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Within the model proposed earlier, we study the effect of hydrostatic pres-
sure on relaxational dynamics of deuterated KD2PO4 type ferroelectrics.
Within the four particle approximation for deuteron ordering model and us-
ing the Glauber approach, we calculate the longitudinal dynamic dielectric
permittivity of the strained crystal. Possible pressure dependences of the
permittivity and relaxation times are discussed.
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1. Introduction

Lately, much attention has been paid to the investigations of an external pressure
effect on static dielectric properties of hydrogen bonded ferroelectrics of KH2PO4

family. Hydrostatic pressure is known to reduce transition temperature, spontaneous
polarization, and Curie constant in these crystals [1]. The pressure derivatives of
these characteristics for KH2PO4 and KD2PO4 were already successfully described
within the proton ordering model by Blinc [2] and Tortsveit [3]. In our recent papers
[4–6], we developed a unified approach allowing one to consistently describe pres-
sure effects on transition temperature and on static dielectric properties of several
ferroelectrics and antiferroelectrics with general formula MeD2XO4, where Me = K,
Rb, ND4, X = P, As.

Much less attention is attracted by dynamic dielectric properties of strained hy-
drogen bonded crystals. To our best knowledge, no experimental data for pressure
effects on dynamic permittivities of KH2PO4 family crystals has been reported yet.
The aim of the present work is to study within the earlier proposed approach, the di-
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electric relaxation in deuterated KH2PO4 type ferroelectric deformed by hydrostatic
pressure.

Starting from the pioneering work by Yoshimitsu and Matsubara [8], the relax-
ation dynamics of deuterated KD2PO4 type crystals has been studied within the
framework of the Glauber approach [7]. The longitudinal relaxation of paraelectric
KD2PO4 was considered, with taking into account only the short-range correlations
between quasispins. Later, the proposed approach was elaborated in [9] and in our
papers [10–13]. Both ferroelectric and paraelectric phases were considered, and the
long-range interactions were taken into account. Expressions for transverse and lon-
gitudinal dynamic dielectric permittivities of the crystals, as well as for relaxation
times were obtained; the theoretical results were compared with the experimental
data, and the set of theory parameters providing the best fit to the experiment was
found. Another approach to a description of deuteron dynamics in KD2PO4 type
crystals is based on the usage of Bloch equation [14–16]. However, it gives worse
results than Glauber approach, because of the mean field approximation used.

In the present paper, we apply the method developed in [10–13] to the description
of longitudinal relaxation in KD2PO4 type crystals strained by hydrostatic pressure.

2. Model of strained KD2PO4 type crystal

We consider a deuteron subsystem of a ferroelectric crystal of KD2PO4 type to
which hydrostatic pressure and external electric field directed along one of the crys-
tallographic axes are applied. The four-particle cluster Hamiltonian of the system
has a conventional form

Hq = V
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where two eigenvalues of the Ising spin σqf = ±1 are assigned to two equilibrium
positions of a deuteron on the f -th bond in the q-th unit cell, tunnelling being
neglected.

Constants V , U , and Φ describe the short-range correlations between deuterons.
They are given by the following functions of Slater energies ε, w, and w1

V = −
w1

2
, U = −ε+

w1

2
, Φ = 4ε− 8w + 2w1 . (2)

The fields zi
qf include the effective cluster fields ∆i

qf created by the sites neigh-
boring on the qf -th site, external electric field Ei applied along one of the crystallo-
graphic axes, and the long-range deuteron-deuteron interactions (dipole-dipole and
indirect via lattice vibrations) taken into account in the mean field approximation

zi
qf = β[−∆i

qf +
∑

q′f ′

Jff ′(qq′)
〈σq′f ′〉

2
+ µi

qfEi]. (3)
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Hydrostatic pressure effects on the system are described within the approach
developed in [6]. It is known that the Slater energies ε, w, and w1 and the components
of the long-range interaction matrix Jff ′(qq′) are proportional to the square of the
separation between two possible positions of a deuteron on a bond – D-site distance
δ. According to [17], the variation of the D-site distance δ with hydrostatic pressure
in KD2PO4 is linear

δ = δ0 + δ1p.

