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This paper deals with such a kind of surface crack problem with an approximately same
depth by using the hybrid displacement discontinuity method (a boundary element method) pro-
posed recently by the author. Based on surface rectangular crack in infinite solid in tension and
a hybrid displacement discontinuity method, a numerical approach is presented. By changing
geometry parameters of elliptical hole, the effect of geometry parameters of the elliptical hole
in infinite body in tension on the SIF's is revealed in detail. It is illustrated that the boundary
element method is simple, yet accurate for calculating the SIFs of complex crack problems in
finite plate.
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B crartbe paccmarpuBaercsi 1po0JieMbl  IOBEPXHOCTHBIX TPEIIWH  IPUOJIU3UTEIHHO
OJMHAKOBOM IVIYOMHBI C MCIIOJIb30BAHMEM TMOPUIHOINO0 METOa Pa3pbIBHBIX CMEIIeHUH (MeTon
TPAHUYHBIX 3J1eMeHTOB)10. OCHOBBIBASICH HA ITIOBEPXHOCTH IPAMOYTOJILHOM TPEIIUHBL B CILJIOIITHOM
0ECKOHEUHOM TeJie, IIPEACTABJIEH YMNCJICHHBIM II0AXO0J TUOPUIHBIX PA3pPBHIBHBEIX CMEIIEHHN K
HanpsskeHuaM. MeTomoM THOPUOHBIX PA3PBIBHBIX CMEIIEHUHN IeTaJbHO H3yYeHO BJIMSHKE
M3MEeHEHUsI TeOMEeTPUYECKUX IIapaMeTPOB JJIIMITUYECKON TPEIIWHBI B OECKOHEYHOM Tejle Ha
K03(pPHUIIMEHTE WHTEHCUBHOCTHA HAIPAMKEHUN. OJTO HIUIIOCTPUPYET, YTO METOZ IPAHNYHBIX
9JIEMEHTOB SIBJISETCS IIPOCTHIM, M IIOAXOISAIINM JIJIsI UX pacueTa IJIs CJIOMKHBIX IIPO0JIEeM TPEInH
B KOHEYHOH IIJIACTHUHE.

Hocnig:xenns pakTopiB iHTEHCUBHOCTI HATIPYT €JIIITUIHOTO OTBOPY Y HECKiHYEHHUX
tinax. bBaonuane JIiy, I'yanenune 30y

VYV crarTi po3riisimaiThesa MPOOJIEMH ITOBEPXHEBHUX TPIIIUH IPHOJJIHU3HO OJHAKOBOI IIMOWHU
3 BUKOPUCTAHHAM TIOPUIHOIO METOIy PO3PUBHUX 3CYBIB (MeTO] TI'pPaHUYHUX €JI€MEHTIB),
3aIPOIIOHOBAHUN HEJAaBHO AaBTOPOM. |pPYHTYIOUHCH HA IIOBEPXHI MPSIMOKYTHOI TPINIWMHUA B
CYIILJIbHOMY HeCKIHYE€HHOMY TLJI1, IIPeICTaBJIEHO YNCEJIbHIM I IX11 MO PUIHNX PO3PUBHUX 3CYBIB [0
"Hanpyr. Meromom ribpuaHrX pO3PpUBHUX 3CYBIB JeTaIbHO BUBYEHUH BILIUB 3MIHU I'€OMETPUYHUX
apaMeTpiB eJHIITHYHOI TPIIUHA B HeCKIHUEHHOMY Ti/Il Ha KoedlIlleHTH IHTeHCUBHOCTI HAIIPYT
(KHWH). [e irocTpye, 110 METOJT FPAHUYHUX €JIEMEHTIB € IIPOCTHM, Ta IIIX0IUTD JIJIsI PO3PAXYHKY
KHWH pna cknagaux mpobeM TPIilyuH y KiHIEeBil IIacTHHI.
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1. Introduction

In aircraft structures, fatigue failures usu-
ally occur from the initiation and propagation
of cracks from notches or defects in the material
that are either embedded, on the surface, or at
a corner. These cracks propagate with elliptic
or near-elliptic crack fronts. The stress-inten-
sity factor concept has been used to correlate
fatigue crack-growth rates and to determine
fracture properties of engineering materials.
For plane elastic continua containing cracks,
the stress-intensity factors usually have been
obtained from they are constant across the
thickness [1-2]. For fracture specimens of finite
thickness, however, the stress-intensity factors
vary along the crack front.

