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The model which is discussed permits to describe the charge state of the
impurity both at the intercalation of a layer crystal and at the adsorption on
a crystal surface. In the framework of the model, the influence of the exter-
nal quantizing magnetic field on the magnitude of charge population of the
impurity is analyzed. The obtained results indicate that the external mag-
netic field is an important factor that influences the effects of adsorption or
intercalation.
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1. Introduction

The improvement of an impurity atom into a crystal matrix is inevitably connect-
ed with the charge transfer from the impurity into a crystal matrix or vise-versa. Such
a transfer can sometimes considerably change physical characteristics of the crystal.
In particular, it can radically modify the topology of the Fermi surfaces of the metal
compounds and, in some cases, to the extent of including a metal-semiconductor
phase transition [1]. The crystals with adsorbed atoms on their surfaces as well
as the intercalated layer crystals belong to those particularly sensitive to such a
transfer. In the latter ones, electronic transfer from the intercalated atoms into the
crystal matrix takes place. The alkali atoms are the most effective electron donors.
They may supply up to one electron to the crystal for each formula unit [2]. As
a result, a weak interlayer interaction (which determines a quasi-dimensional char-
acter of the layer crystal) is placed by strong — Coulomb or covalent — interaction
and thus the intercalated layer crystal becomes more “three-dimensional”. Drawing
a parallel between the electron transfer from an impurity atom in intercalation of
a layer crystal and the electron transfer in adsorption has a more deep justification
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than it may seem at first glance. Really, the distribution of the intercalated atoms
has a two-dimensional character — they create an additional atomic plane in the
van der Waals gap of the layer crystal. Such atoms resemble the atoms adsorbed
on the crystal surface. From this point of view, a layer crystal may be identified
with a crystal having a sufficiently developed surface in ~ N, times more than in
the volume crystal (N, is a number of layers along the C-axis of a crystal lattice).
Such an analogy becomes still more obvious if the interlayer electron mixing (3 tends
to zero. In this case the layer crystal breaks up into a set of independent layers
and intercalation can be considered as an adsorption. The only difference is that
the adsorbed atoms settle on a semiinfinite crystal but not on the layers — plates
with the width equal to a lattice parameter of the layer crystal. In a general case,
G # 0,the intercalation appears to be a volume effect and the electron spectrum
herein can be obtained from Schrodinger equation with Born-Karman’s conditions.
But adsorption is the effect connected with a crystal surface and therefore in that
case the eigenvalue problem is more complicated. In particular, at certain conditions
the surface states are observed. Aside from this difference, the proposed analogy be-
tween an intercalated crystal and an adsorbate-adsorbent system is quite obvious:
atomic planes of a layer crystal limited by van der Waals gap resemble the surface
of an adsorbate, and intercalated atoms resemble the adatoms. Therefore, the same
model can be used in the both cases to solve the problem of the electron population
of the impurity atoms. First microscopic analysis of the behaviour of the adsorbed
atoms on a crystal surface were presented in several papers [3-6]. There were the
same models in the papers. According to the model, the one-electron wave functions
of the adsorbate-adsorbent system are presented as a linear combination of the free
impurity atoms and free crystal functions. Hence, the interaction between the im-
purity and the crystal matrix lies in the fact that each original discrete atomic level
acquires a certain width. The Hamiltonian of the model is of the first type used by
Anderson [7] in the theory of dilute alloys. The model analysis enables us to get a
deeper insight into the adsorption, in particular, to investigate an adsorption energy,
an energy shift and other experimentally detected characteristics. The purpose of
this paper is to study the effect of the external quantizing magnetic field on the
electronic population (occupancy) of the impurity in the system “two-impurity (ad-
sorbed or intercalated atoms)+crystal matrix” within the framework of the modified
Anderson’s Hamiltonian:

H= Z exci e + Eoladao + afar) + Z V(ak)(cfaq +h.c.)+Unony. (1)
k ak

Here, the first term describes a free crystal in the external magnetic field H , directed
along OZ-axis (let OZ be a perpendicular to a crystal surface or to a layer). Then,

1 h?k?
ak:L0+hwc(n+—)+2mj, (2)

2

where Lyg is the bottom of the band, k = (n, k,) (n is the number of Landau levels;
lattice parameter d, is taken equal unit), w. = eH/m*c (m* is an effective mass
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of the electron in the plane of the layers). The second term in (1) describes the
free impurity atoms; al,a, (o =0,1) are the Fermion creation and annihilation
operators, n, = ala, is the corresponding number operator (¢}, ¢, and ny have
the same meaning for the crystal). The third term is simply an electron overlapping
between the atoms and the crystal matrix, and the fourth term is the inter-atomic
Coulomb repulsion between the impurities.

