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Abstract. Theoretical investigation of 2D photonic crystals containing intermediate 
layers on the surface of cylindrical pores is performed within the framework of the 
plane-wave model. We have analyzed how the third medium introduction influences on 
the absolute bandgap formation in the triangular lattice photonic structure. We have 
obtained the dependences of the bandgap width and position on the additional interlayer 
thickness d and its dielectric constant εi. The new concept of photonic contrast is 
introduced in order to describe the bandgap formation conditions. We conclude that 
addition of the surface layer decreases the photonic band gap width of the examined 
system. 
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1. Introduction 
 
The latter decade progress in new materials technology 
led to creation of photonic crystals that represent the 
class of artificial materials with periodic dielectric 
function [1, 2]. The simplest case of these periodic 
layered structures is one-dimensional photonic crystals. 
The first photonic crystal had the dimensions of several 
centimeters and worked in a microwave range [1]. After 
that, many various types of 2D and 3D photonic crystals 
were obtained and various experimental technologies 
were elaborated to produce the photonic structures [3]. 
The photonic crystals of all types and dimensions can 
exhibit strong interference suppression of the 
electromagnetic field over the separated frequency 
intervals. The frequency ranges are called as photonic 
gaps by analogy with the electron waves in crystals [1-
12]. The frequency intervals adjacent to gaps, i.e., 
photonic bands, are characterized by the constructive 
interference of electromagnetic waves. Therefore, if the 
electromagnetic wave frequency matches the photonic 
gap, this wave will be totally reflected from the photonic 
crystal. While the similar wave irradiated by an internal 
source will be suppressed. The unusual properties of 
photonic crystals provide new ways to manipulate light 
and varied applications in high-efficiency lasers, 
antennas, and all-optical devices. 

First theoretical reports on solving the problem of 
electromagnetic wave propagation in periodic structures 
did not take into account the vector nature of 
electromagnetic field and used the scalar approximation 
[2, 6]. For the first time, the full-vector calculations were 

carried out for 3D photonic crystals with face-centered-
cubic [7, 8] and diamond [4] superlattices using the 
Fourier representation of Maxwell's equations. Such 
approach called as the plane-wave method enables to 
obtain numerically the dispersion law of the system, i.e., 
the photonic band structure. 

Here, we present the theoretical investigation of 2D 
photonic crystals containing intermediate layers on the 
surface of cylindrical pores. The bandgap structure is 
calculated for various sizes of the lamellar pore walls in 
a triangular-lattice photonic crystal, and the problem of 
optimal parameters corresponding for the maximal 
absolute gap is discussed. The plane-wave method 
accuracy is evaluated by the Richardson criterion. 
 
2. The plane-wave method. Numerical approach 
 
For the first time, the plane-wave method came into the 
use when studying 2D photonic crystals in [5, 9]. It was 
shown that 2D dielectric medium with air pores which 
form the superlattice of triangular symmetry has a wide 
gap in the energy spectrum. The propagation of 
electromagnetic waves along the direction perpendicular 
to the pores was considered, and it was found that the 
propagation is forbidden for both TE- and TH-
polarizations inside the energy gaps. Such zones of 
forbidden energy were called as an absolute or full 
photonic gap. The similar calculations for 
electromagnetic waves passing in directions non-
perpendicular to pore axes were carried out in [10]. 2D 
photonic crystal consisting of alumina-ceramic rods 
arranged in a regular square lattice was investigated  
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Fig. 1. The typical two-dimensional photonic crystal. 
Triangular lattice. R – the pore radius; a – the lattice constant; 
εa, εb – the dielectric constants of the pore and the rest of 
medium, respectively. 
 
experimentally using the coherent microwave transient 
spectroscopy [11]. The experimental results were 
compared to the theoretical predictions obtained using 
the plane-wave expansion technique [5, 9]. 

