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The static and dynamic dielectric susceptibility of the pseudospin-electron
model is investigated in the random phase approximation. The possibility
of the phase transition to the homogeneous phase, to the phase with dou-
bly modulated lattice period and to the incommensurate phase is revealed
in the regime 1 = const depending on the value of the chemical potential.
The phase separation on the homogeneous and phase with doubly modu-
lated lattice period is established and the phase diagrams (n,h) are built.
The influence of the tunnelling-like splitting on the phase transition picture
is studied. The presence of pseudospin-wave excitations and the smooth
excitation spectrum and the possibility of their superimposing are revealed.

Key words: pseudospin-electron model, phase transitions, excitation
spectrum

PACS: 63.20.Ry, 64.70.Kb, 71.10.Fd, 77.80.Bh

1. Introduction

The pseudospin-electron model (PEM) appeared in connection with the inves-
tigation of the role of the the locally anharmonic structure elements in the high
temperature superconductors (HTSC) in the formation of their electron spectrum
and pairing correlations which lead to the appearance of a superconducting state
(the crystals of YBaCuO-type structure). The electron subsystem in PEM is de-
scribed by the Hubbard Hamiltonian whereas the interaction of the electrons with
local anharmonic mode of lattice vibrations is treated using pseudospin formalism.
The model Hamiltonian looks as follows:

H = Z |:U7’LLTTL¢71 — ,M(TL@T + nm) + gSiZ(TLZ'?T + nz"l) — th — QS?]

—+ Ztijc:;o'cj,g (1)
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where the electron transfer (t-term), electron correlation (U-term) and pseudospin-
electron interaction (g-term) are included; energy of the local (tunnelling-like) level
splitting (€-term) and asymmetry of the local anharmonic potential (h-term) are
also taken into account [1-4].

The investigations of this model in the recent years were devoted to the analysis
of the structure of the electron spectrum with an allowance for strong short range
correlations [5], to the investigation of the charge and pseudospin correlations and
dielectric susceptibility [6,7] as well as to the pair correlations of the superconduct-
ing type [3]. The PEM thermodynamics was the subject of consideration as well.
The attention was paid to the equilibrium and metastable states and bistability
phenomena [8], the phase transitions between states with the different pseudospin
orientation and electron concentration in the regime of a fixed electron chemical
potential [9], the transitions into the phase separated states at a given value of the
average electron concentration [10]. The simplified PEM (at Q = 0 and ¢ = 0 but
with the inclusion of the direct pseudospin-pseudospin interaction) was the subject
of consideration in [9]. The possibility of the first order phase transitions between
uniform states and the tendency to the phase separation were established. Similar
results were obtained for the case ¢t # 0, {2 = 0 at the large values of the interaction
constant g both in the limit U — oo for the two-sublattice PEM [11] and for the
simplified version of the model at U = 0 [12,13]. The investigation [12] was carried
out in the framework of the dynamic mean-field theory (DMFT) approach that is
exact in the limit of the infinite dimensionality of space; in the paper [13] the ther-
modynamically consistent scheme of the generalized random phase approximation
(GRPA) [14] was used. In the case g > W (W is a half-width of the electron ener-
gy band) the electron band is always split and this defines the peculiarities of the
system behaviour. The possibility of the appearance of the doubly modulated (the
so-called chess-board) phase was shown [13] for the simplified PEM (U =0, Q = 0)
in this case. Phase diagrams which describe the transitions between homogeneous
and modulated phases at the change of the field h, the electron chemical potential
i and the temperature 7" were built.

The PEM has a relation to the known in literature and intensively investigated in
recent times Falicov-Kimball (FK) model [15], in which the interaction between the
localized and the moving particles (electrons) is taken into account. The presence of
homogeneous, chess-board and incommensurately modulated phases, the transitions
between them as well as the possibility of the phase separation were revealed for
this model [16-20] using the dynamic mean field approximation. The existence of
the phase transition from the uniform to the chess-board phase in the regime of the
fixed electron chemical potential u. and fixed concentration of localized particles p;
was shown in the limit d — oo [16]. The phase diagram built by J.Freericks [17].
manifests that an incommensurate phase can be stable at intermediate values of y. in
the case of a weak interaction and disappears at the increase of the coupling constant.
To track the first-order phase transition to the segregated phase, the behaviour of
Helmholz free energy was studied in [20] in the cases of the hypercubic and Bethe
lattices. In the regime of the fixed itinerant particle concentration p. the transition
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to the chess-board phase was continuous (a second order phase transition). The
phase separation diagrams (7', p.), (T, p;) were built including both strong and weak
coupling cases.

