considering that parameter t in linear approximation is proportional to overlap
integral. At distance R00 = 2.40 Å there was obtained t = 0.7 eV, i.e., the case of
the σ-coupling; t = 0.12 eV, i.e., the case of the π-coupling.

To evaluate the constant of proton-electron interaction g, based on the Hamil-
tonian of pseudospin-electron model we obtain an expression for the difference be-
tween the mean occupations of orbitals on atoms creating the hydrogen bond (or
the change of occupations of such atom orbitals at the proton displacement from
one equilibrium position to another):

n̄2 − n̄1 =
g√

g2 + 4t2
th
β

2

√

g2 + 4t2. (19)

On the other hand, we evaluate this difference of occupations by a direct quant-
um-chemical calculation for the cluster with hydrogen bond [8] and obtain ∆n =
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n̄2 − n̄1 = −0.13; using these data we have, in particular at t = 0.5 eV, |g| ≈
0.14 eV; at t = 0.05 eV, |g| ≈ 0.02 eV. Similar calculations were performed in
this paper (see appendix) for fragments of crystal structure with hydrogen bonds of
KDP-type. We have obtained that difference of occupation of oxygen ions forming
hydrogen bond is ∆n ≈ −0.19. The charges of oxygen ions are determined by the
location of the proton in one of the two possible equilibrium positions and weakly
depend on the crystal surroundings or even on the asymmetry of the hydrogen
bond (see appendix). Contrary to that, the obtained change of the cluster energy at
proton displacement from one equilibrium position on the bond into another, which
determine energy of Slater-Takagi configurations, significantly depends on the field
of the crystal surroundings of the bond, along which the proton is displaced. The
obtained value of energy for configuration with one or three protons (see appendix)
is w = 623 cm−1. On the other hand, evaluating this energy as difference of energies
of HnPO4 clusters with different number of protons in the near to current PO4 group
equilibrium positions, gives a value w = 54.2 cm−1, that is an order of magnitude
smaller than the data known from literature (see [16,17] for example). So, energies
of Slater-Takagi configurations are determined not only by the number of protons on
each PO4 group in KDP-type crystal as it was considered earlier. To a great extent
their values are also caused by the net influence of the surroundings.

The change of orbital occupation of oxygen atoms forming the hydrogen bond,
was also calculated by other authors (see, for example, [9]). In (O2H3)

− case for pσ

function ∆n(pσ) = −0.198, that corresponds g < 0; for pπ functions ∆n (pπ) = 0.102
(g > 0). For complex (O2H5)

+: ∆n(pσ) = −0.13 (g < 0), ∆n(pπ) = 0.109 (g > 0)
[9].

Using Hamiltonian (18) we also obtain an expression for potential barrier height
for proton on the bond:

h =
√

t2 + ∆2
0 − t− 1

2
K∆2

0 . (20)

On the other hand, potential barrier height was determined from direct quantum-
chemical calculations [8]. As a result, for the ∆0 parameter, the following values were
obtained: ∆0 ∼ 0.01 · · ·0.2 eV (short bond); ∆0 ∼ 1.0 · · · 2.0 eV (long bond).

For the energy of tunnelling splitting Ω, calculations performed in [15] give the
values Ω = 0.01 · · ·0.1 eV depending on the hydrogen bond length.

At Ω = 0.01 eV value, satisfactory numerical description of the thermodynamical
properties of KDP and DKDP-groups of crystals is obtained [16,17].

Electronic and protonic parts of dipole moment of the system with a hydrogen
bond are determined correspondingly, by p and q parameters (see (23)). Here µe ≡
p = 1

2
R00 · e, R00 = 2.40 Å, µH ≡ q = Zeff

H · δ, Zeff
H ≈ 0.25e, δ = 0.40 Å.
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6. Dynamical conductivity of hydrogen bond

Coefficient of dynamical conductivity of the system in accordance with Kubo
formula [14] has the following form:

σ(ω) =

∞
∫

0

dτ

β
∫

0

dλ〈Ĵ (τ − ih̄λ) Ĵ(0)〉, (21)

where Ĵ(τ) is the current density operator,

Ĵ(τ) =
i

h̄

[

Ĥ, µ̂
]

. (22)

The dipole momentum operator µ̂

µ̂ = p
∑

σ

(n1σ − n2σ) + qSz, (23)

includes electron and pseudospin (ion) parts.

