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We consider the ectronic properties of empty single-wall nanotubes (SWNT) and SWNT filled
with the fullerenle molecules (carbon «nano-peapod»). The first part of the review (section 2) is
devoted mostly to the Luttinger liqued properties of individual metallic SWNT coupled to metallic
electrodes or to superconducting leads. The discovery of carbon «nano-peapods» and their elastic,
electric and thermal properties are reviewed in the second part of the paper (section 3). We
suggest in particularly how fullerene and metallofullerene molecules can be raleased from a

«nano-peapod» by a purely electrostatic method.
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1. Introduction

In the context of modern solid state physics interest
in carbon-based structures was initially connected to
the physics of conducting polymers: in particular to in-
vestigations of the physical properties of lightly doped
trans-polyacetylene (trans-(CH) ), which was among
the highest-priority research topics in the early 1980s
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(see, e.g., the review [1]). A number of novel and, for
solid state physics, unusual phenomena, such as elec-
tron fractionalization, fractional charge, anomalous
spin-charge separation, soliton conductivity and others,
were reported to be important for describing the con-
ducting properties of lightly doped polyacetylene (see
the review [2] and references therein). The joint efforts
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of both physicists and chemists during 20 years’ of in-
vestigating polyacetylene and other conducting poly-
mers culminated in the year 2000, when the Nobel Prize
in Chemistry was awarded to A.J. Heeger, A.G. Mac-
Diarmid, and H. Shirakawa for their discovery and de-
velopment of conducting polymers.

Another area where the interests of physicists and
chemists have a strong overlap is related to carbon
nanostructures. The birth of this new research area
can be attributed to the 1985 discovery [3] of Cg,
(named buckminsterfullerene after the American ar-
chitect Buckminster Fuller by its discoverers, but also
known as «buckyballs»). The synthesis of buckmin-
sterfullerene — a novel molecular form of carbon —
was from the very beginning considered to be an out-
standing achievement. Tt triggered an avalanche of
publications (see, e.g., the reviews [4,5] and refer-
ences therein) on the chemical and physical properties
of Cgp as well as other fullerenes and in 1996 R.F.
Curl, H.W. Kroto, and R.E. Smalley were awarded
by the Nobel Prize in Chemistry for this fundamental
discovery.

At first solid state physicists were mostly interested
in solid Cgy (fullerite). Pure fullerites are semicon-
ductors with an energy gap of about 1-2 eV (see, e.g.,
Ref. 6). When intercalated by alkali metals the com-
pounds A3Cg and AB»Cg, (A,B =K, Rb, Cs, TI) de-
velop a metallic conductivity. At low temperatures
these compounds display superconducting properties
[7-11] (see also the review [5]). There is a strong cor-
relation between the critical temperature of supercon-
ductivity T, and the lattice spacing a; in the doped fcc
Cgo- The latter depends on the radius of the interca-
lated atoms and it was found empirically that the crit-
ical temperature grows linearly with the increase in
lattice spacing (T, « ay) (see the corresponding dis-
cussion in Ref. 5). The enhancement of the critical
temperature can be qualitatively explained in the BCS
theory as a result of the increase in the density of
states due to the narrowing of the conduction band
following intercalation (see, e.g., Ref. 12). The criti-
cal temperatures observed in intercalated fullerites are
the highest among superconducting molecular crys-
tals. However, a quantitative theory of superconduc-
tivity in these novel materials is still lacking, and
even the mechanism of superconductivity in fullerites
is under debate [5].

In spite of early optimistic predictions, fullerenes
and fullerites, although very interesting objects from
the point of view of fundamental science, have still
not found vast practical applications. Carbon nano-
tubes, on the other hand, i.e., microtubules of gra-
phitic carbon, have during the last ten years or so at-
tracted a great deal of interest from experimentalists,
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theoreticians, and applied scientists because of their
considerable potential for applications in, e.g., mate-
rials science and electronics. Although vapor-grown
carbon filaments have been known and investigated
for a long time (see the corresponding brief history in
Ref. 13), and the appearance of multi-wall carbon
nanotubes (MWNT) in filamentous growth of carbon
was reported — using a different language — as early
as 1976 by Oberlin, Endo, and Koyama [14], the real
surge in the interest in carbon nanotubes started with
a paper by Sumio lijima [15]. In that work, which ap-
peared in 1991 — just after the discovery of fullerenes
and at a time when the scientific community was fo-
cussed on novel carbon structures; Tijima reported on
his discovery of concentric cylindrical multi-wall car-
bon nanotubes with an outer diameter of 4-30 nm and
a length of up to 1 pm in carbonaceous deposits formed
in an arc discharge reactor. The electron microscope
images obtained in Ref. 15 clearly demonstrate the ap-
pearance of concentric cylinders with an inner diame-
ter of about 3 nm and an inter-wall distance of 0.34 nm
in the carbon deposit. It was also shown that there are
tubes in which the crystal axis of the graphene shell is
helically arranged relative to the cylinder axis (they
were named chiral nanotubes).

In 1993 two experimental groups (one [16] headed
by Tijima from NEC Fundamental Research Laboratory
in Tsukuba, the other [17] led by Donald Bethune of
the IBM Almaden Research Center in San José, Cali-
fornia) independently reported the observation of sin-
gle-wall carbon nanotubes (SWNT). The metals that
act as catalysts turn out to be essential for producing
SWNTs (see, e.g., Ref. 18). Bethune and his colleagues
were experimenting with metal-carbon combinations to
generate endohedral species — metallofullerenes. His
group and others, inspired by the first successful syn-
thesis [19] of La@Cgy, produced a wide variety of
fullerene-based endohedral species with encapsulated
La, Ca, Br, Sc, Y, Sr, U, Ti, and other elements (see
the review [20]). In experiments with Sc and Er it was
shown that a few atoms can be encapsulated in the
fullerene cage forming such large metallofullerenes as
Sc3@Cgy and Sc3N@C g . Then an idea appeared [18]
to use transition metal atoms to make endohedral ferro-
magnetic particles. When vaporized Co was used in an
arc discharge reactor, a new graphitic structure — the
SWNT — was unexpectedly discovered [17]. Tijima’s
group chose to use Fe as catalyst element [16]. Soon
high-yield production of SWNTs was achieved by laser
ablation of graphite [21].

SWNTs are seamless all-carbon nanocylinders.
Their diameters range from 0.4 nm to 2—3 nm and the
length of these structures can easy reach several mi-
crometers and even millimeters; the longest SWNTs
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made so far were 4 cm long [22]. So SWNTs have re-
cord-high aspect ratios. Due to their unique mechani-
cal and electrical properties the carbon nanotubes at
once attracted the attention of both physicists and
engineers. Various potential applications of carbon
nanotubes were suggested theoretically and demon-
strated in laboratory experiments. Carbon nanotubes
are thought to be perfectly fit for use as the basic
elements of future nanoelectronics (wires, diodes,
transistors, etc.). We will discuss in detail some of the
recent progress in understanding the fundamental
properties of SWNTs in Section 2 of our review (see
also the earlier reviews in Refs. 23-27). One of the
most promising applications of nanotubes as field-
emitters, first demonstrated in Ref. 28, is already be-
ing commercialized in field-emission-based TV dis-
plays by Samsung and Motorola.

From the point of view of fundamental physics a
metallic SWNT is a realization of a purely 1D conduc-
tor, for which Landau’s Fermi-liquid theory of con-
duction electrons is known not to be valid (see, e.g.,
Ref. 28). Instead, the Luttinger liquid (LL) model
[29] (see also the reviews [28,30]) provides the cor-
rect low-energy theory of the electronic properties of
metallic SWNTs. So far this fundamental property of
SWNTs has not been adequately considered in review
articles on carbon nanotubes (with the exception of
Ref. 31). In subsections 2.2-2.4 the various aspects of
this problem and recent developments, including the
superconducting properties of SWNTs, are studied.

The next significant achievement in the area of
nanoscale graphitic structures was the discovery of
carbon «nano-peapods» [32] in 1998 by Brian Smith,
Marc Monthioux and David Luzzi. Single-wall nano-
tubes are hollow cylinders with a nanoscale diameter.
Therefore it seems very natural to use them as molecu-
lar containers for various substances. Although the
idea to fill nanotubes with foreign compounds was ob-
vious to the researchers (see, e.g., Ref. 33) and the at-
tempts to fill MWNTSs were successful [34], the first
results for SWNTs were obtained only in 1998. Two
groups almost simultaneously claimed to have opened
and filled single-wall nanotubes. The first foreign ma-
terial successfully introduced [35] into the interior
space of a SWNT was the compound RuCls, which af-
ter heat-treatment under gaseous hydrogen was re-
duced to metallic Ru. The Oxford team [35] suc-
ceeded in deliberately filling SWNTs by using mainly
halides as the filling material. Although filling of the
SWNT cavity with other materials such as chromium
oxide (and other oxide compounds) and even with sin-
gle elements, viz. Ru, Bi, Ag, Au, Pt, and Pd, has
been reported in recent years (see, e.g., the review
[13] and references therein) it was the discovery of
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carbon «nano-peapods» — single-wall nanotubes fil-
led with fullerene molecules — that was of most
interest to physicists.

The first question concerning peapods that physicists
had to answer concerned the status of carbon nano-
peapods. Is it a novel graphitic structure with properties
that can not simply be reduced to the known properties
of SWNTs and fullerene molecules? This problem is con-
sidered in subsection 3.2 of Section 3. We will see that
carbon peapods do display unique electrical properties.
In particular, the (Cgon@(10,10) peapod is a system
with metallic conductivity both along the nanotube and
along the chain of buckyballs [36].

Being a composite system, peapods are easily con-
trolled by acting on their «soft> component — the en-
capsulated fullerenes. In general, carbon peapods can
be thought of as an electromechanical system, where
the movable elements — the fullerene molecules —
may influence the electrical properties of the peapods.
In subsection 3.3 we consider the electrostatics of a
carbon nano-peapod coupled to a metallic electrode.
Our analysis shows that even an initially neutral
Cgo-molecule can be released from the peapod by a
purely electrical method.

In the Conclusions section some unsolved problems
concerning the physics of carbon nano-peapods and
the prospects for using peapods in technological appli-
cations are discussed.

2. Electronic properties of single-wall nanotubes

It was theoretically predicted [37—40] and then
verified in STM experiments [41] that SWNTs, de-
pending on their diameter and helical structure, can
demonstrate either metallic or semiconducting behav-
ior. If the chirality of a nanotube is not controlled
during the chemical production, something that is not
possible at the moment, approximately 1,3 of all
nanotubes display metallic properties. In this review
we will consider only metallic nanotubes.

SWNTs are hollow cylinders with a nanometer size
diameter. It is physically evident that due to quan-
tization of electron momentum in the compactified di-
rection, the conducting electrons in carbon nanotubes
should demonstrate one-dimensional behavior. Besides,
in the absence of structural defects their transport
along the nanotube shell has to be ballistic. It is known
that in the absence of localization a 1D electron system
away from half-filling can form either a Luttinger liq-
uid or Peierls-Frohlich conducting states depending
on the effective strength of the electron-electron (e—e)
and electron—phonon (e—ph) interactions. As a rule,
organic polymers (e.g., trans-polyacytelene) and
quasi-1D metallic compounds that in principle could be
one-dimensional metals, in reality are Peierls insulators
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with a charge density wave (CDW), that provides
their conducting properties (see, e.g., Ref. 42). So two
important questions arise: (i) Why do certain types of
SWNTs demonstrate metallic behavior? and (ii) What
is the theory of their conducting properties?