We expand ε, w, w1, and Jff ′(qq′) in powers of pressure up to the linear terms.
Other mechanisms of pressure influence the energy parameters of the model, like,
for instance, electrostriction and changes in distances between the dipoles due to
the lattice deformation are taken into account by expanding ε, w, w1, and Jff ′(qq′)
in powers of the components of the lattice strain tensor εi up to the linear terms, so
that

ε = ε0
[
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3
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+

3
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and

Jff ′(qq′) = J
(0)
ff ′(qq
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[
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3
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+
3
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ψj
ff ′(qq
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Pressure is expressed in terms of the resulting strain ε1 + ε2 + ε3; S =
∑

ij S
(0)
ij ; S

(0)
ij

is the matrix of elastic compliances. Only diagonal components of the strain tensor
are taken into account.

3. Relaxational dynamics

The system with Hamiltonian (1) cannot possess its inherent dynamic properties,
since all operators in the Hamiltonian commute with it, and, therefore, are time-
independent. Therefore, in the spirit of the Glauber approach [7] we assume that
the system (1) interacts with a heat reservoir which causes spins of the system
to change their states randomly with probability wqf(. . . , σqf , . . .) per unit time.
System behaviour is described in terms of probability functions P (. . . , σqf , . . . , t),
which time dependence is governed by the master equation:

d

dt
P{..., σqf , ..., t} = −

∑

qf

wqf{..., σqf , ...}P{..., σqf , ..., t}

+
∑

qf

wqf{...,−σqf , ...}P{...,−σqf , ..., t} (6)
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probability of the state {..., σqf , ...} decreases with time due to the transitions from
this state to all others and increases dew to transitions from all other states to this
one. From the detailed balancing condition at equilibrium

wqf{..., σqf , ...}

wqf{...,−σqf , ...}
=
P0{...,−σqf , ...}

P0{..., σqf , ...}
,

(here P0{..., σqf , ...} is the equilibrium distribution function, being proportional to

the Maxwell-Boltzmann factor exp(−βĤ)) the expression for the spin flopping prob-
ability wqf{..., σqf , ...} follows:

wqf{..., σqf , ...} =
1

2α
[1 − σqf tanh

1

2
βEqf ]. (7)

The parameter α describes the time scale in which all transitions in the system take
place, Eqf denotes the operator field acting on the qf -th spin; this field is given by
the system Hamiltonian (1).

To solve the master equation is quite a complicated task. Fortunately, we may
considerably simplify it, by taking into account the fact that, usually, we have to
know not the explicit expression for the probability function P (..., σqf , ...), but only
the expectation values of the products of spins (distribution functions)

〈
∏

f

σqf 〉 =
∑

{σ}

∏

f

σqfP{..., σqf , ..., t}

(the sum is carried out over all the 2N system configurations). The equations for
such expectation values follow from the master equation and from (7):
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1

2
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]〉

. (8)

The sum here is carried out only over the spins that occur in the product
∏

f ′ .
The symmetry of the expectation values of the products of spins in time-varying

and static fields are the same. In the longitudinal external field E = E3:

η(3) = 〈σq1σq2σq3〉 = 〈σq2σq3σq4〉 = 〈σq3σq4σq1〉 = 〈σq4σq1σq2〉,

η(2) = 〈σq1σq2〉 = 〈σq2σq3〉 = 〈σq3σq4〉 = 〈σq4σq1〉,

η(2)′ = 〈σq1σq3〉 = 〈σq2σq4〉.

Substituting the expressions for the local fields Eqf , that act on deuterons which
are easily determined from (1), into the (8), we get a set of differential equations for
the time-dependent distribution functions:
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(9)
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with somewhat cumbersome coefficients

aij =








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Here

L =
sinh z

2α
[bγ1 + 2abγ2 + bdγ3] , M =

sinh z

2α
[bγ1 − bdγ3] ,

N =
sinh z

2α
[bγ1 − 2abγ2 + bdγ3] ,

P =
1

4α

[
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,
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1
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[
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]

,
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,

γ1 =
[

1 + b2 + 2b cosh z
]−1
,

γ2 =
[

a2 + b2 + 2ab cosh z
]−1
,

γ3 =
[

b2 + d2 + 2bd cosh z
]−1
.