The simplified PEM corresponds directly to the FK model in the case when the
interaction between electrons and tunnelling-like splitting in the PEM are absent
and when the localized and the moving particles in FK model have different chemical
potentials. But even in this situation, the regimes of thermodynamic averaging are
different in both cases (a fixed concentration of the localized particles for FK model
and a given value of the field h for the PEM). In general case, the PEM is not
equivalent to FK model and thus thermodynamics of the PEM can possess its own
features.

The aim of this paper is to investigate the thermodynamically stable states of
the system, described by the PEM at U = 0 in the case of weak coupling, when the
interaction constant ¢ is small in comparison with the width of the electron band
2W (it was shown in [12] that the electron band does not split in this case). The
behaviour of dielectric susceptibility will be analysed for this purpose. The features
of excitation spectrum of the PEM will be the subject of investigation as well.

The thermodynamics of the PEM in the case of weak coupling was considered
for uniform and chess-board phase in the mean field approximation in our previous
paper [21]. It was shown that the system can undergo the first order phase transition
between uniform phases and the first or the second order phase transition from the
uniform phase to the phase with doubly modulated lattice period. The (h, u), (T, h)
phase diagrams were built, and the phase separation for the uniform case was in-
vestigated. However, some problems of thermodynamics (such as the possibility of
transition into the incommensurate state, the phase separation with the participa-
tion of the chess-board phase) and dynamics (the spectrum of collective excitations)
were out of attention in [21]. These problems are considered in the present paper.

The dielectric susceptibility in the dipole approximation is determined by the
Green’s function constructed of the operators of the electric dipole momentum. In
the case of isothermal response

B )
V(@ wn) = / (T M(0)M (7)) 7" dr — B(M)6(w,) 2)

it is expressed in terms of the Matsubara Green’s function. The so-called “isolated”
response is described by means of the two-time Zubarev Green’s function

xi(q;w) ~ ((M|M))g. - (3)
The dipole momentum of the unit cell can be taken in the form [4]
M; = den; + dsS7, (4)

where the electron contribution arising due to nonhomeopolarity of filling of the elec-
tron orbitals is taken into account besides the pseudospin contribution (connected
with the displacement of an anharmonic ion). In crystals with the structure of the
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high-T;. superconductor YBayCuzO7_s type the expression (4) corresponds to the
transverse component of polarization (this component is connected with the motion
of the apex oxygen ions along the direction normal to the Cu-O layers [4]).

2. Random phase approximation

At first we will calculate the isothermal susceptibility yr using diagrammatic
approach. Consideration of the model in the weak coupling approximation will be
carried out similarly to the traditional investigation of the weak one-site correlation
U in the Hubbard model. In the case U < W the Hartree-Fock approximation can
be applied as a zero-order one, using the decoupling

Unen_e — Ulng(n_g) + n_o(ns) — (ne)(n_s)).

It makes it possible to satisfactorily describe the magnetic properties of the Hubbard
model in the case when the correlational splitting of the electron band is absent (see,
for example [22]). For the simplified PEM with U = 0 the interaction constant g
plays the role which is similar to that of the energy U in the Hubbard model. At the
decrease of the constant g below a critical value (¢ ~ W) the system should pass
to the mean field regime of the Hartree-Fock type. The analysis performed in the
framework of the DMFT shows that in this case the gap between the two energy
subbands in the electron spectrum disappears.
Based on the above mentioned arguments we use the approximation

gniS; — gni(S7) + g(ni) 7 — g{ni) (), ()

constructing the zero-order Hamiltonian. Here the pseudospin-electron interaction
is taken into account in the spirit of the mean field approximation (MFA) through
an internal self-consistent field which acts on electrons and pseudospins.

The initial Hamiltonian can be rewritten as a sum

H = HO—l_Hint)
Hy = Hq+ Hs+ U,

Hel = 2(977 - M)nl’ﬁ + Z tijC;Jij )

i,U ivjvo-

Hy = llgn—m)S; +0s),
U = —g) nn = —Ngn,

Hye = Y (nip +niy —n)(S; = n). (6)

(2
The unperturbed Hamiltonian H, can be diagonalized by means of the transition to

k-representation and using the transformation

S; = o;cosf+ofsind,
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SY = o) cosf —o;sinb,
sinf = /A, A= /(g(n) — h)2 +Q2. (7)
As a result,
Hy = —AZU — gNmn+ > (g1 — p+ i) ke
k,o

Hint = gz Ze = k/)RZ Ckack/ - n)(SZ _77> (8>

Uk:k’