We consider the 2D macroporous photonic structure 
(Fig. 1) that is presented by a dielectric medium with 
regular air pores of circular cross-section. This structure 
is assumed to be infinite in all directions. The translation 
invariance of the system in X3 direction and periodicity 
of the one in X1X2 plane set the form of the field 
components 

3,2,1α),exp()ω,(),( 33αα == xikxExE II
rr ω , (1) 

and dielectric function 
)())(( IIIIII xlxx rrr εε =+ , (2) 

where 2211 xexexII
rrr

+=  is a radius-vector in X1X2 plane, 

2211)( alallxII
rrr

+=  are the lattice point of the photonic 
superlattice. The points of the lattice reciprocal to this 
one are given by the vectors 

2211)( bhbhhGII
rrr

+= , (3) 
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where the primitive translation vectors 1b
r

 and 2b
r

 are 
defined by the equations 

ijjiba πδ= 2
rr

, i, j = 1, 2, (4) 

while  run over all the positive and negative 
integers and zero. 

2121 ,,, llhh

After substitution (1) and (2) into Maxwell's 
equations, we obtain the following system: 
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To solve the equations (5), we expand the periodic 
inverse dielectric function )(1

IIxr−ε   
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, 

∑ ⋅++=ω αα

IIG
IIIIIIIIII xGkiGkaxE

r

rrrrrr
])(exp[)(),( , 

α = 1, 2, 3 (7) 
into the Fourier series. The forms (6) and (7) satisfy the 
Bloch – Flouqet theorem, required by the 2D periodicity 
of the system under consideration. Here, 

2211 kxkxkII
rrr

+=  is the projection of the wavevector onto 
the X1X2 plane. 

Following to [10] after the substitution of (6) and 
(7) into the system (5), we obtain a system of 3N 
equations, where N is the number of basis reciprocal 
vectors: 
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The Fourier coefficients of )(1
IIxr−ε  were found for 

triangular lattice of cylindrical pores in [10] 
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where  is the Bessel function, and )(1 xJ 2

2

3
2

a
Rf π

=  is 

the filling fraction, i. e., the fraction of the total volume 
occupied by cylinder dielectric rods or pores. 

We will seek the solution of the system (8) 
numerically. The number of equations as well as the 
number of variables depends on the number of reciprocal  
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Fig. 2. Accuracy estimation. Solid line – the dependence of 
bandgap width vs the number of basis reciprocal vectors. The 
curve asymptotically tends to the "true" value of the bandgap at 
the infinite number of basis vectors. Dashed line – 1 / N 
dependence of the bandwidth. 
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Fig. 3. The first Brilluoin zone for the triangular lattice. 
 

Fig. 4. The triangular two-dimensional photonic crystal. In-
plane propagation. 
Left side – the calculated photonic band structure, the right  
one – corresponding density of states, the shaded one –absolute 
photonic gap; εa = 1, εb = 12, R = 0.48a, N = 529. 

 

vectors that represents the basis of the Fourier 
expansion. We choose the reciprocal vectors occupying 
the parallelogram-shape area in reciprocal space with the 
origin of coordinates in the centre, and basis number 
N = 529. The total number of equations in (8) is 3N. 
Because squares of frequency are only in the left side of 

(8), we may represent the system as an eigenvalue 
problem of some matrix: 

AMA
r)r

λ= , (11) 

where A
r

 and λ are the matrix M eigenvectors and 
eigenvalues, respectively; 22 cii ω=λ , i = 1, 2,..., 3N; 

{ })()...,()...,( 321 IIIIIIIIIIII GkaGkaGkaA
rrrrrrr

+++= . 
Thus, by solving the eigenvalue problem (11) we can 
obtain the values of 22 cω  depending on the values of 

IIk
r

, i.e, the dispersion law. For this purpose, the 
computer code in the Mathematica 5.0 package was 
created, and the numerical calculations were performed.  

