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A simple electron-transfer reaction is treated in the diffusive limit, in which
the motion of the solvent is governed by the Smoluchowski equation. The
electronic transition probability is calculated from the Landau-Zener ex-
pression. The rate constant of the reaction is calculated as a function of
the strength of the electronic interaction between the reactants. For weak
interactions, the rate is the same as that obtained form first-order perturba-
tion theory. For strong interactions, solvent dynamics is rate-determining.
The calculations presented here bridge these two limits.
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1. Introduction

Electron-transfer reactions play a major role in physics, chemistry, and biology
alike [1]. Much of our present understanding of the way these reactions proceed
in condensed phases is based on the works of Marcus [2] and Hush [3], which are
based on classical statistical mechanics, and of Levich and Dogonadze [4], who em-
ployed first-order perturbation theory. These two classes of theories refer to different
strengths of the electronic interaction between the reacting partners: Marcus and
Hush consider the adiabatic limit, in which the interaction is strong, while the Levich
and Dogonadze theory treats nonadiabatic reactions with weak electronic coupling.

Till the present day, despite many efforts (see e.g. [5-8]), the gap between the
adiabatic and the nonadiabatic limits has never been quite closed. For the special
case of electrochemical reactions Mohr and Schmickler [9] have recently derived an
expression for the rate constant that is valid for all interaction strengths. However,
solvent dynamics is not considered in this work, so that its validity is limited to
timescales shorter than the solvent relaxation time.

In this work, we treat the simple case in which the electron transfer is coupled
to classical solvent modes only, and in which solvent dynamics is overdamped. The

*Dedicated to Jean-Pierre Badiali on the occasion of his 60th birthday.
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motion of the system is then governed by the Smoluchowski equation, which we solve,
using the electronic transition probability as a boundary condition. In this way we
obtain an expression for the rate constant which is valid for arbitrary strengths of
the electronic interaction.

2. Diffusion controlled electron transfer

We consider electron exchange be-
tween two reactants in a solution, and  U(q)
assume that this exchange is coupled to
a classical bath. In this case, the system
can be characterized by a single, effec-
tive bath coordinate q. Within the har-
monic approximation the diabatic po-
tential energy curves for the initial and
final states are parabolas, which inter-
sect at the saddle point ¢, (see figure 1),
and which have their equilibrium posi-
tions at ¢ = 0 and ¢ = gy. Within this
model, which originated with Marcus [2]
and Hush [3], electron transfer is an ac- 0 g2 O q
tivated process: A thermal fluctuation
takes the system from the bottom of the
initial well to the saddle point, where
electron exchange may occur. The orig-
inal papers by Marcus and Hush treated only the adiabatic limit, in which the
electronic coupling between the reactants is so strong that an electron is exchanged
every time the system passes the saddle point. Here we consider the general case, in
which the coupling has an arbitrary strength, and the system may pass the saddle
point without the occurrence of an electron transfer.

Before the reaction, the system undergoes a stochastic motion in the initial well.
In the overdamped case, which we consider here, the probability P(q,t) to find the
system at position ¢ at the time ¢ obeys a Smoluchowski equation of the form [10]:

initial
well

Figure 1. Potential energy curves for a
simple electron-transfer reaction
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Here, j(q,t) is the corresponding probability current, D is the diffusion coefficient,
which we take as constant, § = 1/kgT, kg is Boltzmann’s constant, T the tempera-
ture, and U;(¢) = $mw?¢?® the potential in the initial well. For numerical calculations
we will set the effective mass m and the frequency w equal to unity.

At g = ¢, the system can exchange an electron and escape from the initial well.
This results in a radiative boundary condition of the form:

j(Qaat) = _’%P(Qaa t)- (2)
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For the electronic transition probability ¢(v) we use the Landau-Zener expression
[11,12]:

- VI
th = 3
1 — % exp(—27v) A Y himw?|qv| )

1 — exp(—27v)

t(v) =

Here, V is the matrix element for the electronic coupling, and v is the velocity of
the system near the saddle point. The denominator in the first part of equation (3)
takes account of multiple crossing of the saddle point [1].

The Landau-Zener equation results in the following expression for the escape

rate k:
2

k= (2rkgT /m)/? /Ooo dv exp <_ZTZ:T> t(v). (4)

The rate of electron transfer can be calculated as the inverse of the first mean
passage time 7, for which Szabo et al. [13] and Deutch [14] have obtained explicit
expressions. For the case in which the initial distribution equals the equilibrium
distribution, P(q,0) = po(q), the result is:

T:[/{po(a)]ilﬁ»lg, with 12:%/ dq[po]” {/ dapo(z } . (5)

Note that the first term is just the inverse of the rate for the case of a small electronic
transition rate x, while the second term is independent of the electronic coupling.
For the harmonic potential the integral I, can be simplified:

In2 \/_ qa 9 , mw?
I, = 2 { / dy exp(y?) [1 + erf(y)] } with o = T (6)

where we have introduced the friction coefficient v = kgT'/mD.

