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We develop a replica generalization of the reference interaction site model
(replica RISM) integral equation theory to describe the structure and ther-
modynamics of a polar molecular liquid sorbed in a quenched disordered
porous matrix including polar chemical groups. It provides a successful ap-
proach to realistic models of molecular liquids, and properly allows for the
effect of a quenched disordered medium on the sorbed liquid. The descrip-
tion can be readily extended to a mobile liquid comprising a mixture of ionic
and polar molecular species. The replica RISM integral equations are com-
plemented by the HNC closure and its partial linearization (PLHNC), ade-
quate to ionic and polar molecular liquids. In these approximations, closed
expressions for the excess chemical potentials of the quenched-annealed
system are derived. We extend the description to the case of soft core in-
teraction potentials between all species of the quenched-annealed system,
in which the liquid and matrix equilibrium distributions are characterized
in general by two different temperatures. The replica RISM/PLHNC-HNC
theory is applied to water sorbed in a quenched matrix roughly modelling
porous carboneous material activated with carboxylic (-COOH) groups.
The results are in qualitative agreement with experiment for water confined
in disordered materials.
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1. Introduction

Microporous materials are of significant engineering as well as scientific interest
due to their enhanced adsorption, separation, and catalytic properties [1,2]. They
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can be most generally subdivided into those possessing a crystalline order, such
as zeolites, and disordered on a microscopic scale, for instance, activated carbons,
silica gels, and porous glasses. The microscopic structure of the latter is formed
in the process of gelation or a glass transition, and then assumed to be frozen in
space. Theoretical description of liquid adsorbed in the pores of such a quenched
random matrix requires specific statistical-mechanical means to allow for a disorder
of the amorphous material. Although a reliable modelling can be ultimately done
by molecular simulations, integral equation theory offers a very cost-efficient alter-
native providing fast calculation of the thermodynamic and structural properties
of the liquid, which is important in industrial applications. This also allows one to
access large-scale systems, as for now still unfeasible to simulations for time and
memory limitations. Moreover, the theory is uniquely capable of yielding analytical
and asymptotical relations for the fluid properties.

There has been a number of theoretical studies treating the binary system of an
annealed, thermally equilibrated fluid confined in a porous matrix of immobile solid
obstacles specified as a quenched distribution of equilibrium or nonequilibrium fluid
[3–30]. Madden and Glandt (MG) [3,5] performed a cluster diagram analysis of this
quenched-annealed, or partially quenched system and derived the integral equations
of Ornstein-Zernike type (OZ) [31]. In physical essence, the MG-OZ equations can be
viewed as treating the matrix as a single rigid supermolecule immersed in the fluid
at infinite dilution [4]. Given and Stell [8,9] showed that this set of equations was not
entirely adequate to the correct topological specifications of the system and proposed
a different formalism and a corrected set, called the replica OZ equations. It is based
on the continuum replica method [8] developed to treat systems containing both
quenched and annealed degrees of freedom, and starting with the average free energy
of the mobile fluid specified as the statistical average over the matrix distribution.
This average is difficult because, unlike an entirely annealed system, it requires
averaging the logarithm rather than the statistical sum itself. It is alleviated by using
the replica identity to replace the logarithm with a limit of powers s. Thereby, the
partly quenched system is replaced with an equilibrated, entirely annealed mixture
of the matrix species (now mobile) and s replicas of the fluid which interact with
the matrix but not with each other. The corresponding OZ equations set for this
s + 1-component mixture is then taken in the analytic continuation limit s → 0,
leading to the replica OZ equations. As an important advantage, the latter explicitly
include the so-called blocking (or disconnected) terms representing the correlation
between fluid particles originating from different replicas (noninteracting with each
other) due to the presence of immobile matrix particles. In this sense, the MG-
OZ set does not distinguish between a quenched and annealed matrix, and its only
difference from the equilibrium mixture OZ equations is in the quenched subsystem
input, independent on the fluid subsystem [9]. One can show [9,10] that the effect
of the direct blocking correlations becomes increasingly significant with the density
of the matrix obstacles, and is substantial even at low density of adsorbed fluid. It
is especially essential for systems with charged species [17].

Thereafter, numerous studies were carried out exploring the replica OZ approach
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for both fluid and matrix represented with atomic liquid models [10–23] (see also
recent reviews in [29,30]). In particular, the questions of the thermodynamics of
a quenched-annealed system were thoroughly addressed [11–14]. Different approx-
imations for closures to the replica OZ equations were investigated [7,10], includ-
ing bridge corrections extracted from a reference system [15] or derived to satisfy
thermodynamic and structural consistency [16]. A generalization to the inhomoge-
neous replica OZ theory was elaborated, and spatially inhomogeneous systems of
quenched-annealed atomic fluids in spatial confinements of various geometry were
studied [21]. The replica OZ formalism was extended to describe the structure and
the thermodynamic properties of a multicomponent liquid mixture within a porous
medium [25,22]. However, the case of a molecular liquid sorbed in a quenched matrix
is more complicated.

A successful description for realistic molecular liquids of various complexity is
provided by the reference interaction site model (RISM) which is an orientational
reduction of the molecular OZ integral equation [31]. The RISM method was pio-
neered by Chandler and Andersen [32], and then extended by Hirata and co-workers
to polar and quadrupolar liquids [33] and to ions in a molecular polar solvent [34]
by adapting the hypernetted chain (HNC) closure. A great advantage of the RISM
approach over other integral equation theories for molecular liquids [31] is that it
can easily handle the description of solution including polar as well as nonpolar
polyatomic molecules and molecular ions, and to properly take into account such
chemical specificities as hydrogen bonding [35].

By viewing the porous solid as one huge ubiquitous molecule and using heuris-
tic arguments of the RISM theory, Chandler [4] obtained the RISM equations for
polyatomic fluids sorbed in a quenched amorphous material which are similar to the
MG-OZ equations. Madden [5] also discussed this approach from the point of view
of the MG diagram analysis and suggested the use of the Chandler-Silbey-Ladanyi
(CSL) equations [36,31] to provide the interaction site theory to be proper in the
diagrammatic sense. Thompson and Glandt [24] combined the polymer RISM theo-
ry (PRISM) of Schweizer and Curro [37] with the MG formalism [3,5] to describe a
polymer fluid of ideal freely jointed hard sphere chains in a hard sphere matrix. Ford,
Thompson, and Glandt [25] further developed the MG-PRISM as well as MG-OZ
methods to obtain the thermodynamic properties of fluids confined in disordered
porous solids by using the scaled particle theory (SPT) approach. At the level of the
MG approximation, however, the direct blocking effects essentially distinguishing a
quenched disordered matrix, and important for ionic and polar molecular fluids are
again neglected.

In several recent works [26,27], the replica formalism was generalized for Wert-
heim’s multidensity OZ equations [39] describing dimerizing and polymerizing fluids
of molecular particles represented by the primitive models of chemical association
[40]. For instance, a four-site associative model mimicking hydrogen bonding net-
work of water [41] was used to study the phase transition and structure of a network-
forming fluid sorbed in a hard sphere matrix [27]. The multidensity formalism was
also employed to describe the structure of quenched polymerized matrices [28]. Al-
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though providing an advanced description of the most important generic properties
of associating fluids [42], this multidensity approach suffers from the quickly arising
limitations of the primitive models in representing complex inorganic and polyatom-
ic organic species. The very recent drastic improvement [43] combines Wertheim’s
multidensity association theory with the molecular OZ equation [31] in the rotation-
al invariant treatment [44]. Unfortunately, the latter approach becomes increasingly
cumbersome with asphericity of polyatomic molecules.

To our knowledge, so far there has not been elaborated a replica extension of
the RISM equations, which would provide an improved description including direct
blocking effects of quenched disorder in realistic molecular systems with polar and
charged species. In this work, we develop the replica RISM integral equation theory
for a polar molecular liquid confined in a quenched disordered matrix of molecular
species that can also contain charged groups. At the moment, we postpone the in-
vestigation of consistent bridge corrections [16], and complement the replica RISM
equations with the HNC closure or its partial linearization (PLHNC) [45–47] which
are adequate to polar molecular systems [33,34] we intend to study. Within these
approximations, we derive a closed analytical form for the excess chemical potential
of the liquid, similarly to the entirely annealed molecular mixtures [48]. As a simple
numerical illustration, the theory is applied to water confined in a quenched ma-
trix modelling a carboneous material with as well as without activating carboxylic
groups.