2.1 Helical structure and electron spectrum

The carbon nanotubes are graphene tubules, so the
origin of their specific properties is related to the lat-
tice structure of 2D graphite (graphene) and the
«wrapping» procedure, that is the mapping of the
graphite sheet onto the cylindrical surface.

The hexagon («honeycomb») lattice structure of
2D graphite shown in Fig. 1 is characterized by the
two basis vectors a; and a; (see e.g., Ref. 23). In a
cartesian coordinate system a; =(a/2)(+/3,1) and
a, =(a/2)(3, 1), where a =+/3dc¢ is the lattice
spacing and dcc ~ 1.4 A is the C—C interatomic dis-
tance. In Fig. 1 two crystallographically identical
points in a honeycomb lattice are connected by a
chiral translation vector C;, =njaq + nya,, where ny,
are integers (chiral indices, 0 <7y <ny). Rolling up
the 2D graphite sheet into a cylinder corresponds to
joining the two lines that are perpendicular to C; and
goes through the two points where this vector starts
and ends. The carbon nanotube is thus specified by
the pair of chiral numbers (n1,75) and the cylinder ra-

dius is
C [
RNT =| hl Zg n12 + nqny +7l22 . (1)

27

Fig. 1. Honeycomb lattice structure of graphene character-
ized by the two basis vectors aq and aj. A nanotube is
formed by rolling up the 2D sheet so that the end of the
chiral translation vector C;, = njaq +mpay at (nq,ny) (here
(6,3)) meets the origin O. The nanotube translation vec-
tor T is directed along the tube axis. The angle between aq
(the zigzag direction) and Cj, is the chiral angle 6. This
figure is used with permission from S. Mirayama.
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For reasons that are evident from Fig. 1 the basis
vector a4 is said to define the zigzag direction. If C,,
only has a component along a; the corresponding
(n, 0)-nanotubes are known as <«zigzag» nanotubes.
The other limiting case corresponds to a translation
vector pointing along the bisector of the 60° angle be-
tween the two basis vectors, so that ny =ny =n. The
resulting (n,n) nanotube is called an <armchair»
nanotube. All other types of nanotubes are called
«chiral> nanotubes. In these nanotubes the crystal
axes of the graphene have a helical arrangement rela-
tive to the tube axis.

The graphene is known [23] to be a semimetal in
the sense that its Fermi surface collapses to two points
(usually labelled K and K’) of the Brillouin zone. In
the low-energy theory of the graphene electronic
structure the effective Hamiltonian, which corre-
sponds to a linearized electron spectrum around these
critical points, has the form of a 2D massless Dirac
Hamiltonian (see, e.g., Refs. 40,43):

Heg =vpok, (2)

where o are the Pauli matrices and k is the 2D mo-
mentum.

The wave function W(r) of valence electrons has to
satisfy periodic boundary conditions along the
compactified direction on the cylinder surface. This
function can be represented as a product of a crystal
(Bloch) function and a slowly varying (envelope)
function y(r), which satisfies the Schrédinger equa-
tion with the Hamiltonian (2). The Bloch function,
say for the K-point, acquires the phase exp(iK -C,)
(K is the corresponding crystal momentum) when
translated around the tube. Therefore, the envelope
function has to satisfy the «twisted» boundary condi-
tion y(r + C;,) = exp(—=iK - C;)wy(r) to compensate
for this phase change. Notice that the twisted bound-
ary conditions can be equivalently expressed in terms
of a fictitious magnetic flux ®/®; =-K-C,,/2n
through the nanotube [43].

The energy spectrum of the Hamiltonian (2) for the
boundary condition specified above is [40,43]

2 2
& () = iUF\/k2 + [RZTJ {m —%(2”1 + "2)} ,
(3)

where % is the electron momentum along the tube
axis, Ryr is the nanotube radius, Eq. (1), and m is an
integer (azimuthal quantum number). According to
Eq. (3), the spectrum will be gapless (and the corre-
sponding nanotube metallic) only when [38]

2ny +ny =3m. (4)
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Otherwise all electron states have gaps AE, which
scale as AE, o« 1/Ryr. In particular, all armchair
SWNTs (n; =ny) are metallic wires. This significant
prediction [37—39] has been verified experimentally
[41]. The low-energy spectra of SWNTs described by
the effective Hamiltonian, Eq. (2), are identical for
the two critical points K and K'. Hence for each me-
tallic SWNT two identical branches of the electron
energy spectrum cross the Fermi energy. This double
degeneracy can be traced down to the two equivalent
1D sublattices of the honeycomb structure.

From the above analysis it is clear [40] that a real
magnetic field parallel to the nanotube axis with
noninteger flux ®/®, will induce an energy gap
244, Ay =(hop /Ryp)(D/Dg), in the electron spec-
trum of an undoped metallic nanotube (that is at
half-filling). The gap A, for a (10,10) nanotube is of
the order of 1 meV for magnetic fields of order a few
Tesla. The conductance of SWNTs can therefore be di-
rectly controlled by a magnetic field. This interesting
theoretical prediction has been reported [44] to have
been verified in experiments (see also Ref. 45).

2.2. Ballistic transport and Luttinger liquid
properties of a metallic SWNT

It has been known for a long time that a 1D metal-
lic chain of atoms is unstable with respect to a
metal-insulator transition caused by a spontaneous
lattice distortion. Such a Peierls transition [46] opens
up a gap A p in the electronic energy spectrum exactly
at the Fermi level. For a half-filled electron band (in
general for commensurate filling) the Peierls state is
insulating with an exponentially small conductivity at
low temperatures T << Ap /kg. Away from half-fill-
ing the Peierls phase transition results in a conducting
state (Peierls— Frohlich state) with a CDW deter-
mining the conducting properties of the system at low
temperatures (see, e.g., Refs. 42,47). In both cases the
density of states (DOS) at the Fermi energy is zero
due to the presence of a gap in the energy spectrum of
the electrons.

STM experiments [41] unambiguously show that
the DOS at the Fermi energy is finite for metallic
SWNTs. So, why do SWNTs in contrast to, say, con-
ducting organic polymers like polyacytelene (see, e.g.,
the review articles [1,2,47]) stay metallic even at low
temperatures? There are several physical reasons for
this unique behavior. The Peierls transition is a mean-
field phenomenon. This is a good approximation when
the electron—phonon coupling is strong and the fre-
quency of optical phonons ;. is low, that is when the
lattice vibrations are soft. Even simple estimations of a
weak electron—phonon coupling [37] show that the
specific nature of the electron spectrum of 2D graphite
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near the Fermi level leads to a mean-field Peierls tran-
sition temperature for carbon nanotubes orders of
magnitude below room temperature. Besides, a SWNT
have a tubular structure and is not a 1D chain of carbon
atoms. The Peierls energy gap was shown [49] to de-
crease exponentially with an increase of the nanotube
radius. For chiral indexes n > 10 the dependence of A p
on the dimensionless electron—phonon interaction
strength becomes analogous to the one in 2D graphite,
where the gapless electron spectrum at the Fermi points
is known [23] to be stable against a Peierls transition.
Finally, the strong (unscreened) Coulomb interaction
between electrons in a nanotube requires (see the dis-
cussion below) the conduction electrons to be described
in terms of a Luttinger liquid (or a 1D Wigner crystal).
When the effective electron—phonon coupling is weak,
Ve—ph /oy, <<1, the vibrational modes can be inte-
grated out from the low-energy action and their only
effect is to renormalize the LL parameters [48]. So, ef-
fects of the electron—phonon interaction on the ground
state properties of carbon nanotubes are thought to be
negligibly small in general. However, special phonon
modes (e.g., the torsional shape fluctuations of the tu-
bular structure [44]) could be a significant factor in the
explanation of the temperature dependent resistivity of
SWNTs at high temperatures [50].

An isolated armchair SWNT is a half-filled
two-band strongly correlated 1D electron system. A
gap in the spectrum of charge excitations in this sys-
tem can be formed due to a Mott transition, which is a
metal-insulator phase transition driven by electron
correlations. In a Hubbard-like model it has been
shown, both for short-ranged electron—electron inter-
actions [51] and long-range Coulomb interactions
[52], that the ground state of the half-filled armchair
nanotube is indeed a Mott insulator (with an addi-
tional gap for spin excitations). The gap in the total
charge sector was estimated [52] to be of order 100 K.
Notice, however, that numerical results obtained in
the bozonization approach used in Ref. 52 are ques-
tionable, due to their dependence on a cut-off parame-
ter. The cited value for the energy gap should there-
fore only be considered as an order of magnitude
estimate.

The reason why this correlation induced gap has
not been observed in experiments measuring the elec-
tric current through a nanotube is that a nanotube in
contact with metallic leads is shifted away from
half-filling by charge transfer between the nanotube
and the metal electrodes. Since in current experiments
one is normally off half-filling, we will only consider
this generic case in what follows.

The above theoretical considerations show that —
away from half-filling — SWNTs, which according to
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the chiral rule Eq. (4) can be classified as metallic sys-
tems, are indeed 1D metals. The first experiments
using an individual SWNT [53] or a bundle of high-
quality SWNTs [54] demonstrated the ballistic nature
of electron transport through a single-wall carbon
nanotube. By observing Coulomb blockade phenom-
ena [55,56] the results for the electrical conductance
could be interpreted in terms of resonant tunneling
through quantized energy levels in the nanotube, and
the corresponding electron wave function is delo-
calized along the entire length of the tube.

The Coulomb interaction between electrons in a 1D
quantum wire is intrinsically unscreened (it is screen-
ed on the length scale D >> % if a bulk metal is lo-
cated at distance D from the wire). This suggests that
Coulomb effects are strong in SWNTs and that they
could strongly modify how charge is transported along
a quantum wire coupled to source and drain leads.

A long wavelength (low energy) theory of corre-
lated electrons in SWNTs was formulated in Refs. 57
and 58. General considerations suggest that this
theory describes a two-channel spin-1,/2 Luttinger
liquid (see, e.g., Ref. 30). However, the specific
features of nanotubes, in particular their tubular
structure and the strong (unscreened) Coulomb in-
teraction between electrons, make a detailed study of
the different interaction terms motivated [58]. It is
physically evident that a poorly screened Coulomb
interaction leads to strong forward scattering
3k~ 0) of 1D bare electrons. The corresponding
scattering amplitude is V(0) ~ (2¢% /x) In (D/RnT),
where k ~1 is the dielectric constant. The physical
result of strong forward scattering is a strong re-
normalization of the velocity v, of charge excitations
(plasmons), so that v, >>vp. The backscattering
terms involve large momentum transfers of order 2kp
and hence they are dominated by the short-range part
of the Coulomb interaction. Since in a nanotube the
conduction electron wave functions have a component
that extends around the cylinder, the matrix elements
for electron—electron backscattering scale as 1/Ryr
and are small for nanotubes with sufficiently large
radii (corresponding to chiral indices nqy >10).
A more careful quantitative analysis of scattering
vertices induced by the short-range part of the
Coulomb interaction shows [58] even an additional
numerical suppression. Although these non-LL terms
induce gaps in the energy spectra of neutral ex-
citations, the gaps are exponentially small [57,58] and
can be safely neglected even at relatively low tem-
peratures. A rough estimation [58] of the corres-
ponding temperature scale gives T > 0.1 mK.