To calculate the susceptibility yr we use an approximation which is analogous
to the random phase approximation (RPA), which is usually applied in the case of
pseudospin systems with the direct interaction between pseudospins, or to the gener-
alized random phase approximation (GRPA) elaborated at the consideration of the
strongly correlated electron systems. As an example, first of all we will calculate the
Green’s function (7,57(7)S7(7')), where the operators are in the Heisenberg repre-
sentation A(7) = e Ae™™#. Using the standard representation of the exp(—3H)
operator

e = Phg(B), o) =Texp (— [ Hun(r)dr) (9)

we obtain the following expression for the function (7.5%(7)S*(7"))

(T8(7)5*(7) = e (TS (IS ) (9.
(T-8%(1)S*(7)a(8))§ = cos® O(Tro*(T)o* (') o (B))5 + sin® O(Tr0" (7)o" (7)o (B))§
+ sin @ cos O(T,0% (7)o" (") (B))§ + sin 6 cos (T (T)o* (") (5))§ - (10)

Here the operators are given in the interaction representation A(7) = e™H0 Ae~7Ho,
the averaging (...)o is performed over the distribution with Hy, the symbol (...)§
denotes the separation of the connected diagrams. We will do an expansion in powers

of Hiy:

£
(Tro7 (r)op (7)) = (Trof (T)oy (7))o — /0 dri(Tro7' (1) (') Hin (7))o

1 B B
+5 [ dn / Aro (T8 (7)ol (7") Hing (71) Hin (72) )0 — ... . (11)
+JO 0

Calculating the mean values of the T, -products of the pseudospin and the electron
operators we use the diagrammatic techniques based on the Wick’s theorem for the
spin operatoes [23] (besides the usual procedure for the Fermi operators). After elim-
ination in this way of the nondiagonal o® operators we perform the semi-invariant
expansion in order to calculate the mean values of the remaining products of the ¢*
operators.
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We use the following unperturbed Green’s functions

(Trof (T)oy () = —2(c%)oKp (T — 1),
(Treno(T)oe (T )0 = OwGRo(T — 1)

and semi-invariants [23]:

(Trof(T)op (7))o = b+,
<T7-O'ZZ(T)O'lZ/ (T/)O'lz//(T//)>0 = b3 + bb/(éll/ + 6l/l// + 6ll”) —|— b[Q](Sll/(SHN s

etc. Here
1 BA 0b a"b
b=0b(B)\) = (0f)o = = tanh =~ ¥ = ———; b = :
(53) = (o) =  tanh o o
In the diagrammatic notations
Kp(r—1): T_s_ EI ; GO (r—7) T—k>—T :
(o}

After the transition to the w, k-representation, where
1 —iwn (T1—72) 1 ik(Ri—R;) 170 0
BZe NZe Ki(wp) = Kjj(11 — 1),
n k

and

1

iwp =ty — g+ p’
1

iw, =\

0 _
Gka -

Kg(wn> =

(12)

(13)

(14)

(15)

At the summation of diagrams for the functions (10) we restrict ourselves in the
spirit of the RPA (or GRPA) to diagrams having a structure of multi-loop chains.
It should be noted that the usage of the MFA Hamiltonian as the zero-order one
leads to the compensation of diagrams, which possess the “single-tail” inclusions
(having a Caylee-tree structure and consisting of the electron loops) into the Green’s
function lines and into ovals, corresponding to semi-invariants. The corresponding
mean-field corrections are taken into account in the zero-order functions K°, G° and

semi-invariants b,

At the consideration of the second order terms for the (T0, (7)o} (7)) function

we consider only the diagrams of the following type:
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__-.-—@—-)-—@

%sin2 992K2(wn)(az>0Hq(wn)K2(wn)<UO>0. (16)

with the contribution

Here we have introduced the notation:

wn - BN Z lea wnl kl qa(wnl _wn>'

Wny k1

The diagrams of the forth order, which we take into account, are as follows: such

a diagram

appears due to the term

(Tro) (7)o (7') 0, (11) o3, (72) 07, (73) 07, (74)),

and these two diagrams

O O OO

appear due to the term
(Troy (T)oy (7)o, ()05, (72) o (73) 07, (7))
The resulting contribution of the forth order is given by the following expression
%sin2 0g* KO (+)(0.)oXIIK(+)(0.)0, (17)

here

K(+) = K (w), K°(—) = K (—wy), M = M,(w,) = B cos® 05(w,,).
We have introduced here the irreducible part
K(+) + K°(-)

2

The junctions between electron loops are realized by semi-invariants or by the boson
Green’s functions K°(+), K°(—).