2. Replica RISM theory

2.1. Replica site-site OZ equations

We consider a mixture of two molecular species, one quenched and one annealed,
denoted with indices 0 and 1, respectively. Molecular species 0 constituting a porous
matrix are equilibrated separately and then frozen in place with the spatial cor-
relations corresponding to a canonical ensemble at a temperature T0. A liquid of
mobile molecular species 1 in the quenched external field of the matrix is in equi-
librium described by a grand canonical distribution at a temperature T . In the
statistical-mechanical formalism below, we employ the atomic point of view regard-
ing molecules as clusters of atoms bound by intramolecular potentials of chemical
bonds [49], although a molecular approach can equally be used. Following Rosin-
berg, Tarjus, and Stell [12], we introduce the grand potential of the mobile liquid in
this quenched-annealed system, Ω1, as a statistical average of the grand potential of
the liquid at a particular matrix realization q

0 over the matrix distribution,

−βΩ1 =
1

Z0 (N0!)
M0

∫

dq0 exp
[

−β0H
00(q0)

]

lnΞ1(q
0), (1)

with the canonical partition function of the matrix

Z0 =
1

(N0!)
M0

∫

dq0 exp
[

−β0H
00(q0)

]

, (2)
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and the matrix-dependent grand partition function of the liquid

Ξ1(q
0) =

∞
∑

N1=0

exp [βµ1N1]Z1(q
0), (3)

Z1(q
0) =

1

(N1!)
M1

∫

dq1 exp
[

−β
[

H01(q0, q1) +H11(q1)
]]

, (4)

where
q
0 =

(

r
1
1, . . . , r

1
M0

, . . . , rN0

1 , . . . , rN0

M0

)

denotes the positions of M0 interaction sites in each of N0 molecules comprising the
frozen matrix, and

q
1 =

(

r
1
1, . . . , r

1
M1

, . . . , rN1

1 , . . . , rN1

M1

)

are the site coordinates of N1 molecules (each with M1 interaction sites) of the an-
nealed liquid, µ1 =

∑M1

α=1 µ
1
α is the chemical potential of molecules of the liquid

comprising the site contributions µ1
α, β0 = 1/(kT0) and β = 1/(kT ) are the inverse

temperatures, and H ij stands for the sum of all interactions between species i and
j (including intramolecular terms for i = j). Since the system of matrix molecules
was equilibrated before freezing, the matrix spatial correlations comprise just the
equilibrium configurational contribution, without dynamic terms. Therefore, after
scaling the matrix interaction potentials H 00 by the factor λ0 = T/T0, we can treat
the matrix correlations to be corresponding to the same temperature as that of the
liquid. This is trivial in the case of a matrix of rigid core particles, for which the
configurational part is temperature independent. For soft matrix potentials H 00, the
presence of two different temperatures somewhat modifies the thermodynamics of
the quenched-annealed system but does not affect its statistical-mechanical descrip-
tion. Then, within the continuum generalization of the replica method [8], we can
use the replica identity,

lnx = lim
s→0

xs − 1

s
= lim

s→0

dxs

ds
, (5)

to relate the partly quenched average, Ω1, to the analytic continuation at s = 0 of
the annealed averages of the moments Ξs

1,

−βΩ1 = lim
s→0

d

ds

1

Z0 (N0!)
M0

∫

dq0 exp
[

−βλ0H
00(q0)

] [

Ξ1(q
0)
]s

≡
1

Z0
lim
s→0

d

ds
Ξrep(s). (6)

For integer values of s, the annealed average Ξrep(s) takes the form of the equilibrium
partition function of a fully annealed (s + 1)-component molecular liquid mixture
comprising the matrix species, now annealed, and s equivalent replicas of the liquid,

Ξrep(s) =
∑

N1,...,Ns

exp [βµ1(N1 + · · ·+Ns)]Zrep(N0, N1, . . . , Ns), (7)
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where

Zrep(N0, N1, . . . , Ns) =
1

(N0!)
M0 (N1!)

M1 . . . (Ns!)
M1

×

∫

dq0dq1 . . .dqs exp

[

−β

[

λ0H
00(q0) +

s
∑

i=1

H0i(q0, qi) +

s
∑

i=1

H ii(qi)

]]

(8)

is the canonical partition function of the annealed (s+1)-component molecular sys-
tem. The matrix component is described in (7) by the canonical ensemble, whereas
the s liquid replicas are described by the grand canonical partition with the same
chemical potential µ1. As a special feature, this mixture is highly nonadditive since
there is no interaction between different replicas of the liquid, H ij = 0 for i 6= j.
On simple rearrangement taking into account that lim

s→0
Ξrep(s)/Z0 = 1, the aver-

aged grand potential (6) is expressed through the thermodynamic function of the
annealed replicated system, Ωrep(s) = −kT ln Ξrep(s), as

Ω1 = lim
s→0

d

ds
Ωrep(s). (9)

Then all the thermodynamic properties of the initial partially quenched molecular
system are obtained similarly to [12] from those of the replicated, (s+1)-component
annealed molecular liquid by using equation (9) in the common assumption [8–
14,24] that the limit s → 0 does not break the permutational symmetry of the
liquid replicas.

Owing to the equivalence of ensembles verified for quenched-annealed systems in
[12], the description of the liquid sorbed in the matrix can equally be performed in
the canonical ensemble [9–14]. In this case, one considers the average free energy of
the molecular liquid,

−βA1 = −βAid
1 +

1

Z0 (N0!)
M0

∫

dq0 exp
[

−βλ0H
00(q0)

]

lnZ1(q
0), (10)

where the free energy of the ideal gas of M1N1 separate noninteracting sites of liquid

particles, −βAid
1 =

M1
∑

α=1

ln
(

Λ−3N1

α V N1/N1!
)

, factors out of the configurational part

under averaging, and Λα = ~ (2πβ/mα)
1/2 is the de Broglie thermal wavelength of

site α with mass mα. Employing the replica identity (5), it is presented in the form

A1 = lim
s→0

d

ds
Arep(s) (11)

through the free energy of the annealed replicated system

Arep(s) = Aid
rep(s)− kT lnZrep(N0, N1 = · · · = Ns), (12)

with the ideal gas part Aid
rep(s) = Aid

0 + sAid
1 comprising the contributions Aid

0 from
the matrix as well as Aid

1 from every liquid replica. The former term disappears in
the replica limit (11).
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Restricting the present consideration to the case of rigid molecules, we apply
Chandler and Andersen’s site-site OZ, or in another terminology, RISM integral
equations for site-site correlation functions [32] to this (s+1)-component molecular
mixture. With allowance for the symmetry of the s liquid replicas, they take the
form

h00
αγ = ω00

αµ ∗ c
00
µν ∗ ω

00
νγ + ω00

αµ ∗ c
00
µν ∗ ρ

0h00
νγ + sω00

αµ ∗ c
01
µν ∗ ρ

1h10
νγ , (13a)

h10
αγ = ω11

αµ ∗ c
10
µν ∗ ω

00
νγ + ω11

αµ ∗ c
10
µν ∗ ρ

0h00
νγ + ω11

αµ ∗ c
11
µν ∗ ρ

1h10
νγ

+ (s− 1)ω11
αµ ∗ c

12
µν ∗ ρ

1h10
νγ , (13b)

h01
αγ = ω00

αµ ∗ c
01
µν ∗ ω

11
νγ + ω00

αµ ∗ c
00
µν ∗ ρ

0h01
νγ + ω00

αµ ∗ c
01
µν ∗ ρ

1h11
νγ

+ (s− 1)ω00
αµ ∗ c

01
µν ∗ ρ

1h12
νγ , (13c)

h11
αγ = ω11

αµ ∗ c
11
µν ∗ ω

11
νγ + ω11

αµ ∗ c
10
µν ∗ ρ

0h01
νγ + ω11

αµ ∗ c
11
µν ∗ ρ

1h11
νγ

+ (s− 1)ω11
αµ ∗ c

12
µν ∗ ρ

1h12
νγ , (13d)

h12
αγ = ω11

αµ ∗ c
12
µν ∗ ω

11
νγ + ω11

αµ ∗ c
10
µν ∗ ρ

0h01
νγ + ω11

αµ ∗ c
11
µν ∗ ρ

1h12
νγ

+ ω11
αµ ∗ c

12
µν ∗ ρ

1h11
νγ + (s− 2)ω11

αµ ∗ c
12
µν ∗ ρ

1h12
νγ , (13e)

where hij
αγ is the intermolecular part of the total correlation function between inter-

action sites α and γ of species i and j, cijαγ is the site-site direct correlation function,
the terms h12

