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Selective adsorption from binary polymer mixtures on a crystalline surface
is studied in terms of the lattice gas model in conjunction with the results
of the association theory. An interplay of the selectivity and the surface
induced segregation is shown to result in a variety of competing factors
which dominate the adsorption process. The role of the bead diameter,
chain length and the surface activity in the preferential adsorption of one
component is analyzed. A variation of the selectivity coefficient with the
density and composition is also discussed.
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1. Introduction

It is a real pleasure for us to contribute this article to the special issue dedicated
to J.P.Badiali, the collaboration with whom has stimulated our activity in the field
of adsorption at solid-liquid interfaces.

Adsorption of polymers at solid-liquid interfaces has many important scientific
and technological applications [1]. These include colloidal stabilization, flocculation,
adhesion, coating or lubrication (see [2] for a recent review). Many polymerization
reactions generate samples with a rather broad chain length distribution. Such poly-
disperse mixtures have additional degrees of freedom connected with an arrangement
of different species near the adsorbing surfaces. Also the surface activity in adsorb-
ing different components can be used as a tool for the accumulation of appropriate
species.

Adsorption of mixtures was studied within various techniques. A role of the
chain length difference was analyzed [3] using a combination of the field theory
and the scaling concept. One-dimensional square well mixtures were discussed [4]
applied to the adsorption in porous materials. Yethiraj and Hall [5] reported the
Monte Carlo computer simulation for hard chain — hard sphere mixtures confined to
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slitlike pores. Honnell and Hall [6] studied the equation of state and local structure
of chain molecule mixtures near an impenetrable wall. Based on the generalized
Flory ideas, they discussed three approximate equations of state and reported MC
computer simulations for density profiles. The main conclusion of both studies was:
shorter chains exhibit an enhancement near the wall, but longer polymers tend to be
depleted. This is due to the difference in the packing properties of each component
near the surface. The segregation can be measured by a difference in partial local
densities near the wall. For blends of branched and linear polymers this effect was
studied by Yethiraj [7]. He claimed that in a purely entropic case (i.e. without
specific chain-chain or chain-wall attraction) the species which form more compact
clusters (linear chains) segregate to the surface. The surface induced segregation of
linear chains with different lengths and bead diameters was discussed in [8] using
the methods of association theory.

Note, however, that most authors studied the adsorption behaviour, induced
by confinement (a hard wall or a pore), while the specific adsorption effects were
not discussed. In this paper we investigate the adsorption of polymeric mixtures on
crystalline lattices. An emphasis is made on a possibility of preferential accumulation
of one species — the so-called selectivity. Our main purpose is to analyze an interplay
of the selectivity and the surface induced segregation. We discussed the role of the
bead diameter, chain length and the surface activity in the preferential adsorption
of one component. A variation of the selectivity coefficient with the density and
composition is also of interest.

2. Model

We consider a two-component hard sphere chain mixture with the bead diameters
dy, dg and chain lengths m 4, mpg. The bulk segment number densities of the species
are o4 and pp. Then p4/m4 and op/mp are the number densities of the chains.
Therefore, the system is characterized by the following set of parameters: ratio of
the bead diameters d = dp/d 4, chain lengths m 4, mp, molar fractions c4 = 04/(0a+
08), cg = 1 — ca, and the overall packing fraction n = 7/6(0ad> + 0pd3%).

The mixture is near a hard wall (located at z = 0) on which there is a square
lattice of sticky sites, modelling the crystalline structure. The adsorption potential

U, (r;) is defined by

exp(—0Ua(r;)) =1+ Ao > 0(R; — Rn)o(z — da/2), (1)

Rm

where R, is a projection of r; onto the wall, R,, is a position of a lattice site and
Ao are the stickiness parameters which determine the surface activity with respect
to different species. In what follows the Greek indices correspond to the species
a,f=A,Bandi,jym=1...N (N is the number of adsorbing sites).
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3. Theory

The singular one-body potential allows one to perform an exact integration in
the partition function that can be expressed in terms of the n-body distribution
functions pas(R1, ..., Ry,) for the reference state, i.e., the state without the adsorbing
potential. In such a way we have an infinite series on A, including the correlations of
all orders for the reference state. If only pair interactions are taken into account, then
the problem can be mapped onto the lattice gas model [9] with pairwise interactions.
The partition function is given by