The contribution of the sixth order where the diagrams of the above considered
type with three electron loops are taken into account is equal to

¥ =sin® 0 (0%)g — M.

5 sin? 0P KO (4) {0 ) SIS (+) (o) (18)
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As a result, we will have the following series:

_ 1 -
K= = —§<TU T )yg

= %sin2 06> K°(+){0%)oI1(1 + g*SIT + g*(BM)? + .. YK  (+) (o). (19)

Its sum is equal to

1

1
+- 22 2710 z
K~ = 5 Sin 09" K" (+)(c >0H1 pe

4 K°(+){0%)o. (20)
The series (19) is similar to that obtained in the RPA in the case of a direct electron-
electron interaction [6]; the semi-invariants and boson functions play a role of the
vertices joining the electron loops. In the case of the PEM with the direct pseudospin
interaction the latter have a meaning of the zero-order irreducible parts which are
connected one with another by the interaction lines.

Similarly we obtain the expressions for functions K, (wy), K" (wn), K, ™ (wn).
In general
K28 = Lsin? QgQKO(a)<aZ)OHH+mKO(—ﬁ)<UZ>0. (21)

q

Thus, we can find the Green’s function (To%0"), = —2K7"(w,); here

T 1 —— — —
Ki®(w,) = =(KT"+ K ~+K T+K")

4
= LK)+ KOO0,
Loy oK)+ KO(—) I K(H)+K(), .
+ 5 sin g 5 (o >01 S 5 (0%)o .

(22)

In a similar way we can find the functions (T'oto?), (To*0*), (To~ ¢c*) and thereafter
obtain the expressions for K** and K~**:

K°(+)+ K°(-) I
z M
2 (o mmn M
1 M 1, 1

1
K% = —3 tan f¢g>

K= = " 2cos26 * 2cos26” Ml — gQZHM' (23)
Finally, we can write the correlator (1'S%S%), :
(TS*S%) g, = — 1o (24)
This expression can be interpreted as a solution of the equation
—(T5%5%) 4, = 6 = X + 5g%11,6 (25)

480



Pseudospin-electron model at weak coupling

which is analogous to the Larkin equation for the system with a direct interaction
—J;35755. The factor g*I1, plays the same role as an interaction (.J, in the latter
case. Explicit expressions for an effective interaction function II,(w) and irreducible
part ¥(w) are the following (here the analytical continuation iw, — w is performed)

n(t
L, = NZ w+t —tk e
k k—q

Y = sin? HM — BV cos® 5(w), (26)

w2 — )2

v o= ()

In the case w = 0, the correlator (T,5%S*) is given by the expression

Mo#)osin? 6 + \23b cos? 0
—\2 — 21, sin? OA(0)g — N2g2TL, Bl cos?

(T'S*5%), = (27)

Let us calculate now the isolated susceptibility x1(¢,w) (3) in the same approx-
imation. We can use, as usual, the equation of motion method for the two-time
Green’s functions. At first, writing the equation for the function ((o|o;")) we will
find the commutator

o H) = —g(niy +ny)) cosbo;t + g(niy + nyp) sin 0o + Q cos fo? + Qsin o}
+ hcos ot — hsinfo?. (28)
After decoupling in the spirit of the Tyablikov approximation we have

([0, Hllo7)) = ((Aoi" + gsinO(niy +niy)(07) oy ). (29)

Here the relation ((o7|o,")) = 0 is taken into account; it follows from the fact that
in the adopted approximation [o7, H] = 0.

The Green’s function ((n;;+n;|o; )) can be found using the following procedure.

Let us write the equation for the function ((cjficjo;)). Having separated, at the
decoupling of the higher order Green’s function, the pseudospin and electron degrees
of freedom we have

({chejlor)) = glchep) sin0{((o] — o7)loy))
+ ) tiellchenlor)) =D tullcheilon)). (30)
k k
After the transition to k-representation one can obtain the following expression:
(Gt 1natlom)) = = (07 o))y B ks — i + k). (31)
Respectively, we can write for ((n;;|o,)):
((nitloy)) = & 2y, e BT (w)g sin O{o"|o) )i - (32)
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Returning to the Green’s function ({o;|o;)) and using (29) we have the equation:

ho((o*|o07))q = 55(0%) + M{0F|07))q + g7 sin? (o)L, (w){(0%]o))g - (33)

2

In a similar way one can find the equation for the Green’s function ({(o; |0, )):
hwo({{o7]07))g = =M{0707))g — g*sin® 0(o*) T, (w) ((0*]07))q (34)

From the equations (33) and (34) we can find functions ((6%|c%)), and ((S%|S?)), =
sin? 0({0*|0?)),. Finally

sin? 0(o*)\

{({5715%))q = w? — A2 — \gZsin® 0(c?) 11, (w)

(35)

The decoupling procedure used herein is equivalent to the random phase ap-
proximation in diagrammatic method for the systems with direct interaction. The
obtained result is similar to the one (expression (24)) for the Matsubara Green’s
function but differs from it due to the absence of the terms proportional to d(w). It
is a manifestation of the difference between the isolated x; and isothermal yr sus-
ceptibilities of the PEM and is characteristic of Ising-type models with a transverse
field [24].