αγ and c12αγ mean the site-site correlations between molecules from equiv-
alent but different replicas of the liquid, ω ii

αγ is the intramolecular matrix of species
i, ρi is the number density of molecules of species i (ρ1 = ρ2), and an asterisk ∗

means convolution in direct space and summation over repeating site indices. For
rigid molecules with site separations l iiαγ , the intramolecular matrix is specified in
reciprocal space as ωii

αγ(k) = sin(kliiαγ)/(kl
ii
αγ), where ωii

αα(k) = 1 for liiαα(k) = 0.
Assuming that there is no replica symmetry breaking in the analytic continuation
of equations (13) to s = 0, we obtain the set of the replica RISM integral equations,

h00
αγ = ω00

αµ ∗ c
00
µν ∗ ω

00
νγ + ω00

αµ ∗ c
00
µν ∗ ρ

0h00
νγ , (14a)

h10
αγ = ω11

αµ ∗ c
10
µν ∗ ω

00
νγ + ω11

αµ ∗ c
10
µν ∗ ρ

0h00
νγ + ω11

αµ ∗ c
(c)
µν ∗ ρ

1h10
νγ, (14b)

h01
αγ = ω00

αµ ∗ c
01
µν ∗ ω

11
νγ + ω00

αµ ∗ c
00
µν ∗ ρ

0h01
νγ + ω00

αµ ∗ c
01
µν ∗ ρ

1h(c)
νγ , (14c)

h11
αγ = ω11

αµ ∗ c
11
µν ∗ ω

11
νγ + ω11

αµ ∗ c
10
µν ∗ ρ

0h01
νγ + ω11

αµ ∗ c
(c)
µν ∗ ρ

1h11
νγ

+ ω11
αµ ∗ c

(b)
µν ∗ ρ1h(c)

νγ , (14d)

h(c)
αγ = ω11

αµ ∗ c
(c)
µν ∗ ω

11
νγ + ω11

αµ ∗ c
(c)
µν ∗ ρ1h(c)

νγ , (14e)

where we have identified the blocking (or disconnected) site-site correlation functions
similarly to the atomic liquid case [8–14] as the subset of graphs with all paths

passing through at least one matrix species site, h
(b)
αγ = h12

αγ(s → 0) and c
(b)
αγ =

c12αγ(s → 0). The corresponding connected parts h
(c)
αγ and c

(c)
αγ are introduced by

h11
αγ = h(c)

αγ + h(b)
αγ , (14f)

c11αγ = c(c)αγ + c(b)αγ . (14g)
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The intermolecular site-site total correlation function of the mobile liquid confined
in a random matrix, h11

αγ , is in general defined by the relation

ρ1(r1)ρ
1(r2)

(

h11
αγ(r1, r2) + s11αγ(r1, r2)

)

= ρ11αγ(r1, r2)− ρ1(r1)ρ
1(r2) (15)

through the mean single and pair densities, ρ1(r1) = ρ1(r1; q0) and ρ11αγ(r1, r2) =

ρ11αγ(r1, r2; q0), where the overbar denotes a disorder average over all matrix realiza-
tions q0. In the case of a liquid of rigid molecules, the intramolecular site-site cor-
relation function s11αγ has the simple form s11αγ(r) = (1− δαγ)δ

(

r − l11αγ
)

/
(

4π(l11αγ)
2
)

.
For a statistically homogeneous matrix, the densities are translationally invariant
and equation (15) reduces to

(

ρ1
)2

(

h11
αγ(r) + s11αγ(r)

)

= ρ11αγ(r)−
(

ρ1
)2

. (16)

The site-site density correlation function (16) can be broken up, similarly to quench-
ed-annealed atomic liquids [12], into the connected part which is a disorder average of
the spatially inhomogeneous site-site density correlation in the matrix of a particular
realization q

0,

(

ρ1
)2

(

h(c)
αγ(r12) + s11αγ(r12)

)

= ρ11αγ(r1, r2; q0)− ρ1α(r1; q0)ρ1γ(r2; q0)

= ρ11αγ(r12)− ρ1α(r1; q0)ρ1γ(r2; q0), (17)

and the blocking part which is a disorder-averaged correlation between two spatially
inhomogeneous single densities at a particular matrix realization q

0,

(

ρ1
)2

h(b)
αγ (r12) = ρ1α(r1; q0)ρ1γ(r2; q0)−

(

ρ1
)2

. (18)

In the approximation neglecting the blocking part of the site-site direct cor-
relation functions, c

(b)
αγ = 0, the replica RISM integral equations (14) reduce to

Chandler’s RISM equations for a molecular fluid in a quenched amorphous materi-
al [4]. This is much like the replica OZ equations for atomic liquids reduce to the
Madden-Glandt (MG) OZ theory [3,5] when neglecting the blocking effects [8–14].

Notice that the replica RISM equations (14) are readily generalized to the case of
a matrix comprising a mixture of molecular species as well as of a multicomponent
mobile liquid. This is done merely by extending the interaction site subscripts to
include component indices a, c in the correlation functions in the form h ij

aα,cγ . The
densities ρia also acquire a component index, over which summation is performed.
The intramolecular matrix is then modified as ω ii

aα,cγ(k) = δac sin(kl
ii
aα,aγ)/(kl

ii
aα,aγ),

where liiaα,aγ are the site-site separations in a molecule of component a of the matrix
(i = 0) and liquid (i = 1).

Obviously, the replica RISM equations (14) inherit the inconsistencies of the
RISM approach, such as for instance, inclusion of improper diagrams and imperfect
representation of the excluded volume effects [31]. It should be emphasized, however,
that the classification and the proper treatment of the blocking and connected parts
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of the correlations, essential for a partially quenched system is retained in equations
(14). Despite its deficiencies and owing to effective cancellation of errors, the RISM
theory has proved to be successful for a number of chemical and biological systems of
practical interest [35]. Therefore one can expect that its replica extension is capable
of a good qualitative description of molecular liquids in the partially quenched case
as well.

For rigid molecular species, the replica RISM equations (14) can be seen as a
full orientational reduction of the replica molecular OZ integral equations which are
obtained in the limit s → 0 from the corresponding molecular OZ equations for the
(s + 1)-component annealed molecular mixture. Such a derivation can be readily
done similarly to references [45,46,50] by using the implicit assumption of the RISM
theory that the molecular direct correlation function is decomposable into partial
site contributions, since it has a long-range asymptotics of the molecular interac-
tion potential generally comprising additive site-site terms. It is better, however,
to introduce the RISM description before the replica identity limit, at once for the
annealed mixture as described by equations (13). This seems to be more consistent
in view of the possibility to further extend the replica RISM approach at hand to
the case of deformable molecules by treating the intramolecular matrix ω ii

αγ(r) as
an intramolecular distribution function to be determined within the density func-
tional approach [51,52]. Such an approach has been discussed by Chandler [4] at
the level of the MG-OZ approximation. Also promising is generalization to a replica

polymer RISM (PRISM) theory with the intramolecular distribution functions of
flexible polymer chains predetermined, like in the PRISM theory of Schweizer and
Curro, in some reasonable form [37] or taken from simulations [38]. As compared to
the MG-PRISM equations elaborated by Thompson and Glandt [24], such a replica
PRISM theory would provide a more consistent description for polymeric liquids
sorbed in disordered porous materials, especially for species with polar or charged
groups. We postpone these possibilities to further works.