The remaining integration is easily performed numerically. The two limiting cases
of weak and strong electronic interaction can be calculated explicitly. For weak
coupling the first term in equation (5) dominates, and taking the appropriate limit
of equation (4) gives for the rate constant:

k=1/1= ‘V‘Z exp(— L Fact) (7)
- h kBT)\ p act )

where A\ = mw?z7/2 is the energy of reorganization, and E,e = mw?z] /2 the energy
of activation. This expression is identical to that obtained by first order perturbation
theory [1,4].

For strong coupling, the first term in equation (5) is negligible. For a sufficiently
high energy of activation, when SF,. > 1, the error function in equation (6) can
be replaced by unity, and the integral can be replaced by its asymptotic value. The

leading term is:
2

k= w— 7TBEact exp _BEact (8)
27y

and is identical to the expression derived by Kramers [15,16] for the case of a cusp-
shaped barrier.
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The general case has to be treat-
ed numerically. Figure 2 shows a plot
of the rate constant versus the Landau-
Zener parameter o = |V|?/hmw?q; and
for three different values of the fric-
tion coefficient . For small interac-
tions, the rate is proportional to the
strengths |V|?, while for higher inter-
action strengths, solvent dynamics be-
comes rate-determining, and the rate at-
tains a constant value. The higher the
coefficient of friction, the lower is the Ino
limiting rate for high o. For very strong
electronic interactions, the energy of ac-
tivation is lowered, and the rate should
rise again [17]. However, this effect is not
considered here since we calculate the
rate from the diabatic potential energy
curves.

Ink

Figure 2. Rate constant versus the
Landau-Zener parameter o; full line:
~v/w = 10, dotted line: v/w = 50; dashed
line v/w = 100.

3. Conclusion

To the best of our knowledge, this is the first model that applies for all strengths
of the electronic interaction between the reactants. It encompasses both the nonadia-
batic and the adiabatic regions, and nicely illustrates the interplay between electron
transfer and solvent dynamics. From equation (5) it can be seen that the rate con-
stant k obeys a relation of the form:

1 1 1

_ . 9
k el kdyn ( )

where ke depends on the electronic interaction, and kqyy, on the solvent dynamics.
An equation of this form is sometimes assumed as an interpolation formula between
the adiabatic and the nonadiabatic limits [18,19]. Here this relation arises naturally
from the solution of the diffusion equation. Note, however, that k. goes beyond
first-order perturbation theory.

Our model applies only to the simplest possible case, in which quantum modes
play no role, and solvent dynamics are overdamped. It should be extendable to the
case where the dynamics are not overdamped and obey a Fokker-Plank involving
both the position ¢ and the velocity v. However, in this case the solution is likely to
be wholly numerical.
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CTtyniHb peakuii eNneKTPOHHOro nNepeHocy B
Andy3inHinu rpaHuli

B.LWwmiknep

YHiBepcuTeT Ynbmy, D-89069, Ynbm, Himeuyunna

OtpumanHo 8 cepnHa 2001 p., B octaTodHOMY BUrnagi — 10 XXOBTHS
2001 p.

lMpocTa peakujis eNeKTPOHHOrO NepPeHoCcy po3rMsagaeTbcs B andysin-
HI rpaHunLI, B SKi pyX PO3YMHHMKA OMUCYETLCS PIBHAHHAM CMOMYXOB-
CbKOro. IMOBIpPHICTb €N1EeKTPOHHOIrO NEPEXOOY PO3PaxXOBYETLCH 3 BMpa-
3y JlaHpay-3eHepa. KoHcTaHTa peakuji po3paxoBaHa sk QYHKLA cunu
€NeKTPOHHOT B3aeMoSji Mix peakTaHTamu. Ana cnabkux B3aemopiii cTy-
niHb peakuii cnisnagae 3 BMpa3om, OTPUMaHUM B NEPLLUOMY HABNNXKEHHI
Teopii 30ypeHb. AN CUNbHUX B3aEMOAIN ANHAMIKA PO3YNMHHMKA BU3HA-
YaeTbCs CTyneHeM peakLii. MpencTaBneri po3paxyHkn NOEOHYIOTb 0OU-
OBi rpaHnLj.

Knio4oBi cnoBa: peakuii e1eKTPOHHOro NepeHocy, andyaiiHa rpaHuus

PACS: 82.30.F, 82.20.Gk
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