In a similar way, (using the equation of motion method and a decoupling proce-
dure) we can find the Green’s functions ((n|n)),, ((n|S*)), and ((S*|n)),. Thus the
susceptibility x; can be written as follows:

X1 = dg (%Hq + 492H3<<SZ|SZ>>C1) + 4dedngq<<SZ|SZ>>q + d§<<SZ|SZ>>q- (36)

The expression for the susceptibility yT, obtained within the framework of the dia-
grammatic approach has a similar form, but the function ((S%|S%)), is defined by the
formula (24) instead of (36). We see that the static isothermal susceptibility, which
is measured experimentally when a system is in equilibrium with the environment,
does not coincide with the static isolated susceptibility.

3. Instabilities and phase transitions

Investigations of thermodynamically equilibrium and stable states of the PEM
performed in the weak coupling case revealed (in the p = const regime) the possi-
bility of the phase transitions of the first or the second order both between uniform
phases (with a jump of the pseudospin mean value 7 and electron concentration
n) and into the doubly modulated phase [21]. An analysis of the possibility of the
other type of orderings (including the incommensurate ones) can be performed when
one studies the behaviour of the static dielectric susceptibility yT and obtains an
information about the stability loss by investigating the singularity points of the
function yr. The thermodynamic parameter values, at which yt — 0, determine
the spinodal points. The equation

A2+ g2 sin? O\ (07011, + A2g*Bb' cos® OT1, = 0 (37)
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was solved together with the equations for the mean values n and n

1 1
n — ~ E}w (Plomtte—) 4 1)~1 = N kga f(Ex — p),
h —gn B 1
— h( 22 — =
7 S5 tan ( 5 ) f=7 (38)

written in the MFA. The numerical calculations were used to calculate II, (square
lattice is considered, direct momentum summation is used; in our calculations we
put W =1).

At the fixed values of the chemical potential, the critical point can be defined
as an upper point of spinodal (on the (7, h) plane) with the highest temperature
depending on the wave vector ¢ value. Figure 1 shows the dependences of the critical
temperature and the corresponding wave vector on the chemical potential in the case
2 = 0 (only positive values of the chemical potential are shown; at h = g, the picture
is symmetrical with respect to the point u = 0 which coincides with the centre of
the energy band). We can see that the case ¢ = (m, 7) is realized when |u| < 0.25 at
the chosen values of the parameters, which means that the system can pass into the
phase with a doubly modulated lattice period. The case ¢ = 0 (the transition into
the uniform phase) is realized when 0.85 < |u| < 1.25 (1.25 = W + ¢/2; this value
corresponds to the upper edge of the band when (S*) = 1/2). The system undergoes
the transition to the incommensurate phase at intermediate values of the chemical
potential.

Figure 2 shows the dependences of the critical temperature and the corresponding
wave vector on the chemical potential in the case € = 0.2. We can see that the
presence of the tunnelling splitting narrows the interval of values of u at which the
above mentioned transitions take place; at high enough values of €2, the transition
into the chess-board phase occurs only [21]. At the decrease of the pseudospin-
electron coupling constant g, the interval of the values of i at which the cases ¢ =7
and g = 0 are realized will become narrower.

] 0.15 |
3.00 A 1
0.10
o 1 [
1.50 A _
1 0.05 1
008 80640 G680 T30 008 30640 G680 1.30
M M

Figure 1. The dependences of the modulation wave vector ¢ = (¢,¢q) and the
temperature of absolute instability of high-temperature phase on the chemical
potential, 2 =0, g = 0.5.
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0.15
3.00 7 0.10
o B~
2.75j 0‘05:
258 86016 030 030 0-08 36616 G630 0.30°
7 7

Figure 2. The dependences of the modulation wave vector ¢ = (¢,¢q) and the
temperature of absolute instability of high-temperature phase on the chemical
potential, 2 = 0.2, g = 0.5.