Based on the eigenstates of Heff Hamiltonian Heff |r〉 = Er|r〉, formula (21) can
be rewritten as

σ(ω) =
1

h̄2

∑

rp

(Er − Ep)|µrp|2
e−βEp − e−βEr

Z

×
[

πδ
(

ω − Er − Ep

h̄

)

− iP
1

ω − (Er − Ep)/h̄

]

,

Z =
∑

a

e−βEa. (24)

7. Time evolution of the proton and electron transfer

The time dependence of the mean occupancies of electron states 〈n1〉, 〈n2〉 and
proton positions (or mean values of pseudospin 〈Sz〉) are obtained as follows:

〈Â(τ)〉 = Sp(Âˆ̃ρ) =
∑

rp

Arpρ̃pr(τ), (25)

where ρ̃pr(τ) is the time dependent density matrix; the Â operator can be equal to
n1, n2 or Sz.

ρ̃pr(τ) = e−
i

h̄
(Ep−Er)τ ρ̃pr(0), ρ̃pr(0) = (Û−1ρÛ)pr , (26)

here ρ is a density matrix for initial state (at time τ = 0) in the |n1↑, n1↓, n2↑, n2↓, S
z〉

representation, Û is a unitary transformation to the |r〉 basis of eigenstates of Hamil-
tonian (16).
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8. Dynamical properties of hydrogen bond

Diagonalization of the Hamiltonian (16) was performed using its representation
in the matrix form on the |n1↑n1↓n2↑n2↓;S

z〉 basis that includes 32 states. Secular
problem of 32 order splits into few independent problems of the lower order, which
are determined by the number of electrons on the bond and the total spin value.
The ground energy state of the model changes depending on the relation between
the values of the Ω, t, g or ∆0 parameters and also is determined by the position
of chemical potential µ fixed by the electron thermostat, formed by surroundings
(with which the complex is in equilibrium). Transformation of the ground state at
the change of tunnelling constant is illustrated in figure 3. For some µ, the critical
values of Ω exist, at which the mean number of electrons on the complex is changed,
that effects its charge state.

Real part of conductivity σ(ω), calculated using formula (24) has the form of a
group of δ-peaks. Their intensities depend on temperature and on the mean number
of electrons on the bond; their positions are determined by the values of g (or
∆0), Ω and t. Results of the σ(ω) calculations are presented in Figs. 4–6. For the
case of simplified pseudospin-electron model (t = 0) (18) two peaks (maxima) were
obtained on the frequency dependence of the Re σ(ω) function (see figure 4). The
first of them is connected with the proton tunnelling on the bond, the other one is
mostly determined by the constant of the proton-electron interaction g. The peaks
are shifted to the higher frequency region if the independent electron transfer is
present (t 6= 0) and in this case we obtain two groups of peaks; besides that, a new
group of peaks appears.

The time dependence of mean occupation of electron states 〈n1〉, 〈n2〉 as well
as the mean value of pseudospin 〈Sz〉 (that determines the mean proton position
on the bond) are obtained in accordance with formulae (25) and (26). The states
with one electron on the bond |3〉 = |0100; 1/2〉 and |19〉 = |0100;−1/2〉 were taken
as initial (at τ = 0). At zero value of the transfer parameter (t = 0), the time
evolution of the mean value of the electron occupation 〈n1〉 and the mean value of
pseudospin 〈Sz〉 are synchronized and are described by one harmonic (see figure 7)
h̄ω1 = ∆E1 = 0.2 eV (T1 = 20.8 · 10−15 s). A corresponding peak of dynamic
conductivity is shown in figure 4a, n = 1.

It is obtained, that at t = 0.05 eV allowing for the transitions of the system only
from the ground state into the excited ones (they are two in number), the charge
transport is described by two harmonics h̄ω1 = ∆E1 = 0.226 eV (T1 = 18.2·10−15 s),
h̄ω2 = ∆E2 = 0.035 eV (T2 = 120·10−15 s) (see figure 8). As one can see from figure 8,
harmonic ω2 describes synchronized motions in phase of proton and electron, while
at frequency ω1 their motion is in antiphase. Two peaks at these frequencies can be
observed in the frequency dependence of conductivity (figure 4c, n = 1). The results
of calculations when all possible harmonics are taken into account are presented in
figure 9. The similar results at the other values of model parameters are presented
in figure 10.
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(a)

(b)

Figure 3. Ground state diagram in Ω − E0 plane: g = 0.08, ∆0 = 0.06, Ω = 0.1;
(a) t = 0, (b) t = 0.05 (all quantities are given in eV).
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1 < n < 2

n = 1

0 < n < 1

n = 0

h̄ω = ∆E (eV)

(a) (b) (c)

Figure 4. Frequency dependence of the dynamical conductivity: g = 0.08, ∆0 =
0.06, Ω = 0.1; (a) t = 0, T = 0 K; (b) t = 0, T = 150 K; (c) t = 0.05, T = 0 K.
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∆ ∆

Figure 5. Frequency dependence of the dynamical conductivity: g = 0.06, ∆0 =
0.013, Ω = 0.01; (a) t = 0, ∆E1 = 0.02 eV; (b) t = 0.05, ∆E1 = 0.017 eV,

∆E2 = 0.126 eV, σ1 = 4 · 10−2, σ2 = 0.97, |µ1|2

|µ2|2
= σ1/∆E1

σ2/∆E2
= 0.3.