The low-energy properties of a SWNT away from
half-filling are hence those of a 4-channel Luttinger
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liquid. The (total) charge sector (p, ) is the only one
that is affected by the Coulomb interaction. The corre-
sponding Hamiltonian takes the form [57,58]

0o =2 [dre1gs" oxs, )2 (6xgp, )?
P T on xlgy (Ox8, )7 +g,0xe, )71 (5)

where 8, and ¢, are the conjugated bosonic fields
of the «total charge» channel, and

v, =0p. 1+ 8¢” lni
P £ T[hUF RNT (6)

is the plasmon velocity, while g, =vf /v, is the LL
correlation parameter. All other excitations which
correspond to the relative charge channel p_ and the
total (o) and relative (5_) spin channels, are de-
scribed by harmonic fields, as in Eq.(5), but with
nonrenormalized velocities (g =1).

The tunneling current into a SWNT can easily be
calculated using standard methods of Luttinger liquid
theory (see, e.g., Ref. 30). The corresponding problem
in a multichannel LL was considered for the first time
in Ref. 59. Both the differential and the linear conduc-
tance were found to be power-law functions of bias
voltage V and temperature T,

ﬂocva.

i G(T)=T" . (7)

Here the exponent o is different for tunneling into
the bulk (o) and into the end (oq,q) of a quan-
tum wire. These two exponents correspond to two dif-
ferent boundary conditions. The «bulks» exponent is
calculated for an effectively infinite LL wire and peri-
odic boundary conditions for the plasmonic fields. The
«end» exponent corresponds to hard-wall boundary
conditions at the nanotube end, where the electron
wave function is forced to vanish [60]. In our case
[57,58]

OLbulk:1 i-ﬁ-gp—Z ) OLend:1 i_1 - (8)
81 9p 41 9,

For strong interactions the electron tunneling to a
SWNT is suppressed, which is a manifestation of the
Kane — Fisher effect [61]. A theoretical estimation of
gp for a micron-length nanotube (vyp =8 10° m/s
for graphene [23]) gives the numerical value g, ~ 0.2
which is in good agreement with experiment [54].

2.3. Carbon-based single electron transistor

It has already been known for quite some time [61]
that the repulsive electron—electron interaction in one-
dimension leads to a dramatic suppression of the charge
current through a local potential barrier (see also Ref.
62, where the analogous effect independently was pre-
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dicted for a 1D pinned Wigner crystal). The corre-
sponding theoretical problem for an arbitrary interac-
tion can easily be solved analytically for strong and
weak barriers by perturbation expansions in the bare
tunneling amplitude (weak tunneling) or in the impu-
rity scattering potential (strong tunneling) [63,64]. Al-
though the single-impurity problem in a LL can be
solved exactly for an arbitrary barrier [65], universal
scaling behavior is pronounced only for the two men-
tioned limiting cases. Scattering barriers in SWNTs,
formed by intrinsic defects, could be strong and in this
case they would produce a weak link in the LL wire.
For such a situation one can evaluate the nonlinear dif-
ferential conductance G(V,T) =dJ,/dV at finite tem-
peratures in a closed form for arbitrary interaction
strengths. When a weak link is formed at the interface
between a SWNT and a metallic lead the nonlinear con-

ductance is (see, e.g., Ref. [31]

. 2

G(V,T) = AT “end cosh[evj‘r (”“end n levj‘ .

2T 2 2nT

9)
Here I'(2) is the gamma function and the prefactor
A depends on the bare transparency, which is assumed
to be small. For a weak link formed between two iden-

tical SWNTs the corresponding nonlinear conductance
reads [66]

G(V, T) — A'T %end—end Sinh[z‘;j «

X

2 2nT

X 1CO‘ch ﬂ _llm N 1+0°end7end + eV ,
2\ m 2 2T

(10)

where W(2) is the digamma function and ot apq—end =
=20l 4nq- The appearence in Eq. (10) of an exponent
twice as large as the one in Eq. (9) is easily explained
by the fact that LLs appear on both sides of the bar-
rier. The tunneling rate is therefore determined by the
product of two identical power-law functions, each
with an exponent a.,q. According to Egs. (9) and
(10) the differential conductance scaled by T* is a
function (for a given interaction strength) of only one
variable eV /T. This prediction has been confirmed in
experiments [66].

An intramolecular junction can be introduced in a
SWNT either by creating a pentagon-heptagon defect
in the hexagonal carbon tubular structure [66] or by a
local mechanical deformation of the uniform nano-
tube. A SWNT is elastically deformed under a small

. 2
r (1 + Olend—end n levj‘ «

Fizika Nizkikh Temperatur, 2006, v. 32, No. 10

bending stress and buckles when the mechanical stress
exceeds a certain value [67,68]. A sufficiently strong
local bending of a SWNT produces a kink-like struc-
ture that acts as a scattering barrier for electrons mov-
ing along the tube. When two kinks are created not
too far from each other, the corresponding doubly
buckled SWNT may serve as as an all-carbon room
temperature single-electron transistor (SET). The
electrical characteristics of such a set was reported for
the first time in Ref. 69.

A theory of LL-based SETs was developed in
Refs. 70-74. In this chapter we briefly review the
novel theoretical predictions made for a SET with
electron correlations. The major phenomenon which
governs how a standard (semiconducting quantum
dot-based) SET works is the Coulomb blockade (CB)
of tunneling, which inter alia leads to Coulomb
blockade oscillations [55] of the current as a function
of gate voltage V. The <«orthodox» theory of the
Coulomb blockade [55,56] treats electrons as non-
interacting quasiparticles and takes into account the
long-range part of their Coulomb interaction pheno-
menologically by introducing the charging energy of
the dot

2
Ec(N) =2~ (N =Ng)* . an

This is an electrostatic energy associated with the
tunneling of N — N, electrons onto a dot with N
electrons and electrical capacitance C in the presence
of a gate voltage that controls the parameter Ng (in
the CB situation Ny < Ng < Ny +1).

There are three different energy scales in the orthodox
theory of CB, viz. the charging energy E. = e? /2C, the
single electron mean level spacing 8, and the widths of
single-particle levels T ,(T'yo¢ = I + I',) arising due to
the finite transparencies of the left (/) and right (r)
barriers which connect the quantum to dot the leads. To
have a well-defined number of electrons on the dot, the
electron tunneling onto and from the dot should be weak,
and therefore I'; , is taken to be the smallest energy scale
in the problem. In the CB regime the temperature has to
be much smaller then the charging energy and one may
consider two different regimes: (i) the classical Coulomb
blockade (high temperature) regime, 8 << T' << E, and
(ii) the quantum Coulomb blockade (low temperature)
regime, T << 3. The current through the dot is due to
single electron tunneling. The current peaks at resonance
values of the gate voltage when the CB of single-electron
tunneling is lifted. The corresponding charge transfer
mechanism is sequential electron tunneling onto and
out of the quantum dot. At very low temperatures
T << T},T, this noncoherent mode of electron transport
is replaced by resonant, coherent tunneling. Far away
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from the resonance points the current is due to direct
electron tunneling (cotunneling) through the dot and is
strongly suppressed.

The theory of sequential tunneling is based on the
master equation approach [55], which describes the
time evolution of the probabilities Py (¢) for having N
electrons on the dot. The current is calculated using
the steady-state probabilities Py (). The orthodox
theory of the classical Coulomb blockade predicts
[55,75] a linear temperature dependence of the width
of the CB oscillation peaks and temperature independ-
ent peak heights.

In the quantum Coulomb blockade regime,
I}, <<T << 3, when only a single electron level on a
dot is available for electron transport, the shape of the
conductance peaks is (see Eq. (49) in Ref. 76)

2
I,r
G, (avg) =% i [ C ! :
h T+, éeg expleg/T) +1

(12)

where g5 o« AV is the energy which measures the
distance from the resonance point V; (r) ; (AVG =
=|Vg - VG |) This formula predicts a lmear T-de-
pendence of the conductance peak width (as in the
classical CB regime) and a 1/T-dependence of the
peak heights G,(0) < T~'. Equation (12) coincides
with the thermally broadened (T'>>T7,) conduc-
tance through a Breit — Wigner resonance level.

Coulomb blockade phenomena are pronounced as
long as G, << Gy =e? /nh. This is also the main re-
quirement for the master equation approach to be
valid. For a symmetric quantum dot (I, ~ T',) this
assumption is violated at very low temperatures,
T <<TIy,. In this case transport is through coherent
resonant tunneling. The conductance increases with a
decrease of temperature and reaches the limit Gy as
T —> 0.

What novel features do LL correlations add to the
picture of single-electron tunneling described above?
First of all, the tunneling rates I'; , being proportional
to the tunneling DOS in the <end-coupled» LL,
become interaction- and temperature-dependent. As a
result the peak conductance acquires a power-law
temperature dependence [70] in the whole tem-
perature region T << E<. In addition, new intrinsic
energy scales appear. The single-particle level spacing
A, for a finite-length (L) LL quantum dot with
unscreened Coulomb interactions reads (we use pa-
rameters relevant for a SWNT)

~ 8e D
¢’ Ec LIH[RNTJ, (13)
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where E, defines the corresponding electrostatic
(Coulomb) energy. Since & =mnhop/L for 1D
electrons confined on a quantum dot of length L, both
terms in Eq. (13) scale as1/L. For strong interactions
A, coincides with the Coulomb blockade energy. The
new energy scale, which for interacting spinless
electrons replaces &, is the plasmon level spacing
5, =mho, =8/9, (for strongly interacting electrons
8 <<d, << Ag) The spin-charge separation in a LL
yields two different energy scales for the bosonoc
excitations in a LL quantum dot — &, for plasmons
and & for neutral excitations. The interplay of these
energy scales leads to a much more complex picture of
Coulomb blockade oscillations [72] than in the case
of noninteracting electrons. Besides, the plasmons are
bosonic excitations and their statistical properties are
significant for determining the occupation probabi-
lities of the energy states in a LL quantum dot [74].

We see that Coulomb blockade phenomena in a
SWNT could significantly differ from the standard
behavior predicted by the orthodox theory of the CB.
The most evident signature of LL effects is the po-
wer-law dependence of the conductance on tempe-
rature and bias voltage. This dependence originates
from the strong energy dependence of the LL tun-
neling rates in the vicinity of the Fermi energy. For
uncorrelated sequential tunneling the resistivities of
the left and right LL/quantum dot junctions are
effectively added and therefore the temperature de-
pendence of the peak conductance scales as T “end due
to the LL correlations (see Eq. (7)) and an additional
factor T_l, the same as for noninteracting electrons,
appears from applying a linear response theory with
respect to eV /T. In the high-temperature region
6, <<T << A, the temperature dependent DOS of
the LL dot contributes one more temperature-de-
pendent factor T%nd*! {5 the conductance. In sum-
mary, the theory for uncorrelated sequential tunneling
(UST) predicts that the peak conductance depends on
temperature as follows [70]

T%nd =1 << T <<3,

Sg << T << Ag.