The case ¢ = 0 was considered more in detail in the paper [21]. Using the set of
equations (38) and the expression for the grand canonical potential

o T BA
= (n=tk—gn)/TY _ (RSN
NN ,; In (14 e#==9n/T) — Tn (2 cosh 5 > gnm, (39)

it was shown that the system undergoes the first order phase transition between two
uniform phases with jumps of the electron concentration and pseudospin mean value
[21]. The phase transition line in the (7', h)-plane terminates in the above considered
critical point. The line has a bent with respect to the T-axis which makes the phase
transition possible with a change of temperature. The presence of the tunnelling-like
splitting leads to the decrease of the phase transition temperature.

Let us consider now the case of double modulation of the lattice (the ¢ = 7 insta-
bility), when the crystal is divided into two sublattices. We introduce the notations:
Na = (S&), Mo = Y, (Niao) (v = 1,2 is the sublattice index), ¢ is the unit cell index.
The following set of equations for the electron concentrations and pseudospin mean
values in sublattices is obtained in this case:

1 1+cos2¢ gy oo ,  1—cos2¢ _ _
= — — 12)7H 1] T PRy 4 1)L
ma = g2 (Fy e ) S e 1))
h_gna 55\04
w = —————tan | —|; Q@ . 40
U 30 ( 5 ) # B (40)
Here
t a2
sin 2¢ = b , cos2¢ = 7 2 ,
(9771;772)2+t% (gn1;772)2+t%

=12 =0, t=t2==Y tE-f) g
i
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0.15 { 0.12 //\
| 1 \ ' /I’
] /2\\ A
v : /'.
0.10 - AN ANV
: " \ / \ 0.08 ! \ :
PVl — PN
B VAN AN
AEANNIN AAERN
0.05 1 s N 0.04 v \
foo V] =z N
1A Y N P N
[P ] N g : LN
008 35628 055 08s 0'08.49"'o:ss"'o.'}éiz“'o:7'o """

Figure 4. Spinodal (dashed line) and
the line of the phase transition (sol-
id line denotes the second order phase
transition, dotted line denotes the first
one) from the uniform to doubly mod-
ulated phase (2 =0, p=0.2,9 = 0.5).

Figure 3. Spinodals (dashed lines) and
the lines of the phase transitions (sol-
id line denotes the second order phase
transition, dotted line denotes the first
order phase transition) from the uni-
form to doubly modulated phase (1 —
2=0,2-Q=02; u=0,g=0.5).

m+ -
: 772HF\/(gm Byoy g2,

A =
k12 =49 B 9
5\172 = \/(gnm - h)2 + 02, (41)
The grand canonical potential in this case is given by the expression:
o T
- _ In(1 ~(M=m)/Ty(q —(Ak2—p)/T
N/2 N ; n(l+e J(1+e )
A A
—TIn (4 cosh % cosh %) — g(nim + nang). (42)

The phase transitions between uniform and doubly modulated (chess-board) phases,
at which the difference 17, — 19 (or ny — ny) plays a role of the order parameter,
can be described by comparison of potential (39) and (42) and separation of the
thermodynamically most stable states. The phase transition lines from a uniform to
a doubly modulated phase are shown in figure 3. The spinodal points are presented
in this figure as well. This transition is of the second order (solid line) when the
spinodal (dashed line) coincides with the transition line, otherwise the transition is
of the first order(dotted line) (see [21]).

The increase of the tunnelling splitting leads to the decrease of the critical tem-
perature. It can be shown (see [21]) that in the case of a square lattice, when the
electron DOS possesses a logarithmic singularity in the centre of the energy band,
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Figure 5. (n, h) phase diagram, {2 = 0. Phase separation regions are shown for
different temperatures: (a) 7' = 0.008, (b) 7" = 0.08. Dashed lines denote the
borders of the uniform phase, thick solid lines denote the borders of the phase
with doubly modulated lattice period.

there does not exist a critical value of {2 at which critical temperature is equal to
zero; at large values of €2, the following expression for the critical temperature is
obtained:

(43)

V2
TF =~ 2W exp <—7T W) .

gV2

Figure 4 shows the phase transition line and spinodal in the case p = 0.2, = 0.
Comparing with the case ;= 0, we can see that the picture is a asymmetric. There
are two temperatures at which the phase transition changes its order (from the first
to the second one). Lower temperature corresponds to the higher value of the field
h.

The fact of the existence of the first order phase transitions between uniform and
doubly modulated phases points to the possibility of separation into these two phas-
es. It takes place at certain values of the electron concentration. The corresponding
(n, h) diagrams are shown in figure 5. The chemical potential within the interval
corresponds to the existence of the chess-board phase (see figure 1). The borders
of the separation regions were obtained from the convexivity condition of the free
energy defined as F//N = ®/N +nu. At the increase of temperature, the separation
area narrows and at the high enough temperatures, the phase transition is of the
second order and the phase separation region disappears.