The parameter z can be found from the consistency condition, which states that
the values of η(1) calculated within the four-particle and the single-particle cluster
approximations must coincide. In the latter case the equation (8) can be rewritten
as

d

dt
η(1) = −

η̃(1)

α
+

1

α
tanh

z − β∆3

2
. (10)

Equations (9) along with (10) are quite difficult to solve exactly. Fortunately,
some reasonable approximations which significantly simplify the problem can be
made. Let us assume that

• the time-dependent electric field E3(t) = E0 exp(−iωt) is weak and causes only
small departures from thermal equilibrium, and

• the strains εi are time independent.

All the quantities involved may be written as static equilibrium values plus time-
dependent fluctuations:

η(j) = η̃(j) + η(j)(t), aij = a
(0)
ij +

z(t)

2
a

(1)
ij ,

z = z̃ + z(t) = β[−∆̃ + 2νc(0)η̃(1)] + β[−∆3(t) + 2νc(0)η(1)(t) + µ3E3(t)]. (11)
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Here we neglected time fluctuations of strains εi. Strictly speaking, the strains do
depend on time since in piezoelectric crystals such as KD2PO4, a time-varying ex-
ternal electric field has to cause time-varying strains. However, at frequencies of
an external electric field above the piezoelectric resonance frequency (∼ 106), the
strain is not capable of instantly following the periodic changes in the applied elec-
tric field [18]. Therefore, due to inertia effects, at the considered here frequencies
(109 ÷ 1012 Hz), a susceptibility of effectively clamped crystals is measured, and the
neglect of time fluctuations of strains is justified.

Substituting (11) into (9) and (10), and neglecting the terms of the second and
the higher orders in the fluctuations, we get two systems of equations for the equi-
librium distribution functions and for their time-dependent parts. The solutions of
the former are as follows:

η̃(1) =
sinh 2z̃ + 2b sinh z̃

D
, η̃(3) =

sinh 2z̃ − 2b sinh z̃

D
,

η̃(2) =
cosh 2z̃ − d

D
, η̃′(2) =

cosh 2z̃ − 2a+ d

D
,

where

z̃ =
1

2
ln

1 + η̃(1)

1 − η̃(1)
+ βνc(0)η̃(1), D = cosh 2z̃ + 4b cosh z̃ + 2a+ d,

a = exp (−βε), b = exp (−βw), d = exp (−βw1).

Here we have already excluded the consistency parameter ∆ from z̃.
The time dependence of η(1)(t) found from the second set of equations (obtained

after the substitution of (11) into (9)) is given by:

η(1)(t) =
4

∑

j=1

Cje
−t/τj +

µ3E3(t)

2T
n

4
∏

j=1

τj
1 + iωτj

; (12)

the polarization relaxation times τj ≡ −1/qj obey the equation:

(qj)
4 − n3(qj)

3 + n2(qj)
2 − n1qj + n0 = 0.

Expressions for the quantities n, nj, and for the relaxation times τj are too cumber-
some to be presented here. They can be found in [19]

From the following relation between the field-induced part of polarization and
the fluctuation parts of the mean values of quasispins (order parameter)

P3(t) =
4µ3

v
η(1)(t), (13)

we obtain the expressions for real and imaginary parts of the longitudinal dynamic
dielectric permittivity of the system

ε′3(ω, T, p) = ε3∞ + 4π
4

∑

j=1

χj

1 + (ωτj)2
, ε′′3(ω, T, p) = 4π

4
∑

j=1

ωτjχj

1 + (ωτj)2
.
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ε3∞ is a high-frequency contribution to the permittivity; expressions for χj, relax-
ation times τj and coefficients n, nj can be found in [19].

Only two relaxational modes appear in the paraelectric phase:

ε′3
+
(ω, T, p) = ε3∞ + 4π

2
∑

i=1

χ+
i

1 + (ωτ+
i )2

, ε′′3
+
(ω, T, p) = 4π

2
∑

i=1

ωτ+
i χ

+
i

1 + (ωτ+
i )2

. (14)

Expressions for relaxation times and quantities χ+
i are given in Appendix.

4. Discussion

In describing dielectric relaxation, we use the values of the theory parameters
which were shown [6] to provide a fair description of pressure dependences of a tran-
sition temperature (∂TC/∂p = −2 K/kbar [20]) and static dielectric characteristics
of KD2PO4 crystal. The values used are presented in table 1. Details of the fitting
procedure are given in [6].