Let us note the differences between Hamiltonian (1) and the Hamiltonian of
the cited papers. Firstly, since Hamiltonian (1) will be used for a description of
the behaviour of the impurity atom in a crystal matrix in the quantizing magnetic
field, the spin indexes are omitted. Secondly, as in the cited papers, we neglected
all but Coulomb repulsion of the impurities. However, we consider the interatomic
interaction in contrast to the mentioned papers, in which an intraatomic Coulomb
repulsion of electrons with opposite spins is considered. This is partly justified in the
adsorption by the fact that relatively simple adsorbates like H, O or the halogens
have a larger value of the Coulomb interaction than the crystal matrix due to the
screening in the crystal and by the spatial distribution of the adsorbed (intercalated
as well) atoms. A similar problem in the system without magnetic field within the
framework of Hartree-Fock approximation was considered in [8]. In this paper we
from the very beginning analyze the effect of the magnetic field in the mentioned
approximation and further we investigate the problem within the framework of the
alternative approximation. We restrict ourselves to the case of a low temperature at
which the effect of the magnetic field is the most clear.

2. Electronic population of an impurity. Hartree-Fock
approximation

Let us introduce the double-time retarded Green’s function ({a,|a})) (o, o/ =
0, 1), which particularly contains the information about the average number of elec-
tron population of the impurity atoms (ng), (n;). Using the equation-of-motion
method to the Green’s function in the Hartree-Fock approximation, i.e.

noni = (1o (n1) +n1 (no))/2,

we obtain the following equations:

(1= B = S0m) = Woo ) Gl ~ Worl(alagd) = 1

2
Winl(alad)) + (0= B = Gl = W) ek} = 0. @)
where
W = Z V*(a, k)V (k) (4)

w—£&
& k

is a characteristic, which contains information about both crystal matrix and its
electron sharing with the impurity. In the widely used assumption W,z = const, the
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information about the crystal matrix in the problem under consideration is contained
in the chemical potential of the crystal-impurity system only. The equation for x in
the problem described by the Hamiltonian (1) can be written as follows:

n=y fE&)+[(E)+ f(Es), ()

where n is a concentration of electrons of the system, £ is an electron spectrum in
the crystal matrix renormalized by the impurities, f (z) is Fermi-Dirac distribution
function, and Fy, Fs are the electron states of the impurities obtained as the solution
of the equality to the zero of the coefficient determinant of the system of linear
equations (3), namely:

(w By %(m} - W00> <w By %(no) - WH) CWul =0,  (6)

ES = (Eo + % (Woo —+ Wll) —+ % (<n0> -+ <n1>)) + (—1)S+1 K, S = 1, 2 (7)

with

K= é\/ [(Woo W+ S () - <n1>>} AW

In the two-impurity problem the contribution of two last terms in (4) cannot exceed 1
and their value is O(1/N) (N is a number of sites in the crystal). Thus, in the zeroth
approximation, the value of the chemical potential is defined by the crystal matrix.
Furthermore, in this case one can ignore the renormalization of the crystal matrix
spectrum by two impurities.

From the system of equations (3) it follows:

<<a0|a’(J)r>> - (w — Ej(w — E2> ) (8)

and

aq (IS_ = .
<< | >> (w—El)(w_E2) (9)

The form of the Green’s functions ({ai]|af)) and ((ag|a])) coincides with Green’s
functions (8), (9) respectively, after the formal change of the index 0 to 1 and vice-
versa.

Let us calculate the average number of electron population of the impurities. It
is known that

(n) = / p(w) (),

where p(w) is the density of electron states, which is connected with the Green’s
function G(w + i0) through the relation:

plw) = —% Im G(w +i0).
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Let us consider the diffusion contact of the crystal+impurity system with the reser-
voir. In that case, it fixes the chemical potential y of the system.

Let us use a less rigid assumption than W,z = const namely, V_- = const in W,z
(4). Then,

Voo 2 ] dk.
/ = 2 | —— 1
Woca (w) o Z A — Oé0k327 ( 0)
o0
where
1
ap = h*/2mid?, A=w— Ly — hw, <n+§) : Vo |2 = V*(ak)V (k).
According to [9]
™ 1 Vaor+VA
/ e it [T 420 . (11)
/ A = aok; _\/alTA arctan \/j%w, A<0 (b)

Since A depends on w, (and consequently, on the magnetic field), on Ey, and on
the quantum number n, any changes thereof have an effect on the form and on the
number of terms (11a) and (11b) in the summation sign (4). Such changes may be
considered as:

W ,(W)ZLEP ilm\/&oﬁ—m
- 21/ A 2 | JagA—VA

o —
_ Z arctan aoﬂ} ,
n=Np+1 \/Z

n=0

where NNy is the integer part of a number, which is a solution of the equation A = 0,
ie.

hw, 2
Here, denotation ||z|| means the integer part of x.