∆

Figure 6. Frequency dependence of the dynamical conductivity; g = −0.1, ∆0 =
2.0, Ω = 0.01, t = 0.5, ∆E1 = 0.013 eV, ∆E2 = 1.015 eV, σ1 = 4.16 · 10−4,

σ2 = 1.78 · 10−1, |µ1|2

|µ2|2
= σ1/∆E1

σ2/∆E2
= 0.177.
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Figure 7. Time dependencies of mean values 〈n1〉 and 〈Sz〉. Initial states (with
one electron, n = 1): (a) |0100; 1/2〉, (b) |0100;−1/2〉. (g = 0.08, ∆0 = 0.06,
Ω = 0.1, t = 0).
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Figure 8. Time dependencies of mean values 〈n1〉 and 〈Sz〉. Initial states (with
one electron, n = 1): (a) |0100; 1/2〉, (b) |0100;−1/2〉; g = 0.08, ∆0 = 0.06,
Ω = 0.1, t = 0.05. Transitions from ground state to excited states are taken into
account (two harmonics). ∆E1 = 0.226 eV, ∆E2 = 0.035 eV, T1 = 18.2 · 10−15 s,
T2 = 120 · 10−15 s.
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Figure 9. Time dependencies of mean values 〈n1〉 and 〈Sz〉. Initial states (with
one electron, n = 1): (a) |0100; 1/2〉, (b) |0100;−1/2〉; g = 0.08, ∆0 = 0.06,
Ω = 0.1, t = 0.05. All possible transitions between states of the system with one
electron on hydrogen bond are taken into account (four harmonics).
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Figure 10. Time dependencies of mean values 〈n1〉 and 〈Sz〉. Initial states (with
one electron, n = 1): (a) |0100; 1/2〉, (b) |0100;−1/2〉; g = −0.01, ∆0 = 1.0,
Ω = 0.01, t = 0.05. Transitions from ground state to excited states are taken into
account (two harmonics). ∆E1 = 0.011 eV, ∆E2 = 0.110 eV, T1 = 330 · 10−15 s,
T2 = 33 · 10−15 s.
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9. Conclusions

The pseudospin-electron model is formulated in order to describe the proton-
electron interaction and correlated charge transfer in complex with hydrogen bonds.
Possible numerical values of the model parameters are analyzed.

It is shown that the energies of Slater-Takagi configurations depend not only
on the proton number in each of PO4 group in the crystal as was conventionally
considered. They are determined by the energies of proton transitions from one
equilibrium state on hydrogen bonds into another, and their values to a great extent
are caused by the net the influence of crystal surroundings.

There are two peaks (maxima) in the frequency dependence of the real part of
conductivity, that is in accordance with the results of the time dynamics analysis.
One of the peaks is connected mainly with the proton tunnelling on the bond while
the others are partially determined by the proton-electron interaction. They shift to
a higher frequency range if independent electron transfer is present (t 6= 0) and in
this case we obtain two groups of peaks; besides that, a new group of peaks appears
at t 6= 0.

The intensities of peaks depend on temperature and on the mean number of
electrons on the bond; the positions are determined by the proton-electron coupling
constant as well as by the tunnelling and electron transfer parameter values.

The obtained results should be taken into account while interpreting the experi-
mental data regarding frequency dispersion of conductivity in the hydrogen-bonded
systems.
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Appendix

Calculations of energies of proton configurations near the PO4 groups in the
KH2PO4 crystal were performed using quantum-chemical method AM1. Changes of
the electron occupation of oxygen ions, forming a hydrogen bond were also examined
at the proton displacement from one equilibrium position on the bond into another.

Elements of crystal KDP structure constructed by one, two or eight tetrahedron
PO4, connected by hydrogen bonds were considered and energies of configurations
with proton localization in different equilibrium positions on hydrogen bonds were
analyzed. Configurations with two protons near each PO4 group are lower in ener-
gy. Proton displacement along the hydrogen bond from one group towards another
leads to the formation of configurations with one and three protons. This state is
energetically higher than the initial one. In the noninteracting tetrahedron mod-
el, the energy of creation of configurations with one and three protons (so-called
Slater-Takagi configurations) is ∆E = 2w = E(1) + E(3) − 2E(2). Here E(n) are the
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Table 1. Change of energy of clusters consisting of two tetrahedrons ∆E (2) and
clusters consisting of eight tetrahedrons ∆E (8) at the proton displacement on the
central bond from one equilibrium position into another, or energy of creation of
configuration with one and three protons.

configuration ∆E(2), kcal/mol ∆E(8), kcal/mol
1 1.53 0.99
2 1.42 1.38
3 1.31 1.645
4 1.2 1.69
5 1.23 5.97
6 0.77 2.98
7 1.25 5.75
8 1.0 2.77
9 0.82 8.91

Table 2. Proton configurations of clusters consisting of two PO4 tetrahedrons.
Large squares in pictures are the PO4 groups, black circles are the protons in
equilibrium positions on the bond.