Table 1. The theory parameters for the considered crystals.

δ1/δ0 ε0 w0 ν0
c ψ−

1 (0) ψ−
2 (0) ψ−

3 (0) ψ+
1 (0) ψ+

3 (0) δij
(µ0

3
)2

v

(10−3kbar−1) (K)
−6.4 92.0 830 38.0 130 110 −560 120 −560 0 76

c+11 c+12 c+13 c+33 c−11 c−12 c−13 c−22 c−23 c−33
(102kbar)

6.14 −0.71 1.05 4.82 6.14 −0.71 1.0 6.14 1.1 4.3

To find the lattice strains we use obvious relations

−p =
∑

j

cijεj , (15)

where cij are the elastic constants of the crystal, also given in table 1.
Pressure dependence of the dipole moment ∂µ3/∂p is determined under the as-

sumption that the effective dipole moment µ3 is proportional to the separation
between two deuteron sites on a bond – D-site distance δ and to the lattice constant
c. It yields

(

∂

∂p

µ2
3

v

)

p=0

=
(µ0

3)
2

v

[

2
δ1
δ0

+
ε3 − ε1 − ε2

p

]

. (16)

Relation (16), which heavily depends on the ratio δ1/δ0, provides a good agree-
ment of theoretical results for the pressure depending variation of static dielectric
characteristics of KD2PO4 with the corresponding experimental data. It shows the
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Figure 1. Temperature dependence of the longitudinal relaxation times KD2PO4

at different values of hydrostatic pressure p(kbar): solid lines – 0.001; dashed lines
– 10.

importance of the D-site distance δ in the dielectric response of the hydrogen bonded
crystal.

A value of the parameter α, assumed to be slightly dependent on temperature
α = [1.88+0.0609(T −TC−1)] ·10−14c and independent of pressure, was taken from
[13].

Figure 1 illustrates the pressure effect on relaxation times (here ∆T = T − TC).
Numerical calculations show that the main contribution into the ε3(ν, T, p) is coming
from the first relaxational mode (χ1 � χ2), i.e. the dispersion is of Debye type. The
relaxation time τ+

1 is three orders greater than τ+
2 . External pressure does not affect

the Debye character of the dielectric relaxation. The relaxation time τ+
1 decreases

with pressure, whereas τ+
2 hardly depends on pressure.

In figures 2 and 3 we depicted the temperature and frequency dependences of the
real the and the imaginary parts of longitudinal dielectric permittivity at different
pressures along with the experimental points for ε3(ν, T, p) at an ambient pressure.

Dispersion of the permittivity is observed in the high frequency region (ν ∼
109 − 1010 Hz), with the dispersion frequency increasing with temperature. The ex-
perimental data for ε′3(ν, T, p), unfortunately available only for the ambient pressure
case, are described in the theory rather well. The agreement between the theory and
the experiment for ε′′ at frequencies lower than the dispersion frequency is much
worse, though the character of the dependence is qualitatively reproduced.

Just above the transition point, both real and imaginary parts of the longitudinal
permittivity (plotted as functions of T −TC) increase with pressure. As temperature
rises, the character of pressure dependence of ε3(ν, T, p) changes to the opposite,
and the permittivity starts to decrease with pressure. The higher is the frequency
the higher is the temperature at which this change takes place. Similarly, both
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Figure 2. Temperature dependence of real and imaginary parts of the longitudinal
dynamic dielectric permittivity of KD2PO4 at different values of frequency ν =
ω/2π(GHz): 1, 4 [21] – 2.2; 2, � [22] – 9.2; 3, ◦ [23] – 154.2 and hydrostatic
pressure p(kbar): solid lines – 0.001; dashed lines – 10.

Figure 3. The frequency dependence of real and imaginary parts of dynamic
dielectric permittivity of KD2PO4 crystal at different temperatures ∆T (K): 1 –
10; 2 – 50; 3 – 100 and hydrostatic pressures p(kbar): solid lines – 0.001; dashed
lines – 10. Experimental points are taken from 4 – [21], � – [22], ◦ – [23]

ε′3(ν, T, p) and ε′′3(ν, T, p) decrease with pressure at frequencies below the dispersion
frequency and increase at higher frequencies, with the dispersion frequency raised
up by temperature. Overall, the permittivity and relaxation times are raised up by
pressure when/if they are raised up by temperature and they are lowered down by
pressure when/if they are lowered down by temperature.