== Y exp(—Hy/kT) (2)

with & = 0 or 1 being the set of occupation numbers. The Hamiltonian is written
as
Hig =33 Wan(Ri, R = 37 pa (R (3)
ij af il
where the chemical potential 4, (R;) and the pair interaction W,3(R;R;) are closely
connected with the properties of the fluid in the bulk phase. Namely,

:ua(Ri) = len()‘apa(Ri)dz)a (4)
Was(Ri, Rj) = —kTIn(Gus(Ry, Ry)), (5)

where p,(R;) and G.3(R;,R;) are respectively the one-body and pair correlation
functions for the reference state. This representation implies that the competitive
adsorption and other two-dimensional processes should depend on the properties of
the third dimension. Such an approach was successfully applied to the adsorption
of the network forming fluids [10], predicting a significant role of the cooperative
effects. Choosing properly the reference state we may use an information on p,(R;)
and G.3(R;,R;) as an input for calculation of the surface properties. Since a flat
wall problem is translationally invariant along the surface, we are interested in the
contact values p,(do/2) and Gag(dag), provided that the lattice spacing is not much
different from the bead diameters.

The mean field approximation for the grand canonical potential (per lattice site)
is

Q= kT |3 O+ [1 =3 0] In(1 =3 00) = ftabo — 23 Wasbabs| , (6)

« « a,f3

where the partial coverage 6, is determined through the minimization of €2

o0
%6, = 0. (7)
This gives
= po/kT =6y —In(1 =D 0,) — 4> Wasbs. (8)
« B
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For the sake of simplicity we consider the case of vanishing lateral interaction W5 =
0. Although this is appropriate for dilute mixtures, we retain such an approximation
in order to focus on an interplay between the interfacial segregation and the selective
adsorption. Then the partial coverages are determined by the surface activities.

eha

O = ——
L+ 3, e

(9)
The selectivity coefficient Sg4, defined as a weighted difference of the coverages
Spa = cablp — cpla (10)

measures the surface excess of one component. The concentrations are introduced
in order to ensure Sg4 — 0 as one of the components vanishes.

4. Results and discussion

Due to the singular shape of the adsorbing potential (1) the density profile con-
sists of two parts: the regular and the singular one

Pa(2) = Pal2) + pol2). (11)

The singular part determines the number density of adsorbed particles, while the
regular part describes a distribution of nonadsorbed species. The surface density
excess [, is given by o
Pa= [ Tpal2) = pi™]dz. (12)
do/2
Therefore, we deal with two ingredients coming from the splitting of the density
profile (11). The integral of the singular part is associated with the surface coverage
0. The regular counterpart describes an accumulation of nonadsorbed particles,
induced by the spatial confinement.

4.1. Interfacial segregation without specific adsorption

As is discussed above, all the relevant properties of the problem in question
are expressed through the characteristics of the reference state, where there is no
specific adsorption. A role of the spatial confinement is described by the surface
density excess (an analogy of the regular part of I'y). If the density oscillation
falls off rapidly enough, then the arrangement of the species near the hard wall is
determined by the wall-particle contact probabilities. The contact density is given
by Bl 1 + 3d, ¢ 1 1

-7 a2 Mo —
9a(da/2) = 0a(da/2)/ 00 = e My 1—1n’ (13)
where ¢, = 7/63, 0od%. The pair contact probability can be found in [11], but
for the moment this quantity is irrelevant to our analysis. As is seen from equation
(13), we deal with an interplay between the bead size (d,) and the chain length
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(mq), which determine a preferential accumulation of one species near the surface
— the segregation. In order to estimate this effect the following expression for the
segregation coefficient has been derived [§]:

Note that the segregation coefficient is defined as (05 + 04)(95(d5/2) — ga(da/2)),
such that a role of the concentration difference is ignored, which is suitable for
equimolar mixtures. Nevertheless, this does not change qualitatively our conclusions.
Asisseen Y4 consists of two parts. The first of them is proportional to the difference
of the bead diameters, while the second part gives a contribution coming from the
difference in the chain lengths. The first contribution is dominant at high densities
and decreases with decreasing density (i.e., when (, and 7 are small). This suggests
that the segregation is mainly determined by the difference d g —d 4 when the density
is high enough. In this way the particles with larger bead diameter are segregated
to the surface.