2.2. Closures

As usually in integral equation theory of liquids, the replica RISM equations need
to be complemented with closures. The exact relations for the site-site correlations
can be formally written as

gijαγ(r) = exp
(

−βuij
αγ(r) + hij

αγ(r)− cijαγ(r) + bijαγ(r)
)

, (19a)

g(b)αγ (r) = exp
(

h(b)
αγ (r)− c(b)αγ (r) + b(b)αγ (r)

)

, (19b)

where gijαγ(r) = hij
αγ(r) + 1 and g

(b)
αγ (r) = h

(b)
αγ (r) + 1 are as usually the site-site

distribution functions, and the intermolecular interactions are specified by additive
site-site potentials uij

αγ(r) dependent on separation r between interaction sites α and
γ of species i and j. The blocking correlations originate from those between different
liquid replicas of the annealed mixture, equation (13e), and thus do not involve an
interaction potential in the closure (19b). Different closures use various approxima-

tions to the unknown bridge functions bijαγ(r) and b
(b)
αγ (r). As appropriately noted by
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Kierlik, Rosinberg, Tarjus, and Monson [14], the validity of these approximations
as well as of the replica symmetry nonbreaking remains partly uncontrollable and
can be checked only by comparison of the results for some featured systems against
molecular simulations. For quenched-annealed atomic fluids, the standard approxi-
mations of liquid state theory [31] have been extensively tested [7,10]. As was shown,
such linearized closures as the Percus-Yevick (PY) one and the mean spherical ap-
proximation (MSA) are quite adequate for quenched-annealed fluids with repulsive
core or Lennard-Jones interactions and reproduce their behaviour well. However,
with these closures the replica OZ equations reduce to the MG-OZ theory neglect-
ing the direct blocking correlations [9–14]. It is demonstrated [17] that for electrolyte
solutions confined in a hard sphere matrix, the blocking effects become especially
essential and can be recapitulated with the hypernetted chain (HNC) closure, most
relevant to systems of charged species [31]. Similarly to the replica OZ for atomic
liquids, the replica RISM equations (14) with the site-site PY or MSA closures re-
duce to Chandler’s RISM approximation at the MG level [4]. On the other hand,
the conventional RISM equations in the HNC approximation neglecting the site-site
bridge functions proved to be adequate for modelling ion-molecular nonaqueous as
well as aqueous solutions [33–35]. Therefore, we complement the replica RISM equa-
tions with the site-site HNC closures by neglecting in (19) the bridge functions b ijαγ
and b

(b)
αγ ,

gijαγ(r) = exp
(

−βuij
αγ(r) + hij

αγ(r)− cijαγ(r)
)

, (20a)

g(b)αγ (r) = exp
(

h(b)
αγ (r)− c(b)αγ (r)

)

. (20b)

Instead of (20), bridge corrections in the closures (19) can be attempted in order
to gain thermodynamic and structural consistency, similarly to those elaborated for
partially quenched atomic liquids [16]. This issue, however, constitutes a challenge
for the RISM approach itself, and will be addressed elsewhere.

For molecular systems with strong site-site attraction, in particular, for liquid
mixtures in the case of enhanced clustering, the HNC approximation can become
divergent. To treat this problem, we have elaborated a partially linearized HNC
closure (PLHNC) [45–47]. For the quenched-annealed system at hand, it is written
as

gijαγ(r) =

{

exp
(

X ij
αγ(r)

)

for X ij
αγ(r) 6 0,

1 + X ij
αγ(r) for X ij

αγ(r) > 0,

X ij
αγ(r) = −βuij

αγ(r) + hij
αγ(r)− cijαγ(r), (21a)

g(b)αγ (r) =

{

exp
(

X
(b)
αγ (r)

)

for X
(b)
αγ (r) 6 0,

1 + X
(b)
αγ for X

(b)
αγ (r) > 0,

X (b)
αγ (r) = h(b)

αγ (r)− c(b)αγ (r). (21b)

The PLHNC approximation (21) combines the HNC exponent for density depletion
regions of h < 0 and its linearization for enrichment regions of h > 0. The distri-
bution function and its first derivative are continuous at the joint point, X = 0, by
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construction. The linearization in the enrichment regions prevents exponential rise
of the distribution function in the regions of a strong attractive potential bringing
about the divergence. For bulk ambient water [45], simple ions in aqueous solution
[46], and molecular ions in a polar molecular solvent [47], the PLHNC approximation
as compared to the HNC one somewhat reduces and widens high peaks of the dis-
tribution functions but much less affects the coordination numbers of the solvation
shells. On the other hand, while using the HNC approximation for the repulsive core
range, the PLHNC closure (21), in fact, switches in the enrichment regions of h > 0
to the mean spherical approximation (MSA). For a system of intermediate density
close to a critical region, it is an entire tale of the radial distribution function which
is long-range and non-oscillating in such a case. This results in better description
provided by the PLHNC closure for a liquid near critical and phase transition re-
gions, in contrast to the pathological predictions of the HNC approximation for the
stability of fluid phases and the liquid-vapour phase diagram [53].

2.3. Thermodynamics

The expressions derived within the replica OZ theory for the thermodynamics of
quenched-annealed atomic liquids [11–14,16] can all be extended to the replica RISM
approach at hand. In particular, a chemical potential is of primary importance to
calculate isotherms of adsorption in a disordered porous matrix. Notice that as has
been introduced by Given [13], several natural definitions of the chemical potential
of the mobile liquid sorbed in the matrix are possible in terms of a grand canonical
Monte Carlo (GCMC) simulation which are in general different quantities. We will
utilize the one following from the chemical potential of the replicated system in
the limit s → 0 and obeying the standard thermodynamic relations for the sorbed
liquid in equilibrium with its bulk phase outside the matrix. The averaged free
energy of the mobile liquid defined by equation (10) is determined by the canonical
ensemble variables (V, T,N1) and the parameters (ρ0, T0) specifying the matrix state.
By using (11), its full differential, dA1(V, T,N1; ρ

0, T0), is readily expressed through
the corresponding change in the free energy (12) of the fully annealed replicated
(s+1)-component mixture with the same number of molecules in all replicas of the
liquid, N1 = · · · = Ns,

dArep(s) = −Prep(s)dV − Srep(s)dT + sµ1,rep(s)dN1

+ µ0,rep(s)dN0 +
T0

T
U00,rep(s)dλ0, (22a)

=
(

−Prep(s) + ρ0µ0,rep(s)
)

dV −
(

Srep(s)−
1

T
U00,rep(s)

)

dT

+ sµ1,rep(s)dN1 + µ0,rep(s)V dρ0 −
1

T0

U00,rep(s)dT0, (22b)

where insertion of a molecule of the liquid in the quenched-annealed system turns
upon replication of the liquid into simultaneous insertion of s molecules, one in each
replica. The chemical potential in (22) is defined by the usual derivative for the
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annealed (s + 1)-component mixture at equal numbers of molecules in the replicas
but with no constraint for their independent change,

µi,rep(s) ≡
∂Arep(N0, N1, . . . , Ns)

∂Ni

∣

∣

∣

∣

V,T=const

N1=···=Ns

. (23)

The value Srep(s) in (22) has the standard sense of entropy of the common (s+ 1)-
component mixture. The scaling factor λ0 = T/T0 in (8) can be regarded as an inde-
pendent coupling parameter for the matrix-matrix interactions. Then, “switching”
the latter by the infinitesimal change dλ0 contributes additionally to the free energy
differential dArep(s). The corresponding partial λ0-derivative obtained by differen-
tiation of the free energy (12) is expressed through the thermal average U00,rep(s)
of the matrix-matrix interaction potentials in the annealed replicated mixture with
the canonical partition function (8),

T

T0

(

∂Arep(s)

∂λ0

)

V,T,N1,N0

=
〈

λ0H
00
〉

rep
≡ U00,rep(s). (24)

This brings about the last term in (22a). On the other hand, the differential dλ0

is related to the infinitesimal change of the thermodynamic parameters by the ex-
pression dλ0 = dT/T0 − TdT0/T

2
0 , which casts the free energy change into the form

(22b). Applying (11) to (22) yields the infinitesimal change in the averaged free
energy of the mobile liquid in the quenched-annealed system as

dA1 = −P1dV − S1dT + µ1dN1 + ν1V dρ0 −
1

T0

ε1dT0, (25)

with the following relations for the partial derivatives,

P1 ≡ −

(

∂A1

∂V

)

T,N1,ρ0,T0

= lim
s→0

d

ds

[

Prep(s)− ρ0µ0,rep(s)
]

, (26)

S1 ≡ −

(

∂A1

∂T

)

V,N1,ρ0,T0

= lim
s→0

d

ds

[

Srep(s)−
1

T
U00,rep(s)

]

, (27)

µ1 ≡

(

∂A1

∂N1

)

V,T,ρ0,T0

= lim
s→0

µ1,rep(s), (28)

ν1 ≡
1

V

(

∂A1

∂ρ0

)

V,T,N1,T0

= lim
s→0

d

ds
µ0,rep(s), (29)

ε1 ≡ T0

(

∂A1

∂T0

)

V,T,N1,ρ0
= lim

s→0

d

ds
U00,rep(s), (30)

where the thermodynamic quantities P1, S1, µ1, ε1 are defined, following [12], at con-
stant matrix density ρ0 rather than number of matrix molecules N0. This is most
appropriate to a quenched-annealed system since the quenched porous material does
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not stretch with the volume of the sorbed mobile liquid. The second term in the en-
tropy (27) and the presence of the matrix-temperature derivative (30) of the averaged
free energy of the liquid are peculiar to a quenched-annealed system with the matrix
distributions corresponding to soft core potentials u00

αγ between matrix particles. In
the case of hard core potentials u00

αγ, these terms vanish due to the zeroth internal
energy of the matrix component, U00,rep(s) = 0, and the entropy reduces to the form
derived in [12]. This can also be seen as cancellation of the two terms when T0 is
replaced with T for hard core matrices.