The size of the Fourier expansion basis N is of great 
importance in the theory of photonic structures, and it is 
directly concerned with the accuracy of the plane-wave 
method. It is of interest what size of basis is sufficient 
for calculations and how the computational accuracy 
depends on the number of basis reciprocal vectors. Both 
questions should be the subject of investigation. 
Evidently, the physical results must be independent of 
the basis size. In order to estimate the behavior of 
dispersion curves under condition of , we have 
carried out the calculations for the 2D triangular 
photonic structure with εa = 1, ε = 12, R = 0.48a, for 
various numbers of reciprocal vectors N. Fig. 2 shows 
the dependence of the energy gap existing between the 
third and fourth photonic bands on the number of basis 
reciprocal vectors. It follows from Fig. 2 that the basis 
possessing less than 200 reciprocal vectors is quite 
insufficient taking into account that we do not know 
what is the limit of this curve if . By means of 
the Richardson criterion, we have estimated that the used 
basis (N = 529 plane-waves) results in the calculation 
error that does not exceed 6 %. If we prolong the dashed 
curve in Fig. 2 to the left, the theoretical limit 

∞→N

∞→N

∞→N  
of the energy gap will be reached using the Richardson 
criterion: ∆ ≈ 0.092 in ωa / 2πc units. 

Γ 

K X 

k1 

k2 

 
3. Two-dimensional photonic crystal. The simple-wall 
case 
 
Let us consider the electromagnetic field propagating 
perpendicularly to pore axes in porous 2D photonic 
crystal with the triangular superlattice shown in Fig. 1. 
The primitive translation vectors are )0 ,1(1 aa =

r
, 

)
2
3 ,

2
1(2 aa =

r . According to (4), one can obtain the 

basis vectors of the reciprocal lattice 
a), π(b 31121 −=

r
, a), π(b 32022 =

r
 and, 

consequently, the first Brillouin zone (Fig. 3). The 
typical photonic band structure and density of states for 
2D photonic crystal with the triangular superlattice are 
presented in Fig. 4. The calculation was performed with 
the basis number of reciprocal vectors N = 529. The left  
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Fig. 5. The lowest gap width behavior for 2D triangular lattice photonic crystal: a – Δω vs the pore radius for various medium 
dielectric constants denoted by magnitudes near each curve; b – Δω vs the medium dielectric constant for various pore radii, 
values in a-unities near each curve. Arrows show the points in which R = 0.42a and R = 0.48a on the curve; εb = 12, εa = 1, 
N = 529. 

 
side of Fig. 4 shows the photonic band structure pattern 
along the Γ-K-X-Γ way in the Brillouin zone for the first 
10 branches. The lowest absolute energy gap is located 
between the third and fourth dispersion branches. On the 
curve of the density of photonic states (DOS) depicted in 
the right side of Fig. 4, the bandgap corresponds to the 
area with zero density. The Y-axis is the energy spectrum 
in non-dimensional frequencies ωa / 2πc, where a is the 
lattice constant and c is the light velocity. The horizontal 
axis represents the wavevectors running over Γ-K, K-X, 
and X-Γ directions in the Brillouin zone (left, band 
structure pattern) and the density of photonic states in 
arbitrary units (right, DOS pattern).  

The gap width depends on the ratio of dielectric 
constants and the pore radius (or filling fraction). In 
general, it depends on the angle of propagation, too. The 
plane-wave method describes electromagnetic waves in 
an infinite regular medium. An external boundary 
destroys the translational invariance. It is well known 
that the result of the boundary influence may be 
manifested in surface local modes having frequencies 
inside the gap. But the problem is to include a local 
imperfection into the plane-wave method based on the 
supposition that all field properties are periodical. 
Moreover, the plane boundary oriented in parallel to 
pore axes may be created by the infinite number of 
ways. Therefore, there exists a serious difficulty to 
connect the bandgap structure and other intrinsic mode 
parameters with that for an external source. 
Nevertheless, the chosen case of propagation 
perpendicular to the pore has a direct relation to the 
external incidence geometry for real macroporous 
photonic structures. Obviously, the generated by an 
external source electromagnetic waves that fall onto the 
crystal plane vertical interface perpendicularly to the 
pore axes will excite the intrinsic modes. The excited 
mode wavevectors should lie in the same plane and keep 