It is obvious that the electron population of the impurity atoms is defined mainly
by the electron states close to the electronic state Ey of a free impurity. A similar
assumption was used in the analysis of self-energy in the problem of the electron
spectrum renormalization by the electron-phonon interaction in the normal metal
[10].

As it follows from the system of equations for (ng), (ni), there are possible not
only solutions (ng) = (n;) but at some conditions (ng) # (n1) [8].

Consider the dependence of the uniform electron population of the impurity
(ng), (n1) (i.e. (ng) = (ny) = (n)) on the applied magnetic field at the range
10*—10° Oe. In figure 1, the dependence (n) = f (H) is presented, where the electron
state of the impurity Ey is close to the chemical potential value (Fy = 0.149 eV,
p = 0.150 eV). The particular feature of such a dependence is the decline of (n) (on
the whole) accompanied by sharp peaks at a certain value of the magnetic field. The
appearance of the peaks is induced by the intersection of the chemical potential by

NOI

W—LQ ]_H

663



B.A.Lukiyanets

1.0 T T T T T T T
0.8
=R
na —
0.4 - | | | | I | I I
1 11 21 31 41 51 Al 71 &1
P
H i0E

Figure 1. The value of the electron population of the impurity atoms at T

500 K (Voo = Vi1 = 0.02 eV, Vig = 0.00, U = 0.10 eV, Ey = 0.149 eV).
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Figure 2. The value of the electron population of the impurity atoms

100 K and at the same parameters as in figure 1 except Ey = 0.10 eV.
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the Landau levels. The dependence of the levels on H ( ~ H) determines various
values of the periods of jumps (n) at various H.

The dependence (n) = f (H) at the same parameters as in figure 1 but a bit
lower position Fy (Ey = 0.10 eV) qualitatively repeats the curve in figure 1. Their
quantitative differences are:

a) an obvious shift up in the curve in figure 2 to a greater value of electron
population of the impurity atoms;

b) the change, namely, the increase of periods of (n) = f (H) jumps.

Alteration of ap and of the parameter of the Coulomb repulsion between the
impurities Uy has an inverse effect: the decrease of o or the increase of U tends to
decrease (n) only and to insufficiently change the form of (n) = f (H). In particular,
the periods of jumps are the same in both cases.

The value of (n) = f(H) is more sensitive to temperature. Such a dependence
at T' = 100 K is presented in figure 2. The form of the curve repeats the curve in
figure 1 but it differs from the curve quantitatively: its value at low magnetic fields
is greater and its growth is sharper but at high fields such a growth is smaller.

3. The effect of the Green’s function decoupling

Microscopic studies of the intercalation and especially the adsorption have been
extensively carried out using different theoretical approaches. Each of them has
both advantages and disadvantages. The Heitler-London bonding without any charge
transfer from impurity atoms into the crystal or vise-versa was used, in particular,
in the induced-covalent-bond theory of the diatomic molecule adsorption [11]. How-
ever, this theory gives an incorrect result for the adsorption energy. In [12] it was
shown that a more correct result can be obtained using the Hartree-Fock approxima-
tion. Still, even if this approximation correctly predicts the energy adsorption, the
predicted charge transfer to the impurity atom is not compatible with experimental
evidence from the change of workfunction and the equilibrium distance between the
impurity and the crystal matrix.

There are discrepancies between different approaches in the Anderson’s mod-
el. Consequently, it seems reasonable to analyze the effect of the Green’s function
decoupling.

Let us consider the Callen’s decoupling widely used in the theory of magnetism
(see, e.g., [13]):

(b brbyr[bg ) = (ng) ((bprlby ) + x(bfbs) {{bs1bg)), (12)

where x is some arbitrary parameter, b;{, by are Fermion operators (f is an index of

radius-vector Ry).

Such a decoupling may be considered, on the one hand, as the Tyablikov’s de-
coupling, and, on the another hand, as the synthesized Hartree-Fock decoupling by
introducing parameter x therein [13].
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It may be shown that the result of this decoupling can be presented as a formal
change Wy — Wy + xUl{a; ag) and Wiy — Wig + xU(aga;) in (3), which indi-
cates the renormalization of the parameter, describing both crystal and impurity
characteristics.

Correlators {aga;) and (a]ag) can be obtained by a standard procedure, using
corresponding Green’s functions. Thus, we finally obtain the system of the transcen-
dental equations with respect to correlators (ag ai), (afao), {agao), (afai).