(14)

T2aend

G,(T) o {

The drama of the situation is that low temperature mea-
surements [69] of G, (T) for a double-barrier SWNT re-
vealed a different scaling law over a wide temperature
interval, since one found that G, (T) o T *%*end =1,

The theory of uncorrelated sequential tunneling as-
sumes that the bare tunneling amplitudes are small
|t ;| /hvp <<1, and therefore the zero temperature
linewidth I o< |¢; .| is the smallest energy scale in the
problem. All calculations in this approach are per-
formed to lowest order in I' (see Refs. 79, 75, 76). It
was suggested in Ref. 69 and soon theoretically dem-
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onstrated [73,77] that, when processes of higher order
in T are included in the calculation, the new scaling
G,(T)xT 20end =1 yppears for intermediately strong
interactions and moderately strong barriers. The cor-
responding approach was named correlated sequential
tunneling (CST). There are serious technical problems
with the calculation since all higher order diagrams in
I' are intrinsically infrared divergent. These diver-
gencies were avoided in Refs. 73 and 77 by introduc-
ing an exponential cutoff factor containing the physi-
cal linewidth in the second order diagrams. This
linewidth is in its turn determined in a self-consistent
manner. Although the procedure is physically reason-
able, it introduces an uncontrolled approximation in
the problem. Unfortunately, the desired scaling ap-
pears in the CST approach as a result of several differ-
ent contributions and has no clear physical meaning.
The existence of a CST regime was confirmed in
Ref. 78 by numerical calculations using a quantum
Monte Carlo algorithm but has been questioned based
on numerical simulations using a functional renor-
malization group procedure [79]. The problem of find-
ing a physical understanding of the scaling law found
in the experiment [69] remains open.

2.4. Superconducting properties of carbon nanotubes

Strong Coulomb correlations as a rule suppress su-
perconductivity and an individual SWNT is not in-
trinsically superconducting. In a single carbon na-
notube the superconducting properties can be induced
by the proximity effect of superconducting leads in
hybrid S/NT/S or S/NT /N structures (S(N) de-
notes a superconducting (normal metal) lead). Re-
cently, proximity induced superconductivity was in-
deed observed in mesoscopic carbon nanotube-based
junctions [80—84].

Intrinsic superconductivity in carbon nanotubes
has, however, been discovered experimentally [85,86]
in ropes containing hundreds of SWNTs at tempera-
tures T, ~ 1 K. In a thick rope the Coulomb inte-
raction is expected to be partially screened and the
electron—phonon interaction may induce supercon-
ducting (Cooper) correlations [87,88]. A low-energy
(Ginzburg — Landau) theory of superconductivity in
bundles of carbon nanotubes was proposed in Ref. 80.

Here we review theoretical models of proximity-
induced superconductivity in S/NT /S junctions. The
major problem in comparison with the standard de-
scription of SNS junctions (see, e.g., Ref. 90 and refe-
rences therein) is to take into account the strong
Coulomb correlations in carbon nanotubes. Depending
on the length scale (L) of the nanotube that bridges the
gap between the two bulk superconductors, two phy-
sically different approaches are used to treat this
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problem. For a long junction, L >>E&,, where
£y =hop /A is the superconducting correlation length
(A and o} are the energy gap and the Fermi velocity
of the superconducting leads), the system is modelled
as a superconductor / Luttinger liquid /superconductor
(S/LL/S) junction. The short junctions (L < &) are
considered as a superconductor /quantum dot /super-
conductor (S,/QD /S) hybrid system and quantum dot
is usually modelled by a single Anderson (or Kondo)
impurity.

We start with a long junction. As in the case of nor-
mal (nonsuperconducting) leads, the transport proper-
ties of an S/LL/S junction strongly depend on the
quality of the SN contacts. For adiabatic contacts the
Josephson current through the S /LL /S junction is not
renormalized by Coulomb interactions. This theorem,
which is analogous to «no renormalization» theorems
known from similar normal systems (see Ref. 91), was
proved for the first time in Ref. 92 (see also 93) by a di-
rect evaluation of the Josephson current through a long
perfectly transmitting S/LL /S junction. This result
has a clear physical interpretation. In an ideal SNS
junction the charge is freely transported through the
system due to Andreev reflection of electrons and holes
at the SN boundaries. The Andreev boundary condi-
tions for energies || << A; (e is counted from the Fermi
energy) can be recast [92] in the form of quasiperiodic
(«twisted») boundary conditions for the right- and
left-moving fermions on a ring of circumference 2L.
Then due to translational invariance of the reformu-
lated problem (finding the persistent current in a .S !
manifold) the electron—electron interaction does not
influence the persistent current of an impurity-free ring
(see, e.g., the review [94]).

The Coulomb correlations do affect the super-
current when normal electron backscattering by local
impurities or at SN interfaces is present. SWNTs are
known to be ballistic quantum wires and therefore
only normal electron reflection at the interfaces be-
tween the metallic leads and the Luttinger liquid in-
fluences the electrical current. This backscattering
process is strongly enhanced by a strong repulsive
electron—electron interaction (the Kane— Fisher ef-
fect). The bare transparencies of the barriers (D ,) at
the interfaces are renormalized by the Coulomb inter-
action and, as a consequence, the critical Josephson
current in a poorly transmitting S/SWNT /S junc-
tion is suppressed by the interaction [95]. The corre-
sponding formula for the Josephson current at T =0
reads

J=27OR (sing, J© =Devp /4L, (15)

where J 50) is the critical current for a single-channel
SNS junction with transparency D = D;D, (the addi-
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tional factor 2 in Eq. (15) accounts for the two identi-
cal conducting channels in a metallic SWNT). The
dimensionless interaction-induced renormalization fac-
tor Rj,; (L) depends on the geometry of the contact
(see Ref. 96). For the standard situation of an end-
contacted SWNT R;,; scales as

1QDJT 20end
Ry o [Lj << 1. (16)

Here Ry is the nanotube radius and the exponent
teng is defined in Eq. (8). Measurements give
Oend = 1, so one can expect the critical current in a
long S/SWNT /S junction to approximately scale as
1/I7. A detailed theoretical discussion of the proper-
ties of the Josephson current through an S/LL/S
junction is presented in the review [96].

Until now there has been only one experiment re-
ported [80] where the critical Josephson current was
measured in a carbon nanotube-based junction. For
the low resistance (R =27 k) «single tube» junc-
tion discussed in this work the gap L ~ 0.3 pm
between the two superconducting banks (Ta/Au
bilayer electrodes) is much smaller than the corre-
lation length of the superconducting electrodes
(T, ~ 0.4 K). So, the theory of Josephson currents in a
long S /LL /S junction discussed above can not be ap-
plied for explaining the surprising results found in the
experiment [80]. In particular, the measured critical
current in the <«single tube» sample [80] exceeds
the Ambegaokar — Baratoff limit for the conventional
short SNS junction iy = (n/2)(A/eRy ), where Ry is
the normal junction resistance) by a factor of 40. In
Ref. 97 it was claimed that this surprising result can
be explained by a Luttinger liquid model of an
S/SWNT /S junction. The critical Josephson current
calculated in Ref. 97 actually corresponds to the case
of a long (L >>¢&() junction with low transparency
(D << 1), while in the discussed experiment the fabri-
cated «single tube» junction was short and had a low
resistance (D ~ 1). It is worth to stress here that even
for noninteracting electrons the critical current in a
short junction (the Ambegaokar — Baratoff value) for
a given junction transparency is always bigger then
the one in a long junction. The Coulomb correlations
could only suppress the supercurrent even more. The-
refore the surprising result of measurements in Ref. 80
can not be explained by a LL theory with repulsive
electron—electron interaction.

Until now, in all experiments with carbon nano-
tube-based Josephson junctions the fabricated junc-
tions (see, e.g., Refs. 80—84) can roughly be charac-
terized as short. The superconducting properties of a
short (L << &) SNS junction are for noninteracting
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electrons determined by two spin degenerate Andreev
bound states [98,99]

. 2( @
Ey =%A |1 - Dsin (2j (17)

Here 2A is the superconducting gap, D is the junc-
tion transparency (D =1 for a perfectly transmitting
junction) and ¢ is the superconducting phase dif-
ference across the junction. This formula also holds
for S/1,/N/1/S junctions («I» stands for an insulat-
ing layer (barrier) at the SN interface) for nearly
transparent barriers D; ~ D, = D, ~ 1 (where D, is
the barrier transparency). In this case the effective
transparency D of S/I1/N/1/S junction is D(L) =
= Di/[Db2 + 401 - Dy, sin2(kF L))][90]. According to
Eq. (17) the critical current in a multichannel (N is
the number of transverse channels) tunnel (D << 1)
junction at T =0 is

2e OF _ eA _m A
J = " o0 =J.sing, J.=N,D 2 " 2eRy » (18)
where Ry = (zh/e?)(1/N | D) is the resistance of the
junction in a normal state.

When the barriers at the NS interfaces are thick
(Dy, << 1) the normal part of the junction can be con-
sidered to be a quantum dot with a discrete electronic
spectrum. Now the expression for the energies of the
Andreev bound states corresponding to a resonant level
leg|<< A close to the Fermi energy, take the form [100]

EQD :im’ (19)

where T' = Dyhvg /L << A, Dy <<1 is the width of
the resonant electron level. Even in the most favor-
able situation when the resonant level is exactly at
the Fermi energy (¢ =0, J, =el /2h) the critical
Josephson current is small compared to the maximum
critical current of a short fully transparent junction.
Notice, however, that the «resonant» Josephson cur-
rent is determined by the transparency (D, <<1) of
only one barrier in a double barrier structure [100].
This is nothing but a manifestation of resonant tun-
neling in persistent currents [101].

Now we briefly comment on how Coulomb
correlations affect the supercurrent in a S/QD /S
junction. If the energy level spacing 3 in the quantum
dot is much larger then the superconducting gap,
d >> A, only a single energy level in the dot influences
the transport properties of the junction. Therefore the
dot can be characterized by the level position — e |
counted from the Fermi energy of the leads and the
Coulomb interaction U > 0. The corresponding Hamil-
tonian (the Anderson model) reads
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Hp = ) egii +Uipiy, (20)
o=T1

where 74 :a’ids;(dl,d6 are creation and annihila-
tion operators for electrons in the dot). The dot is
coupled to the leads by a standard tunneling Ha-
miltonian which results in the finite bare width
2T =T; + T, of the dot energy level. The most inte-
resting physics emerges when U is sufficiently large to
make U+e( > 0. The energy level of an isolated dot
(I' =0) is then singly occupied in the ground state.
This singly occupied electron level acts as a spin-1,2
impurity for electrons in the leads and the Kondo
effect becomes crucial for determining the low tem-
perature T < T (T is the Kondo temperature) trans-
port properties of the junction in its normal state.
The Kondo temperature in the Anderson model is ex-
pressed in terms of the bare model is parameters
U,T,¢eq by the familiar formula [102]

€p (€0+ U)
ru '

It is well known (see, e.g., Ref. 103) that in the
Kondo regime Tk is the principle energy scale that
determines the low-energy properties of the system,
for instance, the temperature dependence of the resis-
tance of a normal metal with dilute magnetic impu-
rities. Superconductivity introduces an additional
energy scale, A, and the transport properties of
S/QD /S junctions strongly depend on the ratio
A/Tg. For A << Tk superconductivity does not affect
the physics of the Kondo effect very much. In the op-
posite limit (A >> T ) the Kondo effect is completely
suppressed. The qualitatively different behavior of a
S/QD /S junction in these two limiting cases has a
simple physical explanation [103,104].

For a nonsuperconducting N/QD /N junction in
the Kondo regime (T < T ) the many-body effects that
provide dynamical screening of the S =1 /2 state of the
quantum dot by the electrons in the leads, result in the
formation of a resonant level of width Tk exactly at the
Fermi energy. Electron transport through the junction
can effectively be described as electron tunneling
through a Breit —Wigner-type resonant level at Ef.
Correspondingly, the conductance of the system grows
with the decrease of temperature and at T — 0 it
reaches the quantum unit of conductance Gy = 2¢% /has
appropriate for a single conducting channel. For super-
conducting leads with A << Tk the quasiparticle states
outside the gap can still provide dynamical screening of
the «impurity spin» and the Kondo resonance survives.
The effective transparency of the junction deep inside
the Kondo regime is perfect, D =1. Therefore the criti-
cal Josephson current according to Egs. (17) and (18)

1
TK = 26Xp{7’[ (21)
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reaches its maximum value J. =eA/2h for a single
channel SNS junction [104].