the same direction. One-, two- or multimode wave-
vectors corresponding to this incident wave may be 
obtained from Fig. 4 (left side) geometrically. Some 
more information may be provided by the shape of 
photonic branches and density of states. In particular, the 
high density areas correspond to the high transmittance, 
while the low densities correspond to the high reflection 
for external waves. The further consideration including 
reflected and transmitted waves intensities goes aside the 
framework of the plane-wave approach. 

The width dependences for the gaps situated behind 
the third band on the pore radius for the photonic crystal 
with εa = 1 and various εb are depicted in Fig. 5a. All the 
curves have the main peak that corresponds to some 
optimal pore radius (filling fraction) for each structure. 
As follows from Fig. 5, if εa = 1, εb = 8 the maximal gap 
Δω = 0.023 is reached when the pore radius value 
R = 0.441a (fa = 0.7), while for the structure with εa = 1, 
εb = 14 the maximal gap Δω = 0.105 appears when 
R = 0.472a (fa = 0.81). It is of interest to compare the 
optimal filling fractions for photonic structures with 
different symmetry and geometry. Thus, 3D photonic 
crystal consisting of the air spheres embedded 
periodically in dielectric medium with the refractive 
index 3.6 and the diamond lattice symmetry has the 
maximal gap when the air filling fraction fa = 0.81. The 
similar structure for dielectric spheres placed in air gives 
the optimal air filling fraction fa = 0.63 [4]. For 3D 
layer-by-layer photonic structure consisting of the 
overlapping air cylinders inside the dielectric medium 
with the refractive index 3.6, the maximal gap was 
observed at fa = 0.8 [12]. And finally, our calculation 
made for 2D square lattice photonic crystals gives the 
optimal filling fraction fa = 0.72 for dielectric indices 
εa = 1, εb = 12. 

Another interesting feature of curves depicted in 
Fig. 5a is that all of them end with falling areas in the 
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vicinity of the limiting pore radius value R = 0.5a. The 
gap decrease may be caused by diminution of an 
effective contrast between different parts of the photonic 
crystal elementary cell. Conversely, the bandgap growth 
area means that the effective contrast inside the elemen-
tary cell increases. It is necessary to note that the system 
properties change qualitatively at the value R = a / 2, 
since the periodic array of the circular pores in the 
medium transforms into the one of complicated shape 
columns in the air. One can conclude that the electro-
magnetic field "feels" this destruction of their symmetry. 

The bandgap width is shown in Fig. 5b as a function 
of the dielectric constant εb for various pore radii. The 
gap is opened for εb > 7, and its value grows with 
increasing the contrast of dielectric constants, and 
finally, it saturates at εb > 20. The most interesting 
behavior is demonstrated by the curve that corresponds 
to R = 0.49 having the minimal index of growth up to 
εb = 14. As it is clear from Fig. 5b, all the curves 
0.45…049 correspond to the gap width growth, the cur-
ve 0.49 has the minimal index of the growth up to εb = 14. 
To explain this fact, we should notice that at least a few 
points of this curve can be obtained from Fig. 5a by 
vertical crossing of the curves by the straight line 
R = 0.49. Therefore, this curve really has lower values of 
bandgap width than, for example, the curve R = 0.48. 

The transmittance of electromagnetic waves 
propagating in 2D macroporous silicon structure parallel 
to macropores was investigated experimentally in [13]. 
There it was found that the reflection band is formed at 
the wavelength λ = 1.5λa when εb = 13, εa = 1, and 
fa = 0.84. The optical period of the photonic structure λa 
was defined as λa = (a – 2R)εa

1/2 + 2Rεb
1/2. The 

calculations made in [12] predicted the photonic 
bandgap formation which is common for H- and E-
polarization of electromagnetic irradiation at λ ≈ 1.2λa 
when εb = 12.3, εa = 1, and fa = 0.73.  