In contrast, the second term of equation (14) becomes significant at low densities.
Based on this we conclude that the difference mp — m4 is a dominant segregation
source at low densities. From the above equation it is also seen that Y g4 is similar
to that of hard spheres if mp = m4 (not only when mp = m4 = 1). For the case
of equal diameters dg = d4 the X4 is negative (if mp > my4). This reflects the
depletion of longer chains near the wall, such that shorter chains are segregated to
the surface.

It is interesting that the first term can be expressed through the diameter ratio
d=dg/da
n(d + Rd® — Rd?)

1+ Rd? ’

while the second one involves the chain lengths m 4 and mp separately. This agrees
with the result found in the framework of the field theory [3].

Therefore, we deal with a competition of two effects. An increase of an aggregate
size due to the segment diameter leads to the accumulation near the surface, while
a growth of the chain length results in depletion.

Ca(dp —da) = R=cp/ca (15)

4.2. Selectivity due to specific adsorption

Taking into account the adsorptive activity of the surface we may discuss several
possible situations which can be analyzed through the behaviour of the selectivity
coefficient
carpopgp(dp/2)dy — cpAaoaga(da/2)d’
1+ Apopgp(dp/2)dh + Aa0aga(da/2)d}
If the surface is indifferent to the species (A4 = Ag = ), then the selective ad-

sorption is determined by the segregation process near the surface. In other words,
the species that segregate to the surface are preferentially adsorbed. In this case

Spa = (16)
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the selectivity involves the interplay of
the mixture composition and its geomet-
rical parameters. For equimolar compo-
sition, Sg4 behaves essentially like Y5 4.
As is seen in figure 1, depending on a
combination of these parameters, one
may observe a preferential adsorption of
one species at almost any composition,
or B replaces A with increasing concen-
tration. In order to analyze the chain
length difference we set ms4 = m and
mp = m + D, such that D gives the
difference. If the segment sizes are equal
(dgp = da), then the shorter chains are
preferentially adsorbed. This may seem
to contradict the results [3] obtained
within the field theory that predicts the
opposite. First of all, it is worth noting
that the depletion of longer chains re-
sults from the short range packing ef-
fects, while the field theory resolves the
polymer structure on the scale of the
gyration radius. The depletion effect is
confirmed by the computer simulation
data [5,6] and the results used here have
shown [8] a rather good agreement with
those data. Secondly, here we ignore the
pairwise interaction at the surface (re-
call, W, = 0). It is known [4], however,
that the species with stronger lateral in-
teraction are adsorbed preferentially. In
this way we neglect the cooperative ef-
fects which result from the chain connec-
tivity and should be pronounced when
the coverage increases. This interaction
is governed by the contact value of the
radial distribution function G ,5(d,s) for
the chain segments. In order to deter-
mine the role of this ingredient, let us
consider the pair correlation in one com-
ponent with the chain length m. Then,
following [11], we have

—— d=2/3, D=0, m,=2
0.29..... d=3/2, D=0, m,=2
----- d=0.9, D=-18, m,=20
0,1
B-rich
3
(2]
0,04
-0,1

Figure 1. Selectivity coefficient Sp4 as
function of B concentration (¢ = ¢p) for
n=04and \p = Ap = 1.
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Figure 2. Dimensionless surface activi-
ty (solid) and the contact value of the
radial distribution function (dashed) as
functions of the chain length. The inset
displays the high density behaviour.
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Figure 3. The d — D diagram exhibiting
the location of A- and B-rich domains.
Lines (¢ = 0.1,0.5,0.75 from the top to
the bottom) mark the boundary of zero
selectivity. Other parameters are as fol-
lows: n = 0.1 (solid), n = 0.4 (dashed),
ma =10, mp=ma+ D, Aga=Ap=1.
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Figure 4. Selectivity coefficient as a
function of Ap at fixed Ay = 1.

The first two terms correspond to
the intermolecular correlation between
the segments, while the third one rep-
resents the intramolecular correlation in
a chain. Therefore, there are two driv-
ing forces for adsorption: the surface ac-
tivity Aog(d/2) and the lateral interac-
tion, related to G(d). In figure 2 these
quantities are plotted as functions of the
chain length. At relatively high pack-
ing (see the inset) both quantities de-
crease with m. This suggests that the
adsorption of the shorter chains should
be promoted. At low densities the last
term in equation (17) dominates and so
G(d), and consequently the lateral inter-
action, grows with m. In this domain the
longer chain should replace the shorter
ones. This implies the existence of some
cross-over density at which the adsorp-
tion preference changes.