4. Spectrum of excitations

The collective excitation spectrum of the system is described by the imaginary
part of susceptibility x1 (or xr) as a function of frequency and wave vector. We will
consider the case when the electron energy band is almost empty: u — gn = W,
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T — 0. Let us find the more explicit expression for

I, (w) = Z T~ Mg

- w+tk—tk,q

in this case. At the small values of ¢, we can expand in powers of ¢ the denominator
of the expression for II,. One can obtain the following result for the real part of II,
in the cases w > 2tkpq + ¢*t and w < —2tkpq + ¢*t (the imaginary part of II, in
these cases is equal to zero):

kgt 2
Rell, = 2 (w > 2thkpq + ¢°t),
2
Rell, = 27”1;275 (w < —2tkpq + ¢°t), (44)

here kp = /(W — gn + p)/t — Fermi momentum. The imaginary part of the Green’s
function ((M|M)) has a delta-peak when the denominator in (24) is equal to zero
and ImII, = 0. The following expression is obtained for the frequency of this peak
(which describes the pseudospin-wave excitations):

kiq?t

wps = A—g°sin?0(c?) oy (w > 2tkpq + ¢°t), (45)
k2
wps = A—g°sin?0(c?) 27?2215 (w < —2tkpq + ¢*t). (46)

In the frequency region —2tkpq + ¢°t < w < 2tkpq + ¢*t the imaginary part of
I1, is different from zero and the delta-peak disappears. There exists a continuous
electron excitation spectrum instead. Dispersion curves of the pseudospin-wave ex-
citations and continuous excitation spectrum are shown in figure 6. Such a picture

0.04 S

0.03

A
30.02 -

0.01

0.00 ¥+t DL o e 1

Figure 6. Excitation spectrum of the system. p = 1.22, Q = 0.01, T = 0.006,
h~1.02, kp = 0.1.
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of the spectrum is similar to that obtained for magnetic systems when the RPA
is applied to investigate the ferromagnet with itinerant electrons described by the
Hubbard Hamiltonian (see [25]). From the behaviour of magnetic susceptibility, the
presence of spin-wave excitations and wide continuous spectrum of the Stoner-type
excitations was deduced; these two spectra can superimpose. The similar picture is
characteristic of the s-d model (see [26]), here the itinerant electrons and localized
electrons (spins) are taken into account. It was shown in the framework of the RPA
that there exist two branches of spin-wave excitations (optical and acoustic ones)
and the renormalized spectrum of Stoner-type excitations. The mechanism, which
generally leads in the magnetic systems to the appearance of spin-wave or magnon
excitations (sharp peak in the excitation spectrum) is connected with the interac-
tion between the electrons and the interaction of electrons with spins. In the PEM,
the mechanism is analogous: the appearance of the collective spin-like excitations is
connected with the presence of pseudospins and their interaction is connected with
conducting electrons.

5. Conclusions

The pseudospin-electron model in the case of weak pseudospin-electron coupling
is considered in this paper in the framework of the approximation, which is of the
type of the RPA (or GRPA). The analytical expressions for isothermal and isolat-
ed dielectric susceptibility are obtained. The points of absolute instability of high-
temperature phase are found. It is revealed that similarly to the case of FK model
the transition to another uniform phase occurs when the chemical potential is sit-
uated near the band edges. The transition to the phase with a doubly modulated
lattice period takes place when the chemical potential is near the band centre. The
incommensurate phase is realized at intermediate values of the chemical potential.
The increase of the tunnelling parameter (2 narrows the interval of p-values at which
the phase transitions take place. For the n = const regime, the conditions of the ap-
pearance of the phase separation connected with the phase transitions between the
uniform phase and the phase with doubly modulated lattice period are established.