The Kondo temperature Tg, Eq. (21), depends
exponentially on the bare level width I'. In reality the
Kondo effect (with Tg ~ A) is observed only in high
quality junctions when the normal conductance of the
system even in the absence of any Kondo effect (i.e.
for an S = 0 quantum dot state) is of the order of ¢ /A.
As a rule the opposite limit T << A is satisfied for a
tunnel junction. Here the Kondo effect is totally
suppressed since there are no quasiparticle states that
can screen out the spin on the quantum dot. Then the
dot acts as an unscreened magnetic impurity.

The influence of spin nonconserving processes on the
Josephson current in SIS junctions was first considered
by Kulik [105]. It was shown that spin nonconserving
tunneling decreases the critical current J, o |#* 1f,r|2
(here t, tr are the tunneling amplitudes without, ¢, and
with, ¢/, spin flip). According to this dependence the
critical current may be even negative. The ground state
of the junction with a negative Josephson coupling
Ly =hJ./2eis known as a «m»-junction (the unusual
thermodynamical properties of these junctions were
first theoretically studied in Ref. 106). The appearance
of a negative Josephson coupling is explained physi-
cally by the simple fact that electron tunneling through
a singly occupied (S = 1,2) impurity level flips the
electron spin. As a result a Cooper pair is transferred
between superconducting banks with opposite sign
[107] leading to a negative supercurrent.

A mean field analysis of the magnetic S/QD /S
Josephson junction modelled as an Anderson impurity
weakly coupled to superconductors showed [108] (see
also Ref. 109) that with increased on-site interaction U
the critical current is indeed suppressed and eventually
changes sign. However, two new intermediate phases
(usually labelled as «0’> and «n’»>) were revealed. In a
conventional SIS junction ¢ = 0 corresponds to a global
minimum of the Josephson energy and ¢ = & is an un-
stable point (global maximum). For a <«m»-junction
the situation is the opposite. In the intermediate pha-
ses both @ =0 and ¢ == represent minima. In the
«0'>-phase @ =0 is a global minimum and ¢ == is a lo-
cal one and vice-versa for the «n's> phase.

A full numerical (Monte Carlo) analysis of the
Josephson current through a magnetic quantum dot
was carried out in Ref. 110. There it was shown that
only one parameter, A/Tk, governs the supercurrent.
As expected, the current decreases with an increased
value of A/Tg . The transition points to the four dif-
ferent quantum phases discussed above, were calcu-
lated. In particular it was found that the transition to
the «m»-phase is reached at A/Tg ~ 11 and the inter-
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mediate «0’> and «n'>-phases exist in the rather wide
interval of A/Tg-values between 2.8 and 11.

3. Fullerenes inside a SWNT
(a carbon <«nano-peapod»)

The first observation [32] of a carbon peapod,
(Cg0),,@SWNT, clearly showed fullerenes inside a
SWNT aligned in a regular chain. The properties of
carbon peapods can not be simply reduced to the ones
characterizing a SWNT and a chain of fullerene mole-
cules. Thus the carbon nano-peapods can be regarded
as a new type self-assembled graphitic structure.

3.1. Discovery and structural properties of
(Cgp) @ SWNT

Being theoreticians, the authors can not expertly
comment on the experimental procedures and con-
ditions resulting in the discovery of carbon nano-
peapods. We will follow the pioneering papers [32,
111] and the reader interested in experimental details
should refer to the review Ref. 13.

The single-wall nanotubes used in Refs. 32, 111
were produced by pulsed laser vaporization of graph-
ite in the presence of a metal catalyst. Under the ex-
treme conditions realized in laser ablation of graphite
or with the carbon arc discharge method both nano-
tubes and fullerenes are produced. In the process of
carbon nanotube production fullerene molecules are
regarded as a contamination and they are removed
from the obtained material by acid purification and
annealing. During this sequence of processes Cgy-mol-
ecules penetrate into the SWNT interior either
through the open ends of the nanotubes or through
structural defects in the nanotube walls produced at
the acid purification stage. In the experiments
[32,111] it was directly shown, by using high-reso-
lution transmission electron microscopy (HRTEM),
that the buckyballs (closed carbon circles in the
HRTEM images) are indeed contained within the
SWNT (see Fig. 2). The chain of several fullerenes ob-
served inside a SWNT (dy7 ~ 1.4 nm) in the cited ex-
periments was rather regular with a period ~1.0 nm
and with a spacing ~ 0.3 nm between the carbon shells
and the nanotube wall. It was also shown [32] that
electron irradiation initiates a dimerization of ful-
lerenes inside a SWNT and sometimes Cgg-molecules
coalescence into longer capsules [111,112] thus form-
ing double-wall nanotubes with an inner diameter co-
inciding with the diameter ~ 0.7 nm of a buckyball.
Soon after the somewhat accidental discovery of car-
bon nano-peapods a method for producing this new
graphitic structure on a large scale was developed
[113]. In this method acid-purified SWNTs are filled
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Fig. 2. A single-wall carbon nanotube containing a row of
closed carbon shells concentric with the tubule axis. The di-
ameter and centre-to-centre spacing of the internal shells are
consistent with a chain of Cgy molecules. The nanotube is
surrounded by a vacuum. Scale bar, 2.0 nm. From Ref. 32.

with Cgo-molecules from a gas phase, which is pro-
duced by a heat treatment of the SWNTs and the
filling material placed in an ampoule sealed under
vacuum. It was claimed [113] that the gas-phase fill-
ing can result in carbon peapod filling rates of close to
100 %.

The Cgp-molecules inside a SWNT form a 1D van
der Waals crystal [111], which is stable up to
~800°C. Further heating makes the fullerenes co-
alesce and when the temperature reaches ~1200°C
the carbon peapod is transformed into a double-wall
carbon nanotube [112,114].

What is the mechanism of Cg encapsulation in
SWNTs? As we will see in subsection 2.4 nanotubes
with a diameter dy7 ~ 1.4 nm (and in particular
(10,10) SWNTs), which are abundantly produced by
the pulsed laser vaporatization method, are perfectly
fitted to encapsulate Cgy molecules due to the strong
gain in van der Waals energy that results from moving
a molecule inside such a nanotube. So the first step is
to open the SWNT, i.e. to remove the caps at the
nanotube ends and /or to produce sufficiently large
openings in the nanotube wall. This is achieved by wet
chemical etching and is a side effect of the various
acid-based purification procedures (see the corre-
sponding discussion in Ref. 13). It is known from
experiments [32,112,113] that the optimal tempera-
ture for Cg encapsulation is about 400 °C. It is natu-
ral to relate this observation [112] to the fact that the
sublimation temperature of solid Cgy ( T ~ 375 "C,
see Ref. 115) is close to the optimal temperature for
encapsulation. It was suggested that being in a vapor
phase the fullerenes freely fill the empty space inside a
nanotube ostensibly via defects. Microscopic processes
of fullerene encapsulation were numerically investi-
gated in Ref. 116, where it was shown that the encap-
sulation of Cgy molecules through large wall openings
is the most likely process of peapod formation. In par-
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ticular, the calculations revealed [116] that the proba-
bility of successful encapsulation via this process is
largest if the velocity of the Cgy molecules is in the
range 80—120 m /s and it almost independent of the
launch angle. Therefore the only important quantity
for encapsulation is the kinetic energy of the Cgq mol-
ecules. The cited velocity window corresponds to a
temperature close to 400 ~C, which agrees with the
experiments. The authors of Ref. 116 predicted that
by increasing the concentration of wall defects the en-
capsulation efficiency will be improved. Although
plausible, the prediction has still not been verified in
experiments and the question, whether fullerenes en-
ter the nanotube through the open ends or through the
wall defects is open.

Not only Cgo molecules but metallofullerenes as
well can be trapped inside SWNTs. Endotubular
metallofullerenes such as (Gd@Cgy), @SWNT,
(La@Cgy),,@SWNT, (Sm@Cg,),@SWNT and oth-
ers have already been synthesized and investigated
(see the corresponding references in the review paper
[13]). The magnetic properties of metallofullerene
peapods, although being of a great interest (for in-
stance, for the development of future memory de-
vices), were not studied yet.

3.2. Mechanical and electrical properties
of carbon nano-peapods

At first we briefly comment on the elastic proper-
ties of carbon peapods.

3.2.1 Elastic properties. It is well known (see, e.g.,
Ref. 23) that the mechanical properties of carbon
nanotubes reflect the exceptional stiffness of these
structures. Theoretical calculations based on different
approximations and calculation schemes (see, e.g.,
Refs. 117,118 and relevant references therein) predict
values for the elastic moduli, which are in agreement
with the existing experimental data (notice that so far
the experimental uncertainties are quite high). It has
also been shown [68] that many mechanical properties
calculated from numerical simulations are well repro-
duced by a continuum shell model for the nanotube
with a proper choice of tubular parameters. This state-
ment even holds for nanotube behavior beyond Hook’s
law [68].

Calculations of the Young’s modulus Y of a SWNT
predict values of order 1 TPa. HereY is defined by the
standard expression

1 0%E .
=——1 22
2
Vo oe*|

where ¢ is the strain, E(g) is the strain energy and
Vo =2nLRy7h — L and Ryr being the length and
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radius of the nanotube, while 7 is the thickness of the
nanotube wall — taken to be the same as the interlayer
separtion of graphite, 2 ~ 0.34 nm. Experiments where
the Young’s modulus for multi-wall nanotubes was
measured by analyzing the thermal vibration [119] or
with the help of atomic-force microscopy [120] yield
the values Y =(1.8 +1.4) TPa and Y =(1.28 +0.59)
TPa, respectively. The Poisson ratio v

R dL
oy
R L

calculated in a number of papers (see, e.g., Ref. 118
and references therein) ranges from v =~ 0.14 to
v~ 0.28. The elastic properties of SWNTs depend
weakly on the tube radius, chiral indices and they are
very similar to those of a perfect grahite plane
(graphene).

One might expect that the filling of a SWNT with
fullerene molecules would slightly enhance its stiff-
ness. However, numerical calculations of the Young‘s
modulus and the torsional rigidity of a (10,10) peapod
showed [121] that the filled nanotube is slightly
(about one percent) softer then an empty tube. The
Poisson ratio of the considered carbon nano-peapod
was lower by ~35% compared with the undoped
nanotube. Notice that this result may be specific for
the (10,10) peapod. This type of nanotube is almost
perfectly fitted to encapsulate Cgy molecules and the
separation of the buckyball shell from the inner sur-
face of the nanotube is very close (but not exactly
equal) to the equilibrium distance between Cgy and
graphene. So the composite system (Cg),,@SWNT is
slightly strained compared with the unrolled one. The
increase of the total stress energy indicates that the
van der Waals interaction between the Cg-chain and
the nanotube inner surface is more significant than the
Cgo—Cygo interaction.

3.2.2. Density of states and STM spectroscopy. It
is convenient to separate our review of the electrical
properties of carbon peapods into two parts. First we
will discuss the static electrical properties and this
part will be mostly devoted to the problem of how the
incorporated fullerenes influence the electronic den-
sity of states of SWNTs. Then we will consider the
charge transport through an individual peapod and
through bundles of Cgp-doped carbon nanotubes.