5. Concluding remarks

Within a Glauber approach and the four-particle approximation for proton-
ordering model, we study the longitudinal dielectric relaxation in deuterated ferro-
electrics of the KD2PO4 type deformed by hydrostatic pressure. In our calculations
we use the values of the theory parameters and the model dependence of dipole
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moments which yielded a good agreement with the experimental data for pres-
sure dependences of transition temperature and static dielectric properties of the
KD2PO4 crystal. The longitudinal dynamic dielectric permittivity and relaxation
times of strained crystals are calculated under the assumption of time-independent
strains. Possible changes in the relaxation times and permittivity are stated. The
theory predicts that in the paraelectric phase, pressure does not alter the Debye
type of dielectric relaxation, increases one of the relaxation times, leaving the other
relaxation time practically unchanged, decreases the magnitude of the real and the
imaginary parts of longitudinal permittivity at low frequencies and at high temper-
atures, and increases them at temperatures just above the transition point and the
frequencies above the dispersion frequency. Further dielectric measurements on the
crystals under external pressures, which will verify the theory predictions, are re-
quired to give us a better insight into the physics of dielectric response of hydrogen
bonded crystals.

Appendix

Coefficients χ+
1,2 and relaxation times τ+

1,2 occurring in the expressions for the lon-
gitudinal dynamic dielectric permittivity of KD2PO4 type crystal in the paraelectric
phase (14) are

χ+
1,2 = ∓

µ2
3

v

1

T

τ+
1 τ

+
2

τ+
2 − τ+

1

(

l1 − τ+
1,2l0
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∣

∣

∣

∣
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∣

∣

∣
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∣

∣

∣

∣
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b1 b3

∣

∣

∣

∣
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(0)
11 + βνcY(1) − ξa

[

1

α
+ a

(0)
11 + βνc(Y(1) −

1

α
)

]

, a3 = a
(0)
12 (1 − ξa), a′ =

ξa
α
,

b1 = a
(0)
21 + βνcY(3) − ξb

[

1

α
+ a

(0)
11 + βνc(Y(1) −

1

α
)

]

, b3 = a
(0)
22 − ξba

(0)
12 , b′ =

ξb
α
,

a
(0)
11 = P+

0 + 2Q+
0 , a

(0)
12 = R+

0 , a
(0)
21 = 2P+

0 + 4Q+
0 + 3R+

0 , a
(0)
22 = P+

0 + 2Q+
0 ,

ξz
a = Y(1)

[

Y(1) −
2

α

]−1

, ξz
b = Y(3)

[

Y(1) −
2

α

]−1

,

Y(1) =
[

2M+
1 η̃

(2) +N+
1 η̃

′(2) + L+
1

]

,

Y(3) =
[

2(L+
1 +M+

1 +N+
1 )η̃(2) + (2M+

1 + L+
1 )η̃′(2) + 2M+

1 +N+
1

]

,

P+
0 =

1

4α

[

1 − b2

(1 + b2)2
− 2

a2 − b2

(a2 + b2)2
−

b2 − d2

(b2 + d2)2

]

,

Q+
0 =

1

4α

[

1 − b2

(1 + b2)2
+

b2 − d2

(b2 + d2)2

]

,

R+
0 =

1

4α

[

1 − b2

(1 + b2)2
+ 2

a2 − b2

(a2 + b2)2
−

b2 − d2

(b2 + d2)2

]

,
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L+
1 =

1

4α

{

4 −
(1 − b2)2

(1 + b2)2

2

− 2
(a2 − b2)2

(a2 + b2)2
−

(b2 − d2)2

(b2 + d2)2

2
}

,

M+
1 =

1

4α

{

−
(1 − b2)2

(1 + b2)2

2

+
(b2 − d2)2

(b2 + d2)2

2
}

,

N+
1 =

1

4α

{

−
(1 − b2)2

(1 + b2)2

2

+ 2
(a2 − b2)2

(a2 + b2)2

2

−
(b2 − d2)2

(b2 + d2)2

2
}

.
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