In the case presented in Fig. 4 for perpendicular 
incidence and a = 1 μm, we have λa = 1099 nm, the 
band occupies position between λ = 1851 and 2127 nm. 
To obtain the photonic crystal with maximal gap width 
for the assumed lattice constant and dielectric constants 
εb = 12, εa = 1, we must create the structure with the 
following parameters: a = 1 μm, R = 470 nm, and 
l = 60 nm, where l = a – 2R is the shortest distance 
between the pore edges. In this case (Δω = 0.081ω0), the 
spectral width of the gap will be Δλ ≈ 345 nm. As the 
light sources have a spectral width of radiation, the gap 
width must be many times more than the spectral width. 
This is important if used femtosecond lasers have 
comparatively large (up to 10 nm) spectral width of 
radiation. 

The 2D photonic crystals were intensively 
investigated both theoretically and experimentally in a 
plethora of works. Nevertheless, in most cases, only the 
"simple" 2D photonic crystals were considered. Further, 
we will calculate some more complicated 2D photonic 
structures containing lamellar pore walls. 

 

 
Fig. 6. The unit cell of the 2D photonic crystal with surface 
interlayer. εi and d are the dielectric constant and the thickness 
of the interlayer, respectively; R is the pore radius; εa = 1, 
εb = 12. 
 
4. Two-dimensional photonic structure with layered 
pore surfaces 
 
Electrochemical etching is one of the most efficient 
ways to fabricate silicon macropore structures [14, 15]. 
Depending on the parameters of etching process, the 
sample area near the pore intrinsic surface being the 
ionic “battle field” becomes different from the bulk. It 
means that there arise the surface interlayers inside pores 
that may be of various thicknesses, dielectric properties, 
densities of charge carriers, and so on. Therefore, we 
consider the photonic crystals with the complicate 
structure of inner macropore surface. Another possible 
interesting application of such structures emerges when 
the additional interlayer has the optical non-linearity. In 
this case, the optical properties of photonic structures 
depend on the electromagnetic wave intensity. Thus, by 
varying the irradiation intensity we will be able to 
operate by the optical signal if the wavelength lies near 
the photonic bandgap edge [16]. 

The unit cell of the system under consideration is 
presented in Fig. 6. Here, εi, εa, εb are the dielectric 
constants of the surface interlayer, pore, and rest of 
medium, respectively, d is the thickness of the interlayer, 
R is the intrinsic radius of the pore. Evidently, the 
additional interlayer does not change the general form of 
equations (8) and the shape of the first Brillouin zone 
(Fig. 3), since the periodicity of the system is not 
changed. The presence of the surface layer affects the 
coordinate dependence of the dielectric function. 
Consequently, the form of the dielectric function Fourier 
components κ)  will be changed. So, for the photonic 
crystal with the unit cell geometry presented in Fig. 6, 
we have obtained the following expression for the 
Fourier components of the dielectric function: 

( )

( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

≠
+

+⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

+

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

=

0   ,

0   ,
)(112)(112

)(

21

1311

II
i

i

ba

II
II

II
bi

II

II
ba

II

G
fff

G
dRG

dRGJf

RG

RGJf

G

εεε

εεεε
κ)

 (12) 

 

© 2005, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

68 



 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2005. V. 8, N 1. P. 64-71. 