Introducing the internal energy of each replica of the liquid in the annealed
(s+ 1)-component mixture as

U1,rep(s) ≡
〈

H01 +H11
〉

rep
=

1

s

(

∂(Arep(s)/T )

∂(1/T )

)

V,N1,ρ0,T0

, (31)

and applying (11) to the thermodynamic relation Arep(s) = Urep(s) − TSrep(s) for
the replicated system with the internal energy Urep(s) = U00,rep(s) + sU1,rep(s), we
get that it holds for the liquid sorbed in the quenched matrix,

A1 = U1 − TS1, (32)

where

U1 ≡

(

∂(A1/T )

∂(1/T )

)

V,N1,ρ0,T0

= lim
s→0

U1,rep(s). (33)

Also, the Gibbs-Duhem equation for the annealed replicated mixture,

0 = −V dPrep(s) + Srep(s)dT + sN1dµ1,rep(s) +N0dµ0,rep(s)−
T0

T
U00,rep(s)dλ0

= −V d
(

Prep(s)− ρ0µ0,rep(s)
)

+
(

Srep(s)−
1

T
U00,rep(s)

)

dT + sN1dµ1,rep(s)

− V µ0,rep(s)dρ
0 +

1

T0

U00,rep(s)dT0, (34)

leads to that for the quenched-annealed system,

0 = −V dP1 + S1dT +N1dµ1 − V ν1dρ
0 +

1

T0
ε1dT0, (35)

which together with equation (25) allows one, on integrating dA1, to recast the
averaged free energy (32) into the other standard form

A1 = −P1V + µ1N1. (36)

For the annealed RISM equations (13) complemented with the HNC closure
(19)–(20), the chemical potentials in excess of the ideal part are readily obtained by
extension of Singer and Chandler’s closed analytical form [48] to the liquid mixture.
With allowance for the symmetry of the s replicas of the liquid, they are written as

∆µ1,rep(s) = ∆µ10,rep(s) + ∆µ11,rep(s) + (s− 1)∆µ12,rep(s), (37)

∆µ0,rep(s) = ∆µ00,rep(s) + s∆µ01,rep(s) (38)
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with the partial contribution ∆µij,rep(s) of mixture component j written as the
familiar HNC expression

∆µHNC
ij = ρjkT

Mi
∑

α=1

Mj
∑

γ=1

4π

∞
∫

0

r2dr

[

1

2

(

hij
αγ(r)

)2
−

1

2
hij
αγ(r)c

ij
αγ(r)− cijαγ(r)

]

. (39)

Inserting (37) into (28) and passing to the replica identity limit s → 0, the excess
chemical potential of the liquid sorbed in the quenched matrix takes the form

∆µ1 = ∆µ10 +∆µ11 −∆µ(b), (40)

where the blocking contribution, ∆µ(b), is calculated from expression (39) with the

blocking site-site correlations, h
(b)
αγ (r) and c

(b)
αγ (r). Notice that the excess value (39),

and thus (40) result from intermolecular site-site potentials, and are defined over
the ideal part of rigid noninteracting molecules, unlike the ideal gas of separate
interaction sites used in equation (10). Also, equation (29) defining the change in
the averaged free energy of the sorbed liquid upon adding a molecule to the quenched
matrix of constant volume and temperature leads to

∆ν1 = lim
s→0

d

ds
∆µ00,rep(s) + ∆µ01. (41)

In the case of the PLHNC approximation (21), the excess chemical potential has
a closed analytical form as well [45]. Instead of (39), the expression to be inserted
into equations (40) and (41) is then

∆µPLHNC
ij = ρjkT

Mi
∑

α=1

Mj
∑

γ=1

4π

∞
∫

0

r2dr

[

1

2

(

hij
αγ(r)

)2
Θ
(

−hij
αγ(r)

)

−
1

2
hij
αγ(r)c

ij
αγ(r)− cijαγ(r)

]

, (42)

where Θ(x) is the Heaviside step function. We have presented the derivation of the
PLHNC form (42) in the appendix of [45]. It differs from the HNC one (39) in the
term h2/2 which is switched off in the regions of the density profile enrichment,
h > 0, where the partial linearization is applied. It can be also shown by using
the procedure of [45] that in the case of the mixed closure combining the HNC
approximation (20b) for the blocking part with the PLHNC one (21a) for all other
correlations, the excess chemical potentials are determined by equations (40) and
(41) with the blocking contribution ∆µ(b) in the HNC form (39) and all the other
terms given by the PLHNC expression (42).

The pressure (26), entropy (27), and the matrix-state derivatives (29) and (30)
for the quenched-annealed system cannot be obtained from those of the replicated
mixture in a straightforward manner. Rosinberg, Tarjus, and Stell [12] suggested the
way to estimate them by using finite differences, for instance,

lim
s→0

d

ds
∆µ00,rep(s) = ∆µ00,rep(s = 1)−∆µ00,rep(s = 0) +O

(

ρ0
(

ρ1
)2
)

, (43)
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with the contributions of order ρ0 (ρ1)
2
to be neglected. However, there emerges an

obstacle in solving the replicated RISM equations (13) at s = 1 because of high
nonadditivity of the replicated fully annealed mixture. Meroni, Levesque, and Weis
[15] have found for atomic liquids that the replicated OZ equations at s = 1 become
divergent for higher liquid densities, even though they have the solution in the limit
s → 0. As has been noted in [15], such systems resemble by their strong nonadditivity
a Widom-Rowlingson mixture known to phase separate [54]. On the other hand, the
pressure and the matrix-state derivatives for the quenched-annealed system can
be expressed [12,13] in terms of the s-derivatives of the correlation functions at
s = 0. Instead of (43), Given [13] proposed to obtain the latter from the linear
integral equation derived in the limit s → 0 by differentiation of the matrix-matrix
OZ equation for the replicated annealed mixture, together with its closure. Along
similar lines, for the HNC-type form of the excess chemical potential, equation (39),
we write its s-derivative as

lim
s→0

d

ds
∆µHNC

00,rep(s) = ρ0kT

M0
∑

α,γ=1

4π

∞
∫

0

r2dr

[

h00
αγ(r)

dh00
αγ(r)

ds

−
1

2
c00αγ(r)

dh00
αγ(r)

ds
−

1

2
h00
αγ(r)

dc00αγ(r)

ds
−

dc00αγ(r)

ds

]

, (44)

where the s-derivatives of the matrix correlations are determined from the integral
equations derived by differentiating the matrix-matrix RISM equation (13a) with
the HNC closure (20a) and then passing to the limit s → 0,

dh00
αγ

ds
= ω00

αµ ∗
dc00µν
ds

∗ ω00
νγ + ω00

αµ ∗
dc00µν
ds

∗ ρ0h00
νγ + ω00

αµ ∗ c
00
µν ∗ ρ

0
dh00

µν

ds
+ ω00

αµ ∗ c
01
µν ∗ ρ

1h10
νγ , (45)

dh00
αγ(r)

ds
= g00αγ(r)

(

dh00
αγ(r)

ds
−

dc00αγ(r)

ds

)

, (46)

provided the matrix correlations h00
αγ and c00αγ have been determined before. For the

PLHNC approximation (42), the s-derivative of the excess chemical potential is
accordingly modified to

lim
s→0

d

ds
∆µPLHNC

00,rep (s) = ρ0kT

M0
∑

α,γ=1

4π

∞
∫

0

r2dr

[

h00
αγ(r)

dh00
αγ(r)

ds
Θ
(

−hij
αγ(r)

)

−
1

2
c00αγ(r)

dh00
αγ(r)

ds
−

1

2
h00
αγ(r)

dc00αγ(r)

ds
−

dc00αγ(r)

ds

]

, (47)

with the s-derivatives of the correlation functions calculated from the integral equa-
tion (45) complemented with the s-derivative of the PLHNC closure,

dh00
αγ(r)

ds
=

(

1 + h00
αγ(r)Θ

(

−hij
αγ(r)

))