For three-dimensional elastic continua with
cracks, the stress field near the crack front is
obtained by the solution fo the Navier’s equa-
tions of equilibrium subjected to appropriate
boundary conditions [3]. For fracture specimens
of finite thickness with through-the-thickness
cracks, some attempts have been made to ob-
tain the stress distribution close to the crack
front, but the solutions have been found to be
intractable in closed form [4-5]. This paper
deals with such a kind of surface crack problem
with an approximately same depth. As an ex-
ample, shown in Fig.1 is a schematic of a pair of
cracks emanating from a surface square defect
in infinite body in tension, which is also called
a surface defect crack problem. Based on the
previous investigations [6-9] on internal rect-
angular crack and surface rectangular crack in
infinite solid in tension and a hybrid displace-
ment discontinuity method (a boundary ele-
ment method) proposed recently by Ref. [10],
a numerical approach for the liked-plane crack
problem in hand is presented.

In addition, here, it is pointed out that finite
element simulations [11-12] when used to ana-
lyze crack problems have to face largely compu-
tational problems connected with the discreti-
zation of the continuum into finite elements,
particularly when some cracks propagate, thus
changing the interior boundaries of the sol-
ids. Recently, it was found from the previous
investigation [13-17] that the hybrid displace-
ment discontinuity method has huge robust-
ness in analyzing complex plane elastic crack
problems, including a multiple-hole-crack in-
teraction problem, a multiple crack interaction
problem.

For finite bodies, all solutions have required
approximate analytical methods. For a semi-
circular surface crack in a semi-infinite solid
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Fig.1 Schematic of constant displacement dis-
continuity components D_and D,
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Fig.2 Schematic of the left crack tip displace-
ment discontinuity element

and a semi-elliptical surface crack in a plate of
finite thickness, Smith, Emery, and Kobayashi
[18], and Kobayashi [19], respectively, used the
alternating method to obtain stress intensity
factors along the crack front.

2. Brief description of the hybrid
displacement discontinuity method

In this section, the hybrid displacement
discontinuity method presented by Ref. [13]
is described briefly. It consists of the constant
displacement discontinuity element presented
by Crouch and Starfield [20] and the crack-tip
displacement discontinuity elements.

2.1 Constant Displacement Discontinu-
ity Method

The displacement discontinuity D, is defined
as the difference in displacement between the
two sides of the segment [18] (see Fig.1):

Dx = ux(x’o,)_ux(x10+)3
D,=u,(x,0)—u,/(x0,).

The solution to the subject problem is given
by Crouch and Starfield [28]. The displace-
ments and stresses can be written as

u, = D [2(1 —v)Fy(x,y) — yF,(x, y)] +

+ D,[-(Q — 2v)F,(x,y) — yF,(x, y)],
u, = D,[(1 - 2v)F,(x,y) — yF,(x,y)] +

+ D,[2(1 — V) F,(x,y) — yF,(x, )],

1
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and

.. = 2GD_[2F,(x,y) + yF;(x,y)] +
+2GD,[-F,(x,y) + yF,(x,y)],

o, = 2GD [-yF (x,y)] +
+2GD,[-F,(x,y) — yF,(x, )],

o,, = 2GD,[-F,(x,y) + yF,(x,y)] +
+ 2GD,[-yF,(x, y)].

Function f(x, y) in these equations can be writ-
ten as:

1
T = rd v

~@—a)n G- 0 +§T + (& + oG- 0 1 7]

3)

y — arctan y ) —

arctan
U x—a x+a

_ -1 vy /N
flx,y) = d ) y(arctan — arctan o )
- aln|ir - + 4]+ x+ )l - @) +4°]]

(4)

G and v in these equations are shear modulus
and Poisson’s ratio, respectively. Functions F,
through F, are described in Ref. [28]. Eqs (2)
and (3) are used by Crouch and Starfield[32]
to set up a constant displacement discontinuity
boundary element method.