1 2

3 4

5 6

7 8

9

702



Dynamics of charge transfer along hydrogen bond

1.4 1.6 1.8 2.0 2.2 2.4
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

O1

O2O1

 

1.4 1.6 1.8 2.0 2.2 2.4
-1245

-1244

-1243

-1242

-1241

-1240

 

1.4 1.6 1.8 2.0 2.2 2.4
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

O1
O2

1.4 1.6 1.8 2.0 2.2 2.4
-1245

-1244

-1243

-1242

-1241

-1240

 

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

HH H

O2

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0
-5300

-5298

-5296

-5294

-5292

-5290

-5288

-5286

(b)(a')(a)

Figure 11. Adiabatic protons potentials and charges on hydrogen and oxygen
ions, which forms a hydrogen bond, as functions of proton position on the bond
for clusters presented in pictures; cluster consisting of eight tetrahedrons (a ′) is
constructed from the cluster (a) containing two PO4 tetrahedrons by adding to
them the nearest neighbouring tetrahedrons connecting with the central tetrahe-
dron by the hydrogen bond as in the KDP crystal.
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energies of HnPO4 configurations with n protons in the near (to PO4 tetrahedron)
equilibrium position for proton on the hydrogen bond and (4−n) protons in the far-
off positions. The following values of E(n) were obtained: E(0) = −460.18 kcal/mol,
E(1) = −503.79 kcal/mol, E(2) = −547.01 kcal/mol, E(3) = −589.92 kcal/mol,
E(4) = −631.79 kcal/mol. This results in ∆E = 2w = 0.31 kcal/mol. The energy of
creation of tetrahedron with one or three protons (w) is equal w = 0.155 kcal/mol
(54.2 cm−1), that is an order of magnitude lower than the data known in literature
(see, for example [16,17]). Consideration of interactions not only in HnPO4 groups
but between all parts of the cluster consisting of a few tetrahedrons, gives the energy
values much closer to those known in the literature. The change of cluster energy
obtained here at proton displacement on the central bond from one equilibrium
position into another is ∆E = 2w. In other words, the energy of creation of a config-
uration with one and three protons depends essentially on the initial configuration
with two protons near each PO4 group. Thus, it is to a great extent determined by
the field of crystal surroundings for the bond, along which the proton is displaced.
Hence, the energies of Slater-Takagi configurations depend not only on proton num-
ber on each PO4 group in KDP-type crystal. Calculated values of ∆E for the cluster
consisting of two tetrahedrons (∆E(2)) and of eight tetrahedrons (∆E(8)) are pre-
sented in table 1. Initial cluster configurations (for cluster of two tetrahedrons) are
presented in table 2. In cluster N9 consisting of eight tetrahedrons, as well as in the
corresponding cluster consisting of two tetrahedrons, all protons are located near
the upper oxygen atoms at each PO4 tetrahedron. The rest clusters consisting of
eight tetrahedrons are constructed from the cluster N9 by the transition to other
proton configurations on two central groups, shown in table 2. In clusters consisting
of eight tetrahedrons, the crystal field is taken more accurately. For this case, the
mean value of energy is ∆E(8) = 2w = 3.565 kcal/mol = 1247 cm−1. So, in this
case w = 623 cm−1. It should be noted that taking value w = 840 K (584 cm−1) a
variety of thermodynamical properties of KDP and DKDP crystals were described
satisfactorily within the same approach (see [16,17]).

The results of calculation of adiabatic potential for proton on the bond for some
proton configurations are presented in figure 11. Dependences of electron occupation
of the left and the right oxygens forming hydrogen bond on the proton position on
the bond are also presented there. In the cluster consisting of eight tetrahedrons (a′)
as well as in the cluster consisting of two tetrahedrons (a) all protons are located near
the upper oxygen atoms at each PO4 tetrahedron. In the cluster consisting of two
tetrahedrons presented in figure 11 (b), the so-called lateral Slater configurations are
realized. As one can see, proton jump from one minimum of adiabatic potential on
the bond into another is accompanied by the change of oxygen occupation ∆n = 0.19
which is practically independent of the initial proton configuration.
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