(

dh00
αγ(r)

ds
−

dc00αγ(r)

ds

)

. (48)
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Similarly, the derivative (30) of the free energy of the mobile liquid with respect to
the matrix temperature can be obtained from the matrix internal energy (24) as

ε1 = ρ0
M0
∑

α,γ=1

4π

∞
∫

0

r2dr u00
αγ(r)

dh00
αγ(r)

ds
, (49)

with the s-derivative dh00
αγ/ds determined from equations (45), and (46) or (48) in

either approximation.
Finally, it is easy to show in the grand canonical ensemble similarly to [12] that

the isothermal compressibility of the mobile liquid in the matrix, χ 1, is related to

the fluctuation of the average number of particles as ρ1kTχ1 =
(

〈

N2
1

〉

−
〈

N1

〉2
)

/N1,

where the brackets and overbar denote respectively the thermal and disorder aver-

ages, and
〈

N1

〉

= N1. The normalizations in the grand canonical ensemble of the
single and pair site densities at a particular matrix realization are written as

∫

dr1ρ
1
α(r1; q

0)) =
〈

N1(q
0)
〉

, (50)
∫

dr1dr2ρ
11
αγ(r1, r2; q

0)) =
〈

N2
1 (q

0)
〉

−
〈

N1(q
0)
〉

. (51)

On averaging them over matrix disorder, the compressibility expresses through the
connected part of the site-site total correlation function of the liquid for any pair of
sites αγ,

ρ1kTχ1 = 1 + ρ14π

∞
∫

0

r2drh(c)
αγ(r) = 1 + ρ1h(c)

αγ(k = 0). (52)

By using the replica RISM integral equation (14e) for the connected terms of the
site-site correlations in reciprocal space at k → 0, the compressibility (52) can also
be recast as

1

ρ1kTχ1

= 1− ρ1
M1
∑

α,γ=1

c(c)αγ(k = 0). (53)

3. Numerical results

3.1. Models and parameters

In order to illustrate the replica RISM theory, we calculated the structure and
some thermodynamic properties of water in a quenched disordered matrix rough-
ly modelling microporous carboneous material. We use two matrix models: the first
consisting of a quenched liquid of Yukawa spheres associating into clusters to roughly
represent carboneous microporous material, and the second including also activating
carboxylic groups -COOH. For these systems, we solved the replica RISM equations
(14) complemented with the PLHNC approximation (21a), more appropriate for
calculation of the thermodynamic properties as well as robust for convergence at
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peculiar thermodynamic conditions. An exception is the closure for the blocking
correlations, for which we employ the HNC approximation (20b). Since the block-

ing part of the total correlation functions, h
(b)
αγ (r), is positive almost everywhere(see

below), the PLHNC closure for the blocking correlations practically reduces to the
MSA. The latter, however, neglects the blocking direct correlations functions and
thus would reduce the replica equations to the Madden-Glandt approach. The below
results of the replica RISM theory are in agreement with the qualitative conclusions
found in experiment for the structure of water sorbed in porous solids [57]. A com-
parison with simulations which is, no question, very important to judge about the
quantitative precision of the theory proposed will be made in further studies.

The replica RISM/PLHNC-HNC integral equations have been solved on the ra-
dial linearly spaced grid of 16384 points with grid resolution of 0.01 Å. The equations
have been converged to an accuracy of the root mean square residual of 10−13 by
using the modified direct inversion in the iterative subspace (MDIIS) method elab-
orated for liquid state theory calculations by Kovalenko, Ten-no, and Hirata [55].
Details of the procedure, construction of the residue of the integral equations, and
the choice of initial vectors of the correlations have been presented in [46,47,55,56].
Notice that we calculate the convolutions in equations (14) by employing the lin-
ear fast Fourier transform (FFT) technique [58], but not the exponentially spaced
nonlinear FFT [59,60] common for the RISM treatment of polar and ionic systems
[33–35,45–47,55,60]. Although numerically advantageous and fast in the treatment
of long-range electrostatic interactions, the nonlinear FFT suffers from ghost oscil-
lations near the direct and reciprocal grid origin which can become huge because
of accumulation of errors in the nonlinear scaling transformations. Such an artifact
especially affects the blocking correlations, essential in the repulsive core region and
hampers calculation of the thermodynamic properties related to the values of the
correlation functions at k = 0.

The potential between matrix particles in the first model is represented by the
sum of the repulsive and attractive Yukawa terms,

u00
CC(r) = 4ǫ00CC

[

exp

(

2
d00CC − r

δ00CC

)

− exp

(

d00CC − r

δ00CC

)]

. (54)

Its zero is located at separation d00
CC, and the minimum of depth ǫ00CC is at l00as =

1+
δ00CC

d00CC

ln 2. For the size, well width and depth parameters chosen as d00
CC = 2.38 Å,

δ00CC = 0.119 Å, and ǫ00CC = 6.0 kcal/mol, respectively, the potential (54) decays
rapidly with particle separation, and thus has a narrow and deep attractive well
with the minimum at the distance l00as = 2.46 Å corresponding to the separation be-
tween adjacent bonds connecting two graphite basal planes. The association energy
parameter ǫ00CC and the matrix density ρ0C are so chosen as to provide formation of
interconnected branched chain clusters of matrix “carbon” atoms. The number den-
sity of matrix atoms in the first model is taken to be ρ0

C = 0.010841 Å−3. This results
in matrix porosity p = 0.80 (see below). In the second model, activating carboxylic
groups -COOH in molar ratio 1:24 are rigidly grafted to the corresponding fraction
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Table 1. Charges and Lennard-Jones parameters of the interaction sites of liquid
water and quenched matrix material.

atom type q (e) σ (Å) ε (kcal/mol)
Water

O –0.8476 3.166 0.1554
H +0.4238 0.400 0.0460

Matrix “carbon” atoms
C 0.0 3.40 0.0556

grafting C 0.08 3.40 0.0556
Activating -COOH groups

C 0.55 3.75 0.1050
O= –0.50 2.96 0.2100
O –0.58 3.00 0.1700
H 0.45 0.40 0.0460

of matrix atoms. To keep same porosity, the number density of matrix “carbons” in
the second model is somewhat lower, ρ0

C = 0.009946 Å−3. Accordingly, their associ-
ation well is made somewhat deeper: ǫ00CC = 6.08 kcal/mol. For both matrix models,
the number density of confined water molecules is set as the p-th part of the ambient
water density: ρ1 = 0.03000 Å−3.

Except for the two-Yukawa potential (54) between matrix particles associating
into “carboneous” matrix material, all other site-site interactions in the system are
described by the common potential comprising the Coulomb and 12–6 Lennard-
Jones (LJ) terms,

uij
αγ(r) =

qiαq
j
γ

r
+ 4εijαγ

[

(

σij
αγ

r

)12

−

(

σji
αγ

r

)6
]

, (55)

where the LJ diameter and energy parameters for cross-terms are determined from
those of interaction sites by the standard Lorentz-Berthelot mixing rules, σ ij

αγ =
(

σi
α + σj

γ

)

/2 and εijαγ =
(

εiαε
j
γ

)1/2
. The site charges and LJ parameters for both

liquid and matrix species are listed in table 1. Water is represented by the extended
simple point charge (SPC/E) model of Berendsen, Grigera, and Straatsma [61]. The
only difference is that a LJ size of 0.4 Å is introduced for the water hydrogen sites,
following Pettitt and Rossky [62]. This is an adjustable parameter of the RISM
theory which does not affect the entire potential of a water molecule since the
hydrogens are situated well inside the oxygen core, however allows one to optimize
the description for hydrogen bonds [62]. Same values are assigned to the LJ size and
energy of the hydrogen site entering into the OH chemical bond in -COOH activating
groups of the matrix in the second model. The LJ parameters of “carbon” particles
constituting the matrix in the two models are the same as for carbon atoms of
microporous carbon solids in simulations [63]. The geometry of the -COOH group
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is taken as that [64] of acetic acid (CH3COOH), with the methyl group replaced
by the matrix “carbon” atom to which the activating group is grafted. Their site
charges and LJ parameters are taken from the simulation [63]; a small neutralizing
charge is assigned to a grafting “carbon” atom of the matrix.