 

0 5 10 15 20 25
0.00

0.02

0.04

0.06

0.08

B
an

d 
ga

p 
w

id
th

 Δ
ω

a/
(2
πc

)

εi

 
Fig. 7. Bandgap width vs the interlayer dielectric constant 
dependence. The arrows show the points where three-medium 
system transforms into the two-medium one, namely, when 
εi = 1 and εi = 12. R = 0.42a, d = 0.06a. 
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Fig. 8. The bandgap edge shift with increasing εi. Curve 1 
represents the upper edge, curve 2 – the lower one. R = 0.42a, 
d = 0.06a, N = 529. 
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Bessel function. It is necessary to note that the 
expression (12) transforms into (9) in limit cases εi = εa, 
εi = εb, d = 0, R = 0. We will analyze the photonic band 
structure dependence on the interlayer dielectric constant 
εi and interlayer thickness d. For simplification of further 
computations, we fix the dielectric constants at the 
values εa = 1, εb = 12 and consider only the cases which 
possess a gap in the band structure according to Fig. 5. 
For example, we can conclude that if the sum R + d will 
be less than 0.4a the gap will not exist for any εi values 
in the interval . This follows from the fact 
that the case εi = εa = 1 corresponds to the "usual"  
 

photonic crystal with the pore radius (R + d) in the 
medium with the dielectric constant εb = 12, while the 
case εi = εb = 12 corresponds to the "usual" photonic 
crystal with the pore radius R in the medium with 
dielectric constant εb = 12. Then, taking into account the 
dependence depicted in Fig. 5, we conclude that, for the 
system with εa = 1 and εb = 12, the gap appearance 
condition is determined by the expression R + d > 0.4a. 

ifff −−= 12 1 )(1 xJ

( 12;1∈εi

We have calculated in-plane propagation of 
electromagnetic waves through the triangular lattice 2D 
photonic crystal with lamellar pore walls. In Fig. 7, there 
is the width dependence of the gap that is located 
between the third and fourth dispersion branches (see 
Fig. 4) on the interlayer dielectric constant. The system 
has the following parameters: R = 0.42a, d = 0.06a, 
εa = 1; εb = 12, fa = 0.38, fi = 0.34, where fa and fi are the 
fractions filled by air and the interlayer ones, 
respectively. 

As was denoted earlier, the gap width and bandgap 
edge position depend on the dielectric constant contrast, 
filling fractions and system symmetry. We believe that 
some effective quantity exists which includes all these 
three factors. This parameter should define both the 
ability of a photonic structure to possess the photonic 
gap and optimal relations between system parameters to 
obtain the wider bandgap. Let us call this parameter by 
photonic contrast. For example, we can conclude from 
Fig. 5a that, for two-medium structure with εa = 1, 
εb = 12, the maximal photonic contrast is achieved when 
fa = 0.79. For the similar structure with εa = 1, εb = 20, 
the peak arises at fa = 0.83. 

Further, we will try to describe the behavior of the 
lamellar pore structures by using the effective photonic 
contrast mentioned above. The arrows in Fig. 7 show 
two points where the three-medium system transforms 
into the two-medium one, just when εi = 1 and εi = 12. 
The same points are also present in Fig. 5a, and we can 
see that, between these two points, the photonic contrast 
of the two-medium system has the maximum value. 
Thus, we assume that the three-medium structure would 
have also the peak between two points. But in Fig. 7, the 
curve decreases initially and then tends to a peak. A 
consequence of the above is the fact that the third 
medium introducing decreases the photonic contrast of 
the system. Another circumstance that confirms this 
conclusion is that all examined three-component 
photonic crystals acquire the wider gap when they were 
transformed into the two-component ones. 

To obtain the formal expression describing the 
photonic contrast, the four variables gap function should 
be built as a hyper-surface in 5-dimensional space of 
variables ∆ω, εb, εi, d, R. 

After that, the every section of the gap function 
surface ∆ω = S(εb, εi, d, R) matching the maximum and 
characterizing by monotonous growth from ∆ω = 0 to 
∆ω = max may be used to represent the photonic  
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Fig. 9. Shifts of the bandgap edges with increasing εi: a – R = 0.35a, d = 0.13a, fa = 0.38, fi = 0.34, εa = 1, εb = 12; b – R = 0.25a, 
d = 0.23a, fa = 0.19, fi = 0.52, εa = 1; εb = 12. Curve 1 represents the upper edge, curve 2 – the lower one. 