It is interesting to compare the herein obtained results with the ones for the
FK model at small values of the constant of the interaction between localized and
itinerant particles. As it was mentioned in the introduction, in the case of the FK
model, the possibility of the appearance in the system of the chess-board and segre-
gated phases was revealed [16,17]; in [17] the presence of incommensurate phase was
established. The incommensurate phase is realized at the intermediate values of the
chemical potential of electrons and the chess-board and segregated phases are real-
ized when the chemical potential is near the band centre and near the band edges,
respectively. A similar picture is obtained here for the PEM. But, in contradiction,
we consider in this paper the two dimensional lattice. This gives an advantage at
the interpretation of the dielectric susceptibility divergences due to the explicit de-
pendence of the xr(q,0) function on the wave vector. In the d — oo limit, such
a dependence enters only through the function X(q) = 52? cos g; [16]; it leads to
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some difficulties at the consideration of incommensurate ordering. Besides, in [16,17]
the regime of the fixed concentration of localized particles was used; in the PEM
this corresponds to the regime (S*) = const. It is not inconceivable that the usage of
such a regime led the authors to the conclusion that the transition to the chess-board
phase at g < W is always continuous (of the second order one) and the spinodals
were considered to be the lines of the phase transition to the chess-board phase. We
did not use here such a regime and analysing the behaviour of the grand canonical
potential we showed that the transition to the chess-board phase can be both of
the second order (the spinodals are the phase transition lines) and of the first order
(spinodals do not coincide with phase transition lines). Due to the presence of the
first order phase transition to the chess-board phase, the possibility of the phase
separation on the uniform and chess-board phases in the case of weak coupling was
demonstrated. Such a possibility, as was shown in [18], exists in the case of large
values of a coupling constant. It should be mentioned that in [20] the possibility of
phase separation on the different uniform phases was investigated only. Such a possi-
bility was established for the PEM in our previous paper [21] at the consideration of
the first order phase transitions between uniform phases. In contradiction to the FK
model we take into account in the PEM the tunnelling-like splitting and investigate
its role in the phase transition picture. We showed that its presence leads to the
decrease of the phase transition temperature and to the narrowing of the region of
the p values at which phase transitions take place.

The phase transitions in the PEM at a weak coupling are similar in general
to that revealed in this model in the case of a strong interaction, g > W [13].
However, the transition to incommensurate phase is not present at a strong coupling.
This transition reveals itself only at the weak coupling. The physical mechanisms of
transitions in these two cases are different; in the strong coupling regime the band
is always split and the transition into the modulated phase or between the uniform
ones is connected with the reconstruction of the electron spectrum in subbands while
at a weak coupling the band remains unsplitted in the case of transitions between
different uniform phases; the splitting of the initial energy band occurs only for the
transition into the chess-board phase.

Analysing the behaviour of the dynamic susceptibility it was shown that there ex-
ists a smooth electron excitation spectrum besides the pseudospin-wave excitations.
These two types of spectrum can superimpose one another. Such an excitation spec-
trum is similar to that revealed for magnetic systems, the appearance of sharp peak
in the excitation spectrum is connected with the presence of pseudospins and their
interaction with electrons.
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MceBpocniH-eneKTpoHHa Mmoaenb 3i cnabkoro
B3aEMOAIEI0

[.B.Ctaciok, T.C.MucakoBu4

IHCTUTYT @i3ukun koHOeHCcoBaHMX cuctem HAH YkpaiHu,
79011 JlbBiB, ByN. CBEHLjLBKOrO, 1

Otpumano 17 TpaeHs 2002 p.

JocnigxyeTbcsa cTaTnyHa Ta AMHaMIYHA OieNnekTpuyHa CNpUNHATANBICTb
nceBOoCniH-eNeKTPOHHOT Moaei B HAONMXEHHI XaoTUYHNX pas. B pexu-
Mi = const BUSIBIIEHO MOXUBICTb a30BOro nepexony 40 OAHOPIAHOI
da3un, dasu 3 NOABIHOK MOAYSLIED Nepioay rpaTkn Ta HECMIBMIPHOI
dasu B 3aNE€XHOCTI Bijj, 3HAYEHHS XiMIYHOrO NoTeHLujiany. BusasneHo MOX-
NuBIiCTb HGa30BOro po3LwWwapyBaHHsa Ha 0gHOPIAHY ¢asy Ta paldy 3 NoaABO-
€HHSIM PaTKoOBOro nepioay Ta nobyaosaHo ¢pasosy giarpamy (n, k) . Jo-
CNig>KeHO BMAVB TYHENBHOIr0O PO3LUENIEHHsS Ha ¢da30oBi nepexoaun. Bera-
HOBJIEHO MPUCYTHICTb Y CUCTEMI NMCeBAOCHMiIH-XBUIbOBUX 30YIXEHb, He-
NepepBHOro CrnekTpy 30yaXeHb Ta MOX/IMBOCTb iX B3AEMOMNEPEKPUTTS.

Knio4oBi cnoBa: rncesaocniH-e1eKTPOHHAa MOAe b, (pa30Bi nepexoau,
CriekTp 30y aKeHHSs

PACS: 63.20.Ry, 64.70.Kb, 71.10.Fd, 77.80.Bh
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