We saw from the above discussion that the elastic
properties of SWNTs are only weakly influenced by
Cgo-doping. What is known about electronic proper-
ties of nano-peapods? Are they different from those of
the constituent parts — a nanotube and a 1D chain of
fullerenes?

Ab initio numerical calculations [36] based on the
so called local density approximation in density func-
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tional theory have shown that an armchair (10,10)
SWNT filled with Cg, molecules behaves as a conduc-
tor with two different types of charge carriers. The
low-energy band structure of this nano-peapod con-
sists of four bands, which cross the Fermi level. Two
of the bands are characterized by a linear dispersion
with a large Fermi velocity (the same as for any metal-
lic SWNT). The other two bands with much lower
Fermi velocity represent the metallic band of the
chain of encapsulated fullerenes. So the authors of
Refs. 36 claimed that a (10,10) peapod <«is a metal
with multiple carriers each of which is distributed ei-
ther on the tube or on the Cgp-chain». This is quite a
remarkable prediction since solid Cg is a semiconduc-
tor with an energy gap of order 1 eV.

This result can be physically explained as follows.
Let us consider the lowest unoccupied molecular
orbitals (LUMO) and the highest occupied molecular
orbitals (HOMO) of a Cgy molecule. The electronic
structure of this molecule is schematically repre-
sented in Fig. 3 (see, e.g., Ref. 122). Notice that the
energy of the three-fold degenerate LUMO levels
(Erumo =-476 V) is quite close to the energy of
the Fermi level in metallic SWNTSs counted from the
vacuum energy (the work function of metallic SWNTs
is known to be W ~ 5¢V, see, e.g., Ref. 123 and refer-
ences therein). This means that one can expect strong
mixing of LUMO states with the nanotube conduction
states and the bottom of the conduction band of a Cg
chain inside a (10,10) nanotube should be shifted
downward to the nanotube Fermi level.

The structure of electronic states in a (10,10)
peapod measured in the experiment of Ref. 124 is in
agreement with the cited numerical calculations. In
Ref. 124 the electronic charge distribution in bulk
samples of SWNTs with a diameter of (1.37 + 0.08) nm
filled with Cgp’s were measured by electron energy
loss spectroscopy. The measurements do demonstrate
that there is only a weak van der Waals interaction be-

—6.40V
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Fig. 3. Calculated Kohn—Sham orbital energy patterns of
Cgo- Adapted after Ref. 122. Adapted from Ref. 26, with
permission from the American Chemical Society 1996.
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tween the SWNTs and the Cg peas, similar to the in-
teraction between Cg, molecules in solid Cgy. How-
ever, the existence of a partially filled conduction
band associated with 1D chains of fullerenes inside the
carbon nano-peapods was not revealed by the experi-
mental method used in Ref. 124. The excitation spec-
tra of the encapsulated Cg( peas measured in this work
were very similar to the ones in solid Cgy.

More detailed information about the electronic
density of states in nano-peapods can be obtained by
low-temperature scanning tunneling microscopy
(STM). Such measurements on carbon peapods were
first reported in Ref. 125 (see also Ref. 126, where
metallofullerene peapods were investigated by the
STM technique). These experiments clearly showed
that encapsulated fullerenes do modify the electronic
states on the nanotube surface. New features appear in
the hybrid system that can not be simply reduced to
the properties of the individual subsystems — a car-
bon nanotube and a fullerene molecule. In the cited
experiments all investigated individual nano-peapods
appear to be semiconductors. For semiconducting
peapods a theory [127] was suggested which suc-
cesfully explains many characteristic features of the
measured STM spectra. This theory assumes strong
mixing of the ball-derived and the tube-derived elec-
tronic states and is effectively represented by a long-
wavelength Hamiltonian describing the electron dy-
namics on the tube in the presence of an energy-de-
pendent scattering potential produced by the ful-
lerenes. Since in this review we consider only the
properties of metallic nano-peapods, the reader has to
refer to the cited papers for detailed information on
the STM spectra of semiconducting peapods. Here we
also mention Ref. 128 where a theory of electronic
states in a semiconducting metallofullerene peapod
was suggested. Unlike Cgp-doped nanotubes, where
the encapsulated molecules are neutral, metalloful-
lerenes inside a nanotube should be singly positively
charged. This results in strong Coulomb effects (local-
ization of electronic states by fullerene charges [128])
in metallofullerene nano-peapods.

It is still not clear either from the experimental or
from the theoretical point of view what is the effect of
encapsulated neutral Cgy molecules on the conducting
properties of metallic peapods. One can speculate
[129] that the strong mixing of LUMO states with the
nanotube ungapped propagating states will result in a
complicated structure in the electron transmission
(with antiresonances, Fano resonances and transmis-
sion gaps) through the hybrid systems. On the other
hand, symmetry arguments (see the corresponding dis-
cussion in Ref. 127) forbid the backscattering of con-
duction electrons off localized Cg or off a periodic
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fullerene chainin in a non-chiral SWNT (in particular
a (10,10) peapod). So, probably the only effect of Cg
encapsulation on the conduction properties of metallic
non-chiral nano-peapods is the appearence of a narrow
conduction band associated with the 1D chain of Cg,
molecules.

3.2.3. Electrical and thermal transport. At the
present time little is known about the transport
properties (both electrical and thermal) of nano-
peapods. The few existing experiments, where the
electrical conductivity of peapods was measured
[113,130,131], used mat-like films («buckypaper») of
filled SWNTs and peapod bundles [132] rather then
individual peapods. The first measurement of the
nano-peapod electrical resistance [113] was carried
out on mat-like films of (Gd@Cgy), @SWNT,
(Cgp),,@SWNT and empty SWNTSs in a wide tempera-
ture interval (5-300 K). The observed temperature
dependence of the electrical resistances scales as
InR o T~ /4 suggesting that electron transport th-
rough the samples is associated with 3D variable range
electron hopping. In this conductivity regime the
peapod films are characterized by a higher resistance
than the samples containing empty nanotubes, which
in Ref. 113 was attributed to the scattering of conduc-
tion electrons by the electrostatic potential produced
by the (presumably charged) fullerenes. The last as-
sumption is reasonable for metallofullerene peapods
but seems questionable for Cgy-peapods. The mea-
sured high resistance of the samples can in our opinion
be caused by the strong disorder (defects) introduced
during the synthesis process. An similar temperature
dependence of the resistance, suggesting the existence
of strong disorder in the system, has been measured
[132] for Cgg-peapod bundles bridging the gap be-
tween two metal electrodes.

A qualitatively different behavior of the electrical re-
sistance in nano-peapods was reported in Ref. 131. Al-
though the overall temperature dependence of the
resistances measured on empty SWNTs and on buc-
kypaper samples with a high (~ 90%) filling fraction of
Cgo was nonmetallic, the peapod samples at low temper-
atures demonstrated a much lower resistivity compared
to the control samples consisting of empty nanotubes.
The average diameter of the tubes in the experiment [13]
was estimated to be around 1.3 nm. Therefore the forma-
tion of an additional conduction band derived from the
Cgo LUMO levels, as predicted [36] for a (10,10)
peapod, could be relevant for the condition in this ex-
periment. It was claimed [131] that the increase in the
conductivity of Cgy-peapods observed in the experiment
«suggests that Cg chains provide additional conductive
paths for charge carriers».
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In the experiment of Ref. 130 it was shown that
when doping the peapod system with potassium, the
Cgo molecules inside the SWNT undergo a chemical
reaction resulting in the formation of a charged (ng )
covalently bonded one-dimensional polymer chain
with metallic conductivity. It is physically evident
that the doping of SWNTs and peapods by alkali
metal atoms strongly improves the conducting proper-
ties of the system since a charge is transferred from the
alkali atoms to the nanotube. The unexpected result of
Ref. 130 is that in heavily doped peapods the «peas»
(Cgp molecules) are included in the doping process
and that a polymerization of Cg inside the SWNT is
induced.

Now we proceed to commenting on the thermoelec-
tric properties of carbon nano-peapods. As is well
known (see, e.g., Ref. 133), there are two transport co-
efficients — the thermal conductance K(T) and the
thermoelectric power S(T') — that characterize thermal
transport in conducting systems. These quantities have
been repeatedly studied for carbon nanotubes, both
theoretically and experimentally. We have already seen
in Section 2 that the Luttinger liquid model is the real-
istic model for the low-energy electronic properties of
metallic SWNTs. In an infinite impurity-free LL the
thermal conductance associated with charge (plas-
mons) and spin excitations coincides [134] with that of
a 1D channel of noninteracting spin-1,2 fermions. The
corresponding formula for K (T) is readily derived in
the Landauer — Biittiker formalism for transport coeffi-
cients (see, e.g., Refs. 135,136). The result is

o 8 Voo - w2 _rp | _mheT
KF(T>_2(2WJ£¢8<S u)( £ j—B oL,

(24)

where T is the temperature, p >> T is the chemical po-
tential, and frp is the Fermi—Dirac distribution func-
tion. The thermal conductance of a perfect, infinite LL
wire is a linear function of temperature with a coeffi-
cient that depends only on fundamental constants
[134]. It is interesting to note here that for a perfect 1D
channel the thermal conductance does not depend even
on the statistics of the heat carriers [137] (in a LL the
heat carriers are bosonic excitations). In the realistic
situation when LL wire is coupled to leads of non-
interacting electrons the thermal conductance, unlike
the electrical conductance, is suppressed even for adia-
batic contacts. This is due to a mismatch of the plasmon
velocities in the LL wire and in the electron reservoirs
[138,139]. The presence of defects (impurities) in the
wire additionally suppresses K(T') (see Refs. 134,139,
140) since the heat carriers are backscattered from the
local potentials produced by the impurities.
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For the thermoelectric power S(T') Luttinger liquid
theory predicts a linear temperature dependence at low
temperatures with an interaction-dependent coefficient
[141,142]. This linear T-dependence of S(T) has been
observed in experiments on bundles of SWNTs and
mat-like samples (see, e.g., Ref. 143) and even some
LL effects (in particular the enhancement of the
T-slope [141]) were observed on SWNT strands con-
taining large number of aligned crystalline ropes [144].

The experimental situation with respect to mea-
surements of the thermal conductivity k(7)) in SWNTs
is more complex. In metallic nanotubes both electrons
and phonons should contribute. The phonon thermal
conductivity is given by «(T) = (1,/3)Col,, where C
is the specific (per unit volume) heat capacity, v, is
the sound velocity, and [y}, is the phonon mean free
path. For ballistic transport of 1D phonons the corre-
sponding result for the heat conductance Kg(T),

kg of _Ofpg ) _mkpT

K () 2nhT.([d®® ( a0 j 6 n ' (2
(fpe is the Bose—Einstein distribution function) is
exactly the same as for spinless fermions. So the heat
conductance of the individual perfect metallic SWNT
adiabatically coupled to electron and heat reservoirs
is the sum of 3 terms — phonon and spin density exci-
tation contributions, each described by Eq. (25), and
a plasmon contribution. In the limit T — 0 the plas-
mon term is also determined by Eq. (25) while for
temperatures T > fiv, /L, where v, is the velocity
of plasmons in a SWNT, and L is the length of
the nanotube, it is suppressed roughly by a factor
vF/v, <<1 as compared to the phonon and spinon
contributions. As a result one can for an ideal situa-
tion at low temperatures expect the heat conductance
of a metallic SWNT to be Ky (T) ~ (n/2)(kRgT /1).
The theoretical picture described above is, of
course, oversimplified for the purpose of comparing
with experimental data. In mat-like SWNT samples
the presence of numerous defects and tube—tube junc-
tions strongly suppresses electron transport and only
phonons contribute to the thermal conductivity. Pho-
non transport is diffusive up to temperatures T,, when
inelastic phonon scattering strongly decreases [, and
the thermal conductivity x(T") starts to drop. In
buckypaper samples the scattering of phonons by local
potentials produced by numerous tube—tube junctions
suppresses the maximum value of x by a few orders
of magnitude. So one can only expect to get a high
heat conductivity by using individual nanotubes. Nu-
merical calculations [145] for an isolated (10,10)
SWNT predict a maximum heat conductivity
Kmax =~ 3,7 10%" W,/mK at Thax = 100 K compara-
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ble to the thermal conductivity of a isolated graphite
monolayer (graphene). The measured temperature de-
pendence of the thermal conductivity of individual
multi-wall carbon nanotubes [146] qualitatively agree
with the numerical calculations [145]. However,
quantitatively the experimental (T« ~ 300 K,
Kmax =~ 3 10> W,/mK) and theoretical results are
different, which might be attributed to the multi-wall
structure of the measured nanotube.