contrast. There exist many ways beginning with the 4- 
dimensional point εb0, εi0, d0, R0 where ∆ω = 0 and 
finishing in the point εbm, εim, dm, Rm where ∆ω = max. 
All of them may be described by a special monotonous 
function Ct 
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that presents the photonic contrast of the system. The 
photonic contrast function Ct is positively defined, and it 
ranges from 0 to 1 for the chosen area of parameters in the 
vicinity of ∆ω = max. The coefficient ¼ in (13) is caused 
by the hyper-surface dimension. For example, the simple-
wall case considered in the previous section is described 
by two terms in (13) and the coefficient is ½. Then, the 
left arrow in Fig. 5a corresponds to the photonic contrast 
Ct = 0.066 and, for the right arrow, we have Ct = 0.56. In 
the general case presented in Fig. 9, the calculated by (13) 
photonic contrast is Ct = 0.090 when εi = 3 (Fig. 9a) and 
Ct = 0.063 when εi = 1.5 (Fig. 9b). 

The shift of the bandgap higher and lower edges is 
shown in Fig. 8. As it follows from the figure, the gap 
edges are shifted into the low-frequency range with 
increasing εi. To explain the effect, let us analyze the 
system (8). The squares of unknown frequencies ω in the 
right side are inversely proportional to the Fourier 
coefficients )( IIII GG ′−κ

rr)  of the dielectric function. 

Consequently, if )( IIII GG ′−κ
rr) , for example, is doubled, 

the frequency ω reduces by a factor of the square root of 
two. Therefore, the ordinate axis "scale" will be 
decreased by a factor of 2 . To confirm this 
conclusion, we have compared the results for two 
photonic crystals with similar geometry when the first of 
them had the dielectric constants εa = 1, εb = 9 and the 

second one had εa = 2, εb = 18. All the frequency 
characteristic values (gap width, gap edges) really 
differed by 2  times. 

The bandgap edge shift dependences for the 
structures with R = 0.35a, d = 0.13a, fa = 0.38, fi = 0.34, 
and R = 0.25a, d = 0.23a, fa = 0.19, fi = 0.52 are shown 
in Figs 9a and b, respectively. The gap edge behavior is 
similar to the previous case, but the bandgap vanishes 
when the intermediate layer dielectric function values 
εi ≈ 6.2 (Fig. 9a) and εi ≈ 1.87 (Fig. 9b). In the latter 
case, the main role in band structure formation is played 
neither by air, nor by medium. It is done by the 
interlayer material, since it fills now more than a half of 
the total volume. Therefore, varying the interlayer 
dielectric constant twice less than results in bandgap 
vanishing. On the contrary, the interlayer thickness 
decrease must result in the reduction of its influence on 
the photonic band structure. Really, in the case when 
R = 0.46a, d = 0.01a, the gap width varies only in the 
interval (0.082…0.066) with εi increasing from 1 to 20. 
 

5. Conclusion 
 
We have considered a possibility to vary the lowest gap 
width and this gap position in 2D photonic crystals by 
introducing the additional interlayers on pore surfaces. 
The bandgap width and bandgap edge position 
dependences on the interlayer dielectric constant for 
various system parameters R, d, and εi at the fixed values 
εa = 1 and εb = 12 have been calculated. The analysis 
results in the following: 
• the introduction of additional interlayers decreases 

the photonic bandgap for given geometry; 
• the photonic gap shifts to the low frequencies, and 

its width decreases if εi is increased; 
• the gap vanishes for high values of the interlayer 

thickness d > 0.2a for the low values of the 
interlayer dielectric constant εi. 
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The technology of macroporous silicon structures 
fabrication is intensively developed during the last 
decade. The structures with lattice constants a = 1 to 
15 μm and pore radii R = 0.3 to 10 μm were obtained in 
[14, 15, 17, 18]. We suppose that the complex structure 
of the pore walls theoretically predicted in the work may 
be realized by the existing experimental methods. 
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