Let us analyze the Callen’s decoupling in the special case — infinitesimal param-
eter y and (ag ag) = (afa;)= (n). In this case

1

(n) = 5 { () + F(En)} .

where El, Eg, K are respectively Ey, Fy, K after the mentioned change Wy — Wy +
xU{afag) and Wiy — Wi + xU(ad ay).
After expanding the Fermi-Dirac distribution function in power series in y up to
the first order we obtain
2xU (Wgi (ai ao) + Wig(ag a1))
vV Woo — Wip)2 + 4[Wyg)?2

(n) = (n)ur

)

where (n)yp is an average number population of the impurity in the Hartree-Fock
approximation.

Thus, using a more common decoupling in comparison with the Hartree-Fock
decoupling we come to a quantitative change of the average number of the population
of the impurity only, namely, this number is greater.

4. Discussion and conclusions

The obtained results in the framework of various approximations indicate the
possibility of a considerably nontrivial change of electron population of the impurity
atoms by an applied quantizing magnetic field. As it follows from the self-consistent
solution of the problem, such a change causes renormalization energy characteristics
of the crystal+impurity system — VU, Ep which determine, in particular, the
kinetics of the intercalation or the adsorption, the number of the intercalated or
adsorbed atoms. In other words, by change of the applied magnetic field — by its
magnitude and the velocity of its change — one can actively effect the workfunction
and the process on the whole. The final answer to these assumptions needs additional
theoretical and experimental investigations.

The used model of the system with two impurity interacting atoms may be
considered as a model of the crystal+molecule system. In this case we retain the
electron structures of the atoms as a starting point for calculating the electron
structure of the molecule. This is the so-called valence bond approximation. On the
other hand, in the molecule orbital approach where the electrons do not belong to a
single nucleus but to as many as may be energetically convenient. There are different
opinions among the scientists about the usefulness of this or that approach.
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Herein above we presented some analogy between intercalation and adsorption,
which permits to describe both effects by the same model. No doubt, this analogy has
certain limitations. Consider some differences in those effects that produce nontrivial
specific manifestations in concrete cases.

The problems connected with the crystal surface, especially in the applied stud-
ies, are more complicated than simple crystal model systems. Thus, the comprehen-
sible standard techniques cannot be used in solving these problems. But within the
framework of even a simple model and technique from the very start, as it was noted,
it is necessary to solve a complicated eigenvalue problem. In other words, in the ad-
sorption problem, the crystal surface should be taken into account by all means while
in the intercalation problem, the crystal surface is unimportant. Such differences can
be considered as the differences of the “dimensionality” of the systems.

Consider one of the effects caused
by the dimensionality. In [1] the metal-
semiconductor transition, induced by
@ the adsorption of alkali metals on the

surface in the Na,Cs/Si(001) systems,
é surface is described by the dipole interaction.
The appearance of such dipoles is caused
@ by the adsorption (see figure 3). How-
ever, in the intercalated layer crystal, a
similar interaction is improbable since
the resulting dipole moment caused by
Figure 3. Schematic formation of a the charge transfer between the impuri-
dipole in the case of (a) adsorption (the  ty and the crystal is equal to zero (see
result is nonzero) and (b) intercalation  figure 3). Thus, in this case there is no
(the resulting dipole equals zero). dipole interaction.

van der WWaals gap
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EnekTpoHHEe 3anoBHEHHS AOMILLKOBUX aTOMIB B
KpuUcTani B 30BHILULHbLOMY KBAHTYIOYOMY MarHiTHOMy
noni

B.A.JlykisHeub

HauioHanbHuin yHiBepcuTEeT “JIbBiBCbKa NOMITEXHIKA”,
79646 JbBiB, BYNn. Banpepu, 12

Otpumano 3 nunuHa 2002 p.

O6roBoplOETLCS MOAESb, Sika LLO3BOJISIE ONUCYBATM 3apPSA0BUA CTaH 40-
MILLKOBOIrO atomMa $IK B SIBMLLj iIHTEPKaslOBaHHA LLapyBaToro Kpuctany,
Tak i B siBMLLI aacop6buii Ha kprcTaniyHii nosepxHi. B pamkax moneni aHa-
NiBYETLCS BMAMB 30BHILLHBOIO KBAHTYIOHOrO MarHiTHOro nons Ha Benu-
YMHY €NEKTPOHHOro 3arnoBHEHHS Takoro atoma. OTpumaHi pesynsraTtu
[O3BOJSIAIOTb PO3MNS4aTy 30BHILLHE MArHiTHeE noJse sk iCTOTHUIA akTop
BMJIMBY Ha siBMLLEe ancopOuii | iHTepkansuii.

Knio4oBi cnoBa: JoMilLKOBWI atoMm, iHTepkasnsLis, ancopbLis,
KBAHTYHKO4YE€ MArHiTHe roJse

PACS: 61.72.Bb, 68.35.D
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