2. 2 Crack-tip displacement disconti-
nuity elements

By using the Egs (2) and (3), recently, Yan
[10] presented crack-tip displacement disconti-
nuity elements, which can be classified as the
left and the right crack-tip displacement discon-
tinuity elements to deal with crack problems in
general plane elasticity. The following gives ba-
sic formulas of the left crack-tip displacement
discontinuity element.

For the left crack-tip displacement disconti-
nuity element (see Fig.2), its displacement dis-
continuity functlons are chosen as

D, _H("f"+5)2 D, —H(““’“) (5)

where H and H_ are the tangential and nor-
mal dlsplacement discontinuity quantities at
the center of the element, respectively, a ay, is
a half length of crack-tip element Here, it is
noted that the element has the same unknowns
as the two-dimensional constant displacement
discontinuity element. But it can be seen that
the displacement discontinuity functions de-
fined in (5) can model the displacement fields
around the crack tip. The stress field deter-
mined by the displacement discontinuity func-
tions (5) possesses r~'2 singularity around the
crack tip.
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Based on the Eqgs (2) and (3), the displace-
ments and stresses at a point (x, y) due to the
left crack-tip displacement discontinuity ele-
ment can be obtained,

u, = H[2(1 —v)B;(x,y) — yB;(x, )] +

+ H,[-(1 = 2v)B,(x, y) — yB,(x, 1)}, ©)
u, = H[(1 - 2v)B,(x,y) — yB,(x, )] +

+ H,[2(1 —v)B;(x, y) — yB; (x, y)],

and
o, = 2GH [2B,(x,y) + yB,(x,y)] +
+ 2GH [ B;(x,y) + yB,(x, y)],
o, = 2GH [-yBs(x,y)] + 2GH [-B;(x,y) —

- yB7(x, Y1, (7
O = 2GHs[_Bs(x’ y)+ yB7(x, Y]+

where functions B, through B, are described in
Ref. [23].

2.3 Computational formulas of the
stress intensity factors

The objective of many analyses of linear
elastic crack problems is to obtain the SIFs K|
and K. Based on the displacement field around
the crack tip, the following formulas exist

K ___N2nGH, J2nGH
T v)\/i 40 V)F

3. Numerical approach

A surface crack is usually treated with as
a three-dimensional problem to analyze, which
undoubtedly is very complex. This paper is con-
cerned with such a kind of surface crack with
an approximately same depth, which is called a
liked-plane crack. By using the solution of the
liked-plane crack problem shown in Fig.3, in

b e

Fig.3 Schematic of a fair of cracks emanating
from a surface square hole in infinite body in
tension
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Fig.4 Schematic of a liked-plane crack: (a) a sur-
face crack with a rectangular section, (b) a plane
cracked body with a force —ku, acted on the crack
surface

this section, we try to present a numerical ap-
proach to treat with a liked-plane crack prob-
lem.

We imagine that a plane elasticity crack
body is separated from the three-dimensional
surface crack body (Fig.3): it has the same form
crack as that of the three-dimensional surface
crack body and is subjected to the same form
load as that of the three-dimensional surface
crack body. Further it is assumed that there
is a force —ku, acted on crack surface shown in
Fig.4 (b), where the spring constant & will be
identified later.

Now consider the formulation of the plane
elastic crack problem shown in Fig.4 (b). When
three is not the force —ku, acted on crack surface
shown in Fig.4 (b), boundary element equations
can be written as [10]

ZAl]ssD]s + ZAl]snDjn = o-ls’
i=1 =1 .
N B . N B A ‘ (]_1’2’aN)
ZAljnsD]s + ZAl]nnD]n = Gln’

= =t 9)
where N is the number of total boundary ele-
ments, A7 etc are the influence coefficients,
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which are how to be calculated, to constant dis-
placement discontinuity elements and crack-
tip elements, are described respectively in Refs
[32,10], and D’, and D’ are displacement dis-
continuities. When considering the acted force
—ku, see Fig.4(b), boundary element equations
of the plane elastic crack problem shown in
Fig.4(b) can be represented as

iAijssDjs + iAijsnDjn = O-is + kui’s
j=1

j=1

iAijnsDjs + i AijnnDjn = Gin + kuin’

j=1 j=1
(G=1L.2,..,N) (10)

By substituting the displacement discontinuity
D . for the displacement u, in Eqgs (10), Eqs (10)
can be written as