3.2. Matrix structure

We complement the matrix-matrix integral equation (14a) with the PLHNC
closure (21a) which enables, as has been noted above, the description of matrix
“carbon” atoms associating into interconnected branched chain clusters. Figure 1
demonstrates this in terms of the radial distribution function between matrix “car-
bons”, g00CC(r), as well as of the running excess coordination number, ∆N 00

CC(r). The
latter is defined in general for a molecular mixture as the number of sites γ of com-
ponent b of species j (j = 0, 1) in excess of their average density, around site α of
the labelled molecule of sort ai,

∆N ij
aα,cγ(r) = ρjc4π

r
∫

0

r′2dr′hij
aα,cγ(r

′). (56)

As determined by the potential well minimum, atoms strongly associate with the
maximal probability g 00

CC(r) at separation l00as = 2.46 Å same as that between carbons
on the graphite surface (solid lines in figure 1a). In this first peak of the distribution,
the excess coordination number ∆N 00

CC(r) gains a value close to 2, which corresponds
to association of two neighbours in rolling contact with the labelled atom (solid lines
in figure 1b). Then follows a plateau of height about 2 on the distribution g 00

CC(r).
Two cusps of ∆N00

CC(r) at r1 ≈ 2.7 Å and r2 ≈ 5.1 Å mark the limits of the second
coordination shell. The excess number of atoms in the first and second shells together
amounts to ∆N 00

CC(r2) ≈ 4. This can be interpreted as two atoms in the second
coordination shell that are associating each with one of the first-shell neighbours
so that a bended chain forms. The flat distribution g00

CC(r) and the according cubic
behaviour of ∆N 00

CC(r) in the second coordination shell are determined by the angular
correlations of chain bending. The third shell cusp of ∆N 00

CC(r) at r ≈ 7.5 Å is barely
visible. The average number of atoms in a cluster, estimated in terms of the static
structure factor S00

CC(k = 0) = 1 + ∆N00
CC(r → ∞) amounts to about 22 “carbons”

(figure 1c). Saturation in the cluster size is gained for the most part at r ≈ 30 Å. The
linear slope of ∆N 00

CC(r) within this range is also indicative of the chain-like character
of the cluster (for a three-dimensional aggregate, it obviously would increase as r 3).
The chain bending can be roughly estimated from the slope value of 3.3 particles
per association length l00as (in both chain directions). Compared to 2 particles per
l00as in a fully extended conformation, this suggests a helical-like chain conformation
with a helicity angle of about 15 degrees. The matrix porosity p defined as the
volume fraction not occupied by the matrix particles is estimated for this matrix by
assuming the volume of a “carbon” atom to be that of a sphere with diameter equal
to its LJ size σ0

C, and taking into account overlap of chain neighbours associating
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Figure 1. Spatial correlations in the quenched matrix of “carbon” atoms asso-
ciating into interconnected branched chains. The radial distribution functions
g00CC(r) (part (a)), and the running excess coordination numbers ∆N 00

CC(r) in the
first three coordination shells (part b) and at a distance (part c). Correlations
between matrix “carbons” in the pure matrix (solid lines), and in the presence
of activating -COOH groups (dashed lines). Intermolecular correlations between
carbon atoms of -COOH groups (dash-dotted lines).
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at the length l00as . For the above matrix density and sizes, this yields the value of
p = 0.80.

The second matrix model also includes activating -COOH groups in molar con-
centrational ratio ρ0COOH/ρ

0
C = 1 : 24, grafted as described in the previous section to

the corresponding part of matrix “carbon” atoms. The matrix density is adjusted
accordingly to keep the porosity value of p = 0.80. The mean density of -COOH
groups per surface area of matrix chains is about 0.0035 Å−2, which is of the order
of typical surface density of carboxylic groups in activated carbons as studied in
experiment [65] and simulations [63]. Inclusion of activating groups induces neutral-
izing charges on matrix grafting “carbons”, which brings about additional repulsion
between them. This does not change the height of the first association maximum
(dashed line in figure 1a), but somewhat rises the interatomic separation in a chain
and increases the cluster extent up to 40 Å (dashed lines in figures 1b and 1c).
The qualitative picture of matrix association as well as of the “carbon” branched
chain conformation remains similar. As expected, the correlations between activat-
ing groups are smooth and do not exhibit any clustering behaviour. For example,
the pair distribution function of -COOH carbons possess a moderate wide maxi-
mum at the separation determined by their LJ radius as well as mutual electrostatic
repulsion (dash-dotted line in figure 1a). The running excess coordination number
(dash-dotted lines in figures 1b and 1c) saturates at a small value of about 2.9 which
is appropriate to the specified concentrational ratio of -COOH groups.

3.3. Structure and thermodynamics of the sorbed water

First consider the site-site distribution functions of water, g 11
αγ(r). Figure 2 ex-

hibits the changes in the structure from bulk ambient water (solid lines) upon sorp-
tion into the matrix (dashed lines). For all the distributions, evident is consider-
able enhancement of the short-range structure peaks, in particular, the hydrogen-
bonding peak of the oxygen-hydrogen distribution g11

OH(r). The curves, especially the
hydrogen-hydrogen distribution g11

HH(r) are noticeably shifted upwards in the region
of the first and second hydration shell. Moreover, the local peak of the oxygen-oxygen
distribution g11

OO(r) at separation r ≈ 4.4 Å corresponding to the “fingerprint” of
the tetrahedral bonding structure of bulk ambient water is still present in the struc-
ture of sorbed water. This is in good qualitative agreement with neutron scattering
experiments [57] revealing that water confined in micro- and mesoporous matrices
exhibits enhanced hydrogen bonding, with an increasing effect for lower tempera-
tures and smaller pore sizes. It is also worthwhile noting that the above increase of
the site-site distribution peaks of sorbed water resembles the enhancement of the
water correlations in water-alcohol binary mixtures at relatively small alcohol molar
fractions, observed in molecular simulation [66] and experiment [67].

Since such thermodynamic properties as compressibility of the sorbed liquid are
determined by equations (52) and (53) in terms of the connected parts of the site-
site correlations, the connected and blocking terms are of as much interest as the
full correlations. Figure 2 also shows the blocking part of the site-site correlation
functions of the sorbed water, h

(b)
αγ (r), following from the replica RISM/PLHNC-
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Figure 2. Radial distributions functions between water interaction sites, follow-
ing from the replica RISM/PLHNC-HNC theory. The oxygen-oxygen, oxygen-
hydrogen, and hydrogen-hydrogen distributions (parts (a) to (c), respectively).
The full distribution functions, g11αγ(r), of bulk ambient water (solid lines) and
water sorbed in the matrix of porosity 80% (short-dash lines). The blocking

part of the site-site total correlation functions, h
(b)
αγ (r), following from the replica

RISM/PLHNC-HNC theory (long-dash lines), and from that with the Madden-
Glandt approximation neglecting the blocking part of the direct correlation func-
tions (dash-dotted lines).
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Table 2. Compressibility of water sorbed in the activated as well as non-activated
matrix against that of bulk ambient water. Results of the replica RISM and MG-
RISM approaches.

Approach χ1 (10−10 Pa−1)
Non-activated matrix Activated matrix

Replica RISM/PLHNC-HNC 5.13 5.06
Madden-Glandt RISM/PLHNC 5.38 5.30
RISM/PLHNC for bulk water 4.73 (4.52 a)

a Experimental value from [64].

HNC theory (long-dash lines). For comparison, we present the blocking part h
(b)
αγ (r)

obtained by the decomposition (14f) from the replica RISM integral equations (14)
reduced to the Madden-Glandt approximation (dash-dotted lines) by neglecting the

blocking part of the site-site direct correlation functions, c
(b)
αγ = 0 in equation (14g),

and complementing the remaining equations with the PLHNC closures (21a). It is
apparent that as compared to the MG approximation, the proper treatment provided
by the replica RISM approach yields an essential part of the blocking effect, in
particular, the high zero-separation values h

(b)
αγ (r = 0) and the oscillations in the

range of the core and the first solvation shell.

The upwards shift of the site-site distributions of sorbed water, g11
αγ(r), results

in the increase of the site-site coordination numbers. Figure 3 presents the running
excess coordination numbers for sorbed water, ∆N 11

αγ(r), defined by equation (56).
It accounts for the density of each of the two hydrogen sites of a water molecule
separately, which is convenient for comparison between the limiting behaviour for dif-
ferent site pairs. According to the decomposition (14f), the excess coordination num-

bers are broken up into the connected and blocking terms ∆N
(c)
αγ (r) and ∆N

(b)
αγ (r)

(dashed lines in upper and lower panels, respectively). The connected part devi-
ates little from ∆N 11

αγ(r) for bulk ambient water (solid lines). In the latter case the

blocking part is zero. In sorbed water, the oscillations of ∆N
(c)
αγ (r) are of a somewhat

smaller amplitude, but their phasing remains very similar to ∆N 11
αγ(r) in bulk water.