Naively one can expect that the thermal conductiv-
ity of a carbon nano-peapod should be higher than for
unfilled SWNT. The additional conduction chanels
and phonon modes associated with the Cg chain in-
side the nanotube of an ideal individual peapod have
to considerably increase x(T') at least at low tempera-
tures. This prediction still has to be verified in experi-
ments with individual nano-peapods. The temperature
behavior of the thermal conductivity of SWNTs filled
to a high degree by Cg as deduced from measurements
on buckypaper [131] did not confirm the naive expec-
tations. The measurements [131] indicate little or no
contribution of the Cg chain to the thermal conduc-
tivity.

3.2.4. A phenomenological theory of carbon nano-
peapods. Electron microscopy images and STM spec-
troscopy of carbon nano-peapods show that fullerenes
inside a carbon nanotube weakly interact with the in-
ner surface of the tube and that in highly filled
peapods the Cgy molecules form a 1D van der Waals
crystal. In a series of papers [147—150] a simple
semiphenomenological approach to the physics of car-
bon peapods was suggested. This approach uses van
der Waals model potentials for describing the interac-
tion between the various graphitic nano-structures.

One method to obtain graphitic model potentials is
based on the Lennard-Jones (LJ) potential (see, e.g.,
Ref. 151)

A B
Vip=——%+—13" (26)
76 712

Here 7 is the distance between two neutral atoms and
the parameters A, B > 0 of the attractive and repulsive
parts of the LJ potential determine the equilibrium
distance 7, = (2B/A)"6 between the atoms and the
well depth e= A% /4B. The parameters are usually fit-
ted to obtain a good agreement between calculated
quantities (such as the cohesive energy and lattice
constant of solids) and experimental data. These val-
ues are slightly different for the carbon—carbon inter-
action in different graphitic structures.

The next simplification comes from introducing the
continuum approximation, which successfully has
been applied, e.g., to calculations of the thermo-
dynamical properties of solid Cgy (see Ref. 152). In
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the continuum model an average surface density of
carbon atoms is introduced and the potential between
two interacting graphitic structures is averaged over
the surface of each entity. The calculations show [147]
that in terms of reduced parameters the interaction be-
tween various graphitic structures can be represented
by an universal curve. The analytic expression for this
universal graphitic potential ®(r) is [147]

()| 3

@(r) 5( 3.41 T_z( 3.41 jlo
5 .

~ 33137 + 028 3137 + 028
Q7

Here |@(ry )| is the well depth at the equilibrium spac-
ing 7y and the «reduced distance» 7 = (r — p) /(5 — p).
Values of the parameters |®(r)|,p and 7, for various
graphitic structures are listed in Table II of Ref. 147.
Notice that the averaging over surfaces of multiatomic
interacting structures reduce the exponent in both the
attractive (6 — 4) and the repulsive (12 — 10) parts of
the potential Eq. (27) compared to the LJ potential.

Two quantities are of special interest for us—the
binding energy of a Cgy molecule at a nanotube wall
and the entrance potential of a buckyball near the
open end of a SWNT. Both quantities were calculated
in Ref. 147 and are shown in Figs. 4,a,b. From
Fig. 4,a one can see that for a (10,10) nanotube (tube
radius Ryr ~ 0.7 nm) the binding energy is very close
to maximal and that the binding energy rapidly drops
with an increase of the tube radius, approaching the
binding energy of Cgq to a graphene sheet for large ra-
dii. It should be noticed here, that numerical values
for the binding energies calculated using van der
Waals potentials [147] strongly differ from the corre-
sponding quantities obtained in ab initio calculations
[36]. This question was discussed in a special publica-
tion [149], where it was argued that the result of
Ref. 36 for the binding energy of a Cgy molecule deep
inside a (10,10) nanotube (g;, ~ 0.5eV) is too low. On
the other hand, it seems that the semiphenomeno-
logical method of model graphitic potentials overesti-
mates the van der Waals cohesive energies (it predicts
[147] &5 ~ 326 eV for a fullerene inside a (10,10)
nanotube). A reasonable value for this quantity,
which we will use in what follows, is about 2 eV (see,
e.g., Ref. 153). The entrance potential, Fig. 4,b, is a
linear function of distance around the tube end up to
distances of approximately the tube radius. After that
the potential rapidly saturates.

The fullerene molecules in a fully packed peapod
form a one-dimensional structure. In this chain it is
reasonable to only consider interactions between near-
est-neighbor molecules. The equation of state of a clas-
sical 1D gas of particles with short range interactions
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Fig. 4. The binding energy of a Cgy molecule to the inside
wall of a single-wall nanotube as a function of tube radius
(a). The entrance potential for a Cgy molecule near the open
end of a (10,10) single-wall nanotube. From Ref. 26 (b).

represented by a pair potential V (x) is exactly known
(see, e.g., Ref. 154). The analytical form is

J.dx exp [-B(V(x) + xP)]
0

n=- ) (28)
J.dxx exp [-B(V(x) + xP)]
0

where n is the particle density, 3 =1/T and P is the
pressure. This equation of state was studied in
Ref. 150 for the pair potential represented by
Eq. (27) and parameters characterizing the Cq,—Cg,
interaction [147]. It was shown that due to the van
der Waals interaction between the molecules the pres-
sure at temperatures T < 10° K is strongly reduced as
compared to the pressure of an ideal 1D gas
Pgeal =nkgT. The quantum corrections to Eq. (28)
due to the zero-point energy were also estimated
[150] and it was shown that they can be safely ne-
glected for a Cg peapod at T'> 10 K.
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Another analytical approach to the thermodynam-
ics of peapods is to treat fullerenes inside a nanotube
as a lattice gas [148]. There is an evident mapping
[155] of the lattice gas model to an Ising model. So in
the 1D case considered the model is exactly solvable
both for canonical (fixed number of molecules) and
grand-canonical ensembles (see the corresponding for-
mulae in Ref. 148). Using this approach it was shown
[148] that at room temperatures Cgy molecules inside
a nanotube form a single cluster, that is the system is a
perfect 1D solid.

3.3. Electrostatics of a Cgy-peapod coupled
to metallic leads

Fullerene molecules penetrate a SWNT through the
open ends of the tube or through defects (holes) on the
tube surface. For stable peapods this process is exother-
mic and the encapsulation of fullerenes is energetically
favorable [36,147,149,153], mostly due to the gain in
van der Waals energy. Being inside a tube the fullerenes
are confined by a potential that is flat along the tube ex-
cept in narrow regions of a size of the order of the tube
diameter near the tube ends [147]. The potential walls
there are high enough to make the peapods absolutely
stable at room temperature. For a (10,10) peapod the
potential barrier at the tube ends is the highest among
all peapods. Barrier heights calculated in different
schemes lie in the range 2—4 eV [147,153,156]. Now the
important question arises — How can one release fulle-
rene molecules from a peapod?

In metallofullerenes (such as La@Cgy, K@Cgq and
many others) the valence electrons of the metal atom
are transferred to the Cg shell. This charge transfer is
seen in the EPR spectra of the endohedral species (see,
e.g., Ref. 18 and references therein). It has also been
suggested [ 158] that when encapsulated in a SWNT the
metallofullerenes (e.g., K@Cg) can be charged if their
ionization potential is smaller then the work function
of the SWNT. The decapsulation of charged molecules
from the interior of a SWNT could then readily be
achieved by applying an electric field parallel to the
tube axis. A suitable STM-like device with a carbon
nano-peapod tip functioning as a nanopipette was theo-
retically studied in Ref. 157 by molecular dynamics
simulations. This work demonstrates the possibility of
doing nanolitography by means of a nanopipette based
on metallofullerene peapods. Here we suggest to use
the electric-field method for decapsulating initially
neutral Cgy molecules.

Let us consider a nano-device consisting of a finite
length Cgo@(10,10) SWNT peapod placed in the vi-
cinity of a bulk metal electrode (the gap between the
SWNT and the bulk electrode is of the order of a few
nanotube radii). We [159] show below that when a
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bias voltage V, is applied between the tube and the
electrode, there is a threshold voltage V. such that for
higher voltages a fullerene inside the tube end will be
singly charged. The charged fullerene molecule expe-
riences a strong electrostatic force which for a certain
voltage V,; >V, exceeds the van der Waals confine-
ment force and a monoion Cgy will be driven towards
the positively charged electrode. If one neglects the
effects of electric-field induced decharging of Cg (see
the discussion below) at the early stages of dec-
apsulation, the initially neutral fullerene will be
realeased from the peapod by a purely electrostatic
method.

Our first problem is to calculate the critical voltage
V.. for charging an encapsulated buckyball. Physically
it is evident that the electric field can not penetrate a
semiinfinite metallic tube. This is not the case for a fi-
nite-length L tube. Here the potential difference AV
between the tube surface and, say, the tube «axis» is
finite everywhere. It attains a maximum in the edge
regions (of the order of the tube radius R) and has
tails that decay algebraically, ~ (R/L)?, deep inside
the tube. This statement can be easily proven for an
empty tube by considering the electrostatic potential
U(z,7) produced by a charged metallic tube placed, as
in Fig. 5, in the vicinity of a bulk metal electrode

I+L
Ulr,2) = j A2t K, 2 = 2) - K(r,2' + 21, (29)
[

where 1(z') is the linear charge density, which has to
be determined from the boundary condition

Ur=Rz)=V,, zelll+1]. (30)

Here R is the tube radius, [/ is the distance from the
tube end to the bulk electrode which is assumed to be
grounded (U =0), V, is the bias voltage and
K(r,z’ £ z) are the Coulomb kernels for the tube
charge and its image in the metal electrode integrated
over the azimuthal angle;

Charged C_gg Voyiinder =0
Electrostatic
force
Vbias | | |
1 I

Fig. 5. Simple model of a voltage-biased peapod structure
close to a metal electrode. The peapod is a chain of Cg
molecules inside a SWNT with an open end. A large
enough bias voltage will make it possible to charge the out-
ermost molecule and expel it from the SWNT (see text).
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K@,z +£2) = 2 x
WG +R)? + (2 + 2)?
K|2 'R , 31
) {\/(7+R)2+(z’iz)2j @D

where K(k) is the complete elliptic integral.