N N
Y AY D' +> A" D' =o' —0.5kD,
j=1

=

iA”nsts + iA”nann =o' —0.5kD',

j=1 j=1
(j=12,...,N) (11)

Further Egs (11) can be rewritten as
N

N
(A", +0.50)D' + >  A',D\ +} A", D, =o',
j=1,j=i i=1
N N

ZAijnsDjs + Z AijnnDjn + (Aiinn + 0'5k)Din = Gin’

j=1 j=1,j=i

(j:]-’Z’---’N) (12)

4. Numerical results and discussions

Shown in Fig.3 is a fair of cracks emanat-
ing from a surface elliptical hole with a depth
h subjected to uniform stress o at infinity.
For convenience, we first treat with the case
R,=R =R, 1.e., a surface circular hole crack
problem. For this crack problem, the symmetry
condition can be used. The following geometry
parameters are considered

a/R =1.005,1.01,1.02,1.04,1.06,1.08,1.10,
1.15,1.20,1.50,2.0,5.0,10.0
h/a=1.0,1.11.2,1.3,1.4,1.6,1.8,2.0

The calculated normalized SIFs at the crack
tip A listed in Fig.5 can be used to reveal the
effect of geometry parameters, a/R and h/a, on
the normalized SIFs. Fig.5 shows variation of
the normalized SIFs at the crack tip A with h/a
for three cases: h/a=1.0, 1.4 and 2.0.

In order to well reveal the effect of a sur-
face hole the SIFs of crack(s) emanating from
the surface hole, here, the SIFs of the surface
hole crack problem and the surface rectangu-
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Fig.5 Variation of the normalized SIFs at the
crack tip A with a/R and h/a

lar crack (length=2a, depth=h) are denoted by
K, ,(a/Rh/a)and K, (h/a), respectively.
Their ratio is denoted by F,, (a/R,h/a),lie.,
F‘Ischc (a / R’ h / a) =

= Klschc(a/R’h / (l) / strc(h / ll),

which is also called a normalized SIFs. The
normalized SIF's corresponding to A/a=1.3 are
shown in Fig.6.

For convenience to discuss, we introduce a
parameter, a, = a/R. From Table5 and Fig.6,
it can be seen that

(@) With increase of a, (i.e., with decrease
of the surface circular hole radius R), F,,,
fast increases monotonously, and asa, reaches
a certain valuea,, F,, =1,1e., F_, equals
K, . Here, a is between 1.20 and 1.25.

(b) With continuous increase of a,, F, .
begins to increase slowly and reaches its maxi-
mum F,, — at some valuea,,. Here, a,, and
F, .. are about 1.50 and 1.06, respectively.

(c) Continuous increase of a leads toF,,,
to begin to decrease slowly and F, almost
equals 1 (i.e., F, . ) when
a, is large enough.

After introducing the dimensionless param-
eters a,, a, and F,_, , itisfound that:

(1) As a, < a,,, the surface circular hole has
a shielding effect on the cracks emanating from
the surface hole. And the closer the size of the
surface circular hole is to that of the surface
crack, the stronger the shielding effect is.

(2) As a, > a_, the surface circular hole has
an amplifying effect on the SIFs of the surface
crack and the amplifying effect is the most ob-
viousat a, =a,, .

(3) As a, is large enough, i.e., the size of the
surface circular hole is small enough relative
to that of the surface crack, the effect of the
surface circular hole on the SIFs of the surface

crack is almost neglected.

13)

sche

almost equals K,

sre

228

12f
1o &
°
g !
¥£ 08f (“)
2 f h/a=1.3
< 06} T
04r |
!
02} °
0 2 4 6 8 10
a/R

Fig.6 Normalized SIFs F,, of a fair of cracks
emanating from a surface square hole (h/a=1.3)

5. Conclusions

A numerical approach for a liked-plane
crack problem was presented in this paper. The
numerical approach is simple, yet accurate for
calculating the SIFs of a liked-plane crack. The
SIFs of a pair of cracks emanating from a sur-
face elliptical hole in infinite body in tension
are analyzed in detail. It is found that there
are the dimensionless parameters a,,, a,, and
F.,..» which can be used to reveal the effect
of a surface elliptical hole on cracks emanating
from the surface hole.
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