As is discussed above, the selectivi-
ty is driven by two competitive factors:
the chain length difference and the seg-
ment diameter ratio. For a given set of
the “collective” parameters (density and
composition) there is a combination of
the geometrical parameters (d, m, D) at
which the preferential adsorption disap-
pears. Such a d— D diagram is displayed
in figure 3. The lines of zero selectivi-
ty separate the B- and A-rich regions.
Obviously, the A-rich region shrinks as
the molar fraction of B increases. The
boundary between these two regions be-
comes less sensitive to the chain length
difference with increasing packing frac-
tion.

Now we analyze the selective adsorp-
tion when the surface is more active
with respect to one component (Ap #
Aa). In particular, we start from the
conditions at which the B component
would be depleted in case of the indif-
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ferent surface and would increase Ap at fixed A4 = 1. The selectivity coefficient for
this case is shown in figure 4. It is seen that Sp4 changes the sign as Ap increases (see
the inset). We deal with an interplay of two competing factors: the surface tends to
adsorb B which is depleted due to the interfacial segregation. Then the first process
wins as some threshold activity is achieved. The threshold increases with decreasing
concentration of B. The selectivity grows with the overall density 7. The segregation
layer with the depleted B has a given thickness, while in the surface neighbourhood
we have an inverted region (the inset), where B dominates.

5. Conclusion

In this paper we have shown that the adsorption from polymer mixtures is asso-
ciated with a variety of competing factors which favour the selectivity. If the surface
is indifferent to the components, then the preferential adsorption is driven by the
surface induced segregation of the mixture. The selectivity is mainly determined by
the bead diameter ratio at high density, while the chain length difference is dominant
at low densities. The surface selects the shorter chains with a larger bead diame-
ter. The longer chains, however, can replace the shorter ones due to the increase
of the lateral interaction with an increasing chain length.This effect is especially
pronounced at low densities. If the surface is more active with respect to one of the
components, then the depleted species can be preferentially adsorbed, forming the
inverted region with the alternation of the A- and B-rich fields across the interface.
Such competing factors lead to the nonideality of polymer mixtures at the surface
neighbourhood. In particular, one may expect the azeotropic effects [4], which are
especially important in the course of the critical adsorption or the phase separation
in the interfacial region.

The results obtained here may have several important applications, related to
the separation of polymeric mixtures. In particular, some implications connected
with the Chornobyl problem can be drawn. Some of the radioactive species (like
uranyl or plutonyl) polymerize in the presence of water. These can be accumulated
using properly designed adsorbents. Our results demonstrate that some optimal
combination of the polymer size, mixture composition and the surface activity may
significantly enhance this process.
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CenekTuBHa agcop0Ouis 3 noniMepHoI cyMilli Ha
NnOBEepPXHi TBEepAOro Tina

E.B.BakapiH, M.®.[onoBko

IHCTUTYT @i3nkn koHaeHcoBaHnx cuctem HAH YkpaiHu,
79011 JlbBiB, ByN. CBEHLjLBKOrO, 1

OTtpumaHo 17 xoBTHsA 2001 p.

CenexTuBHa apcopbuis 3 6iHapHOT NONIMEPHOI CyMiLli Ha KpUCTanivHin
NOBEPXHi BUBYAETLCSA B paMKax MOZENi rpaTkoBoro rady B kombiHauji 3
pesynbTaTtamm acouiaTMBHOI Teopii. lNoka3aHo, o B3aEMOBMNINB CENEK-
TUBHOCTI Ta NOBEPXHEBO-IHAYKOBAHOI cerperauii npuBoaAnTb A0 Pi3HO-
MaHIiTHMX KOHKYpYylunx ¢akTopis, WO BU3HAYaloTb npouec aacopobuii.
[MpoaHanisoBaHo posib AiaMmeTpa CerMeHTa, JOBXWHW IaHLora Ta nosep-
XHEBOT aKTUBHOCTI y NepeBaxHiin afcopbuii oaHoi komnoHeHTn. O6roeo-
PIOETBLCSA TAaKOX 3MiHa KoediljieHTa CEeNeKTUBHOCTI 3 NYCTUHOIO Ta KOH-
LIEHTPaUiMHUM CKNaaoM.

Knio4oBi cnoBa: azgcopbLiis, cenekTuBHICTb, NosiMepHi CymiLui

PACS: 68.45.Da
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