For a long tube L /R >>1, L /I >> 1 it is reasonable
to assume that the charge density ©(z) is a smooth
function of position in the region far from the tube
ends z—-[>>R, L+1-2z>>R. Then the integral
equation (30) can be solved by iterations. In the first
approximation the charge density can be taken out of
integral Eg. (29) and we easily get for the potential
difference AV =V, —U(r =0,z >> R,[) the expres-
sion

AV, ~ Vbr(Rjz + 74L2R2 | X
0_4L2 (Lz_zz)zJ
1
In[4(L - 2)2% /(L + z)R?]

which clearly shows that the electric field deep inside
a long tube is small.

We will also assume (see also Refs. 157,158) that
the charge is homogeneously distributed on the mo-
noion Cg. Since a fullerene molecule at room temper-
atures is a swiftly rotating object, this approximation
seems quite plausible.

The electrostatic potential for a tube with a singly
charged buckyball inside it is in our model determined
by the equation

X

(32)

Ui(r,2) =®_(r,z;2¢) + ©,(r,z;29) +U(r,2). (33)

Here @, (7, z zg) are the standard Coulomb poten-
tials produced by a homogeneously charged sphere
placed at position z( along the tube axis and by its im-
age, located at —z.

The charge density ©(z) now has to be determined
from an integral equation analogous to Eq. (30),
U1 (7’ = R) = Vb .

In order to add an electron to a Cgy molecule inside
a SWNT the electrostatic potential has to compensate
for the difference 8F between the electron binding en-
ergy in a metallic SWNT and the analogous energy as-
sociated with the Cg affinity level. For an isolated
buckyball and a SWNT in vacuum this energy differ-
ence is 83E =W — E 4 ~ 2.3 eV, where W ~ 5 €V is
the work function for a metallic SWNT (see, e.g.,
Ref. 123 and references therein) and E 4 ~ 2.7 eV is
the electron affinity for Cg (see, e.g., Ref. 122). No-
tice that the electron affinity for a buckyball molecule
is positive and quite large, which makes the Cg,
monoions stable even at high temperatures.
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When a buckyball is trapped inside a metallic
SWNT the energy of its LUMO (lowest unoccupied
molecular orbitals) states can be additionally de-
creased due to hybridization of the LUMO orbitals
with the conduction band states of the nanotube. This
effect is more pronounced for small-diameter SWNTs
and for stable metallic peapods the hybridization has a
maximum for (11,11) SWNTs (see Ref. 153). Numeri-
cal calculations using density functional theory in the
local density approximation show [36] that in
(Cg0),,@(10,10) peapods with (n >> 1) hybridization
shifts the conduction band of the otherwise semicon-
ducting 1D Cgq crystal to the SWNT Fermi level.
However, there is experimental evidence that the
charge transfer from the SWNT to the fullerene mole-
cules is small [124]. This implies that Cg, molecules
in peapods are neutral and thus 8E > 0. The energy
scale of the downward shift of the buckyball LUMO
energy levels, which are strongly mixed with the
nanotube states, is about 0.3 eV (see Ref. 153). So we
can estimate the energy difference in question as
3E ~ 2 eV.

In order to charge Cg inside a nanotube the magni-
tude of the electrostatic potential energy difference
AU between the backyball surface and the SWNT has
to be equal to or bigger than 8E. This potential differ-
ence can be expressed as AU =~ —al(l,zy)V},, where
o <1 is a dimensionless coefficient that for a given
voltage depends both on the distance [ and on the posi-
tion zq of the buckyball (AU < 0if V;, > 0, see Fig. 5).
The threshold voltage for charging is then
V. =3E /eo.. Numerical calculations were performed
for a (10,10) peapod of length L = 30R located at dis-
tances [, =nR from the metal electrode, where n =2,
4, 6, 8, and 10. Our results show (see Fig. 6) that for a
fixed distance [ the numerical factor o rapidly reaches
a small constant value for zé") -1, >> R. So in what
follows we will put zy =1, + Ry (Ry is the buckyball
radius) as the starting stable position of the fullerene
molecule. Threshold voltages for the different [,,-val-
ues considered are VC(”) ~ 16.3, 19.2, 20.5, 21.2, and
21.8 V. 1t follows that a bias voltage of about
Vi ~20V will charge a Cgy molecule located at the
open end of a (10,10) peapod.

The next critical voltage significant for our prob-
lem is the threshold voltage V,; = V. for which the sin-
gly charged fullerene molecule will be released from
the peapod. To estimate this voltage one has to com-
pare the electrostatic force F(V,) experienced by the
charged buckyball at the point z(()”) with the confine-
ment force which is almost constant and has a maxi-
mum Fy ~ Uy /2R in the region|z(§”) —1,|< R. Here
Uy, is the height of the confinement potential
Uw ~ 1.7 eV for a (10,10) peapod according to DFT
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numerical calculations [153]; the semiphenomenol-
ogical approach based on the van der Waals-like po-
tentials in graphitic nanostructures [147] gives twice
as large a value, which seems to be an overestimate.)
The critical voltage V; for fullerene electroemission
depends on the distance [ between the nanotube and
the bulk metal electrode. It coincides with V. up to a
certain distance /*, which has to be found numerically.
For [ > [” it is determined by the expression

Nl-i-R UW

eV, ~ > eV,

2R 1-a() (34)

Our numerical calculations show that at least up to
[ =10R a bias voltage of the order of V}, ~ 22 V will
be enough to extract fullerene molecules from a
(10,10) peapod.

When outside the tube, the Cg, monoion experi-
ences the strong electric field E ~V}, /I present in the
space between the biased SWNT and the surface of the
metal electrode. Therefore there is a finite probability
for Cg to be neutralized by a field emission process.
The field emission process dominates when the charac-

-0.5
-1.0
>
2 -1.5
N
5 -2.0
<
-2.5
-3.0 ! |
2.0 3.0 4.0 50

Fig. 6. Potential energy difference AU(zp) as a function of
buckyball position zy for an extra electron on the
buckyball surface and on the SWNT calculated using the
model system shown in Fig. 5. Here AU(zg) has been plot-
ted for the case when the electrode in Fig. 5 is biased at
V, =10 V with respect to the grounded nanotube; L is the
length and R is the radius of the SWNT, [ is the distance
between the tube opening and the metal electrode, and z
is measured from the electrode. An electron is only trans-
ferred to the buckyball when |AU(zy =1+ Ry)|, where
Ry ~ R/2 is the radius of the Cgy molecule, becomes equal
to the difference 8E ~2 eV between the SWNT work
function and the Cgy affinity level energy. Here
(I +Ry)) /R ~25, so the applied bias in this case is not
enough to charge the buckyball; for the parameters used a
bias voltage of 16.3 eV is required (see text). Note that
AU(zg) does not go to zero far inside the nanotube. This is
because some electrostatic energy can be gained by creat-
ing a «hole» in the electron gas on the nanotube surface
near a charged buckyball. In agreement with experiment
this is, however, not enough to charge a buckyball far in-
side the SWNT.
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teristic time ¢y for field induced electron emission
from fullerene monoion is shorter than the time ¢, it
takes for the motion of Cg, inside a gap between bi-
ased electrodes. The time ¢7 can be roughly estimated

by the following expression
4\2m, EY

. h
t ~ D (V ) >~ —€ )
f=o TR 3hev,r | B9

| Ey|

where E; is the energy of the singly occupied LUMO
state in Cgy (E;, ¥~-18 €V, see Ref. 122),
E 4 ~ 2.7 eV is the electron affinity, which estimates
the height of the potential barrier for electron emission
from Cgp to vacuum, m, is the electron mass and
D(Vy) in Eq. (35) is the quasiclassical transmission
probability for a triangular barrier (see, e.g., Ref.
[151]). The transfer time ¢, depends on the profile of
the electrostatic potential inside the gap region. For
motion with constant acceleration ¢,.(I) = [\2M /eV},
where M|, is the buckyball mass. A comparison of the
two time scales shows that for eV} ~ 20 eV electro-
emission will dominate over monoion charge transport,
i.e. ty <t, for small gap sizes up to a few nanometers.
This implies that although electron emission hardly
could affect the process of fullerene decapsulation, it
could be significant for the character of charge trans-
port in devices with a gap of a few nanometers. In par-
ticular, one can imagine a scenario where Cg is de-
charged while still being in the range of the van der
Waals forces from the nanotube. Then a shuttle-like
behavior of the fullerene molecule — moving back
and forth in the vicinity of the nanotube while being
charged and then again discharged — will follow. No-
tice that direct field emission of electrons from the
SWNT is suppressed both due to the higher value of the
potential barrier (the work function of a SWNT is
about 5 eV) and the Luttinger liquid behavior of
the conduction electrons in a SWNT (the last pro-
perty affects the pre-exponential factor in the Fow-
ler —Nordheim formula, see Ref. 160).

Conclusions

The road from the discovery of fullerenes [3]
through the discoveries of carbon nanotubes [15—17]
to the synthesis of carbon nano-peapods [32] was not
straight. Neither the (empty) single-wall nanotubes
(SWNTs) nor the nanotubes filled with Cgy molecules
were deliberately synthesized. Rather these unique
nano-structures were by-products in experiments pur-
suing other goals [13,18]. So it is difficult to predict
what new kinds of carbon nanostructures will appear
next in this series of remarkable discoveries. Anyway,
the 20 year long history of carbon nanostructures
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shows that all-carbon materials could be basic ele-
ments in the nanotechnology of the 21st century.

So far it is mostly the unfilled carbon nanotubes
that have been in the focus of theoretical and experi-
mental studies. The measured characteristics of carbon
nano-peapods, which potentially could be an even
more unique material than pure SWNTs, are either
identical or worse (for instance, with respect to the
electrical conductivity) than those of undoped
SWNTs. This could be attributed to a still poor qual-
ity of the peapods produced at the present time. How-
ever, from the point of view of fundamental solid state
physics the carbon nano-peapods are indeed unique
objects. They allow one to study one-dimensional
physics in a real system. In particular, one of the most
interesting problem is the superconducting properties
of peapods. Both the doped fullerites and ropes of
SWNTs are superconductors. Unfortunately the criti-
cal temperatures for the superconducting phase transi-
tion in these materials are low. There were hopes
[161] that carbon nano-peapods could be supercon-
ducting even at room temperatures. The theoretical
grounds for high-T,. superconductivity in peapods are,
however, rather weak. It was suggested that the en-
hancement of the density of states in the 1D chain of
Cgo molecules could substantially increase the critical
temperature. However the Coulomb effects are as
strong in carbon nano-peapods as they are in hollow
SWNTs (see, e.g., Ref. 162) and Coulomb correla-
tions are known to suppress superconductivity. Unlike
unfilled SWNTs, the Cg( peapods, where the van der
Waals forces are «satisfied» internally, are less capa-
ble to assemble in ropes and hence screening of the
Coulomb interaction in peapods is poor. This problem
has not been studied in detail and the expectations to
find room temperature superconductivity in nano-
peapods (say, metallofullerene peapods) could per-
haps be realized in future experiments.

Carbon nano-peapods could be even better field-
emitters then empty nanotubes. So their application in
STM spectroscopy is very promising. Many other ap-
plications of nano-peapods ranging from memory ele-
ments («bucky-shuttle», Ref. 158) and 1D wires in
nanoelectronics to fuel containers and biocompatible
nano-capsules for drugs have been discussed in the lit-
erature (see, e.g., Ref. 13,26). At any rate, the «mys-
terious nano-world that exists inside a carbon nano-
tube» [163] seems likely to be able to provide
unexpected surprises for its explorers also in the fu-
ture.
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