The main part of the rise in the coordination numbers of water upon sorption into
the matrix appears in their blocking part. The blocking terms ∆N

(b)
OO(r), ∆N

(b)
OH(r),

and ∆N
(b)
HH(r) are very close to each other, except for a small difference in the form of

tiny oscillations in the first hydration shell, more pronounced for ∆N
(b)
OO(r) (insertion

in figure 3b). All they possess a long-range asymptotics saturating at the distance
of 30 to 40 Å, which results from the long-range nature of the matrix-matrix corre-
lations manifesting in the matrix excess coordination number, ∆N 00

CC(r) (figure 1).
The blocking contribution to the water coordination numbers reaches a value of
∆N

(b)
αγ (r → ∞) ≈ 7 excess water molecules.

Table 2 exhibits the water compressibility calculated from equations (52) or (53).
In the former, it is proportional to the mean fluctuation of the connected density,
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Figure 3. Water oxygen-oxygen (O-O), oxygen-hydrogen (O-H), and hydrogen-
hydrogen (H-H) running excess coordination numbers following from the replica

RISM/PLHNC-HNC theory. The connected and blocking contributions, ∆N
(c)
αγ (r)

and ∆N
(b)
αγ (r) (parts (a) and (b), respectively). Water sorbed in the matrix short-

dash lines), and bulk ambient water (solid lines). The coordination numbers are
treated separately for each of the two water hydrogen sites.
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1 + ∆N
(c)
αγ (r → ∞), that is a matrix-disorder average of spatially inhomogeneous

clusters formed in the local cavities of the matrix, according to the definition of the
connected density correlation (17). It comprises the labelled water molecule, and

∆N
(c)
αγ (∞) excess water molecules surrounding it in a connected density fluctuation.

In ambient water, the latter quantity is negative and close to unity (figure 3), result-
ing in a subtle balance for the fluctuation size and thus for the compressibility. The
RISM/PLHNC treatment for bulk ambient water yields the compressibility value in
pretty good agreement with experiment [64]. The 20% decrease of the water density
ρ1 in the matrix leads to the corresponding increase of the compressibility. However,
it is almost entirely cancelled with the increased local clustering, h

(c)
αγ(k = 0), so

that the limiting value ∆N
(c)
αγ (∞) for water sorbed in the matrix is lower than for

bulk water by less than 1%. This tiny decrease, however, leads to a significantly
larger drop in the magnitude of the mean fluctuations (ρ1kTχ1) in the sorbed wa-
ter. As a result, the compressibility χ1 for the sorbed water increases against bulk
ambient water by 8%. For comparison, we also present the compressibility value fol-
lowing from the Madden-Glandt RISM/PLHNC approximation. The latter predicts
a considerably larger increase of the compressibility for the sorbed water.

The matrix effect on the long-range structure of the liquid can be observed
alternatively in its partial static structure factors. The intermolecular terms of the
partial structure factors for the quenched-annealed molecular system are defined
by the usual relation S ij

αγ(k) = ρtotxixjhij
αγ(k), where ρtot = M0ρ

0 + M1ρ
1 is the

total number density of atoms in the system, and xi = ρi/ρtot is the molar fraction
of each site of species i. The partial structure factors of the liquid, S 11

αγ , split up

according to (14f) into the connected and blocking terms S
(c)
αγ and S

(b)
αγ . Figure 4

depicts the partial structure factors of water confined in the matrix versus those
of bulk water, calculated by means of the replica RISM/PLHNC-HNC approach.
Again, the connected parts of the structure factors of the bulk and sorbed water
(solid and short-dash lines) are rather close, with the oscillations of the same phase
but smaller amplitude in the latter case. Notice that despite the small difference
between ∆N

(c)
αγ (∞) for the sorbed and bulk water (figure 3), the values of S

(c)
αγ (k = 0)

are noticeably distinct due to the decreased numerical density of water sorbed in the
matrix. The blocking parts S

(b)
αγ (k) of the sorbed water exhibit strong enhancement

for k → 0 and decay rapidly beyond the first maximum, in accord with the smooth
and long-range increase of the corresponding blocking excess coordination numbers
∆N

(b)
αγ (r).

Now proceed to the water-matrix structure. Figure 5 depicts the radial distri-
bution functions between water sites and “carbons” of the non-activated matrix of
the first model (dashed lines) as well as matrix atoms at infinite dilution (dashed
lines). The water-“carbon” atom distributions at ρ0 = 0 are, in fact, those between
water and a hydrophobic solute, observed in simulations and obtained by using
the RISM theory for hydrophobic hydration (see, for instance, literature in [68]).
In the matrix of porosity 80%, the relative position and shape of the oxygen- and
hydrogen-“carbon” distribution functions remain very similar, except for the oscilla-
tions noticeably reduced. On the other hand, the water-matrix distribution functions
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Figure 4. Water oxygen-oxygen (O-O), oxygen-hydrogen (O-H), and hydrogen-
hydrogen (H-H) intermolecular partial structure factors following from the replica
RISM/PLHNC-HNC theory. The connected and blocking contributions for water

sorbed in the matrix, S
(c)
αγ (k) and S

(b)
αγ (k) (short- and long-dash lines, respec-

tively). The intermolecular partial structure factors of bulk ambient water (solid
lines). The partial structure factors are treated separately for each of the two
water hydrogen sites.
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Figure 5. Radial distribution functions between the matrix “carbon” atoms, and
oxygen and hydrogen of sorbed water (upper and lower panels, respectively),
following from the replica RISM/PLHNC-HNC theory. Matrix of porosity 80%
and of vanishing density ρ0 → 0 (dashed and solid lines, respectively).
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acquire a long-range depletion tail. This is also clearly seen from the behaviour of
the running excess coordination numbers of water around a matrix “carbon” atom,
∆N01

CO(r) and ∆N01
CH(r), shown in figure 6. A single matrix atom induces the deple-

tion extending to about two hydration shells, with the lack of somewhat more than
one water molecule on average. In the matrix, in contrast, although their oscillations
fade on two hydration shells as well, the excess coordination numbers ∆N 01

Cα(r) lin-
early fall down to saturate at the level of about 24 water molecules expelled from
the depletion region of radius about 30 to 40 Å. Both the linear character and range
of decay of ∆N01

Cα(r) are physically reasonable since they follow from those of the
running excess coordination number ∆N 00

CC(r) characterizing the matrix structure.

Finally, consider the case of the matrix of the second model including activating
carboxylic groups. We do not present the site-site correlations of water sorbed in the
activated matrix, as they are very similar to those in the matrix without -COOH
groups. The compressibility of sorbed water, however, is much more sensitive to the
presence of activating groups. They reduce the compressibility increase relative to
the bulk water value by about 20%, as is seen in table 2. Notice also that for the
activated matrix, the compressibility value following from the MG-RISM/PLHNC
approximation decreases as well, continuing to be proportionally higher than the
result of the replica RISM/PLHNC-HNC approach.

The decrease of the water compressibility in the activated matrix (table 2) could
be attributed in particular to the specific adsorption of water on activating molecules.
Figure 7 exhibits the radial distributions between the interaction sites of water and
-COOH molecules. Their short-range structure shows formation of strong hydrogen
bonding between water and carboxylic molecules: the -COOH hydrogen bound to
the water oxygen (first peak in part d), and the water hydrogens bound to both the
oxygens of -COOH (first peak in parts f and g). The strongest hydrogen bonding is to
the water oxygen due to its negative charge larger than that of the -COOH oxygens.
Although the two -COOH oxygens possess almost the same negative charge, the
water hydrogen bonding to the -COOH oxygen of its OH group is weaker because
of the screening by the hydrogen positive charge and also because of the steric
constraints imposed by the matrix “carbon” chain the -COOH group is grafted to.
The other peaks of the distributions g01

O=,H(r) and g01OH(r) do not differ much. The
distributions between the water and -COOH oxygens, g01

O=,O(r) and g01OO(r), are very
similar too (parts b and c). They resemble the oxygen-oxygen distribution of bulk
ambient water, including the peak at 4.6 to 5 Å corresponding to the “fingerprint” of
the hydrogen-bonding tetrahedral structure. The distribution between the -COOH
and water hydrogens, g01HH(r) (part h), is also similar to the hydrogen-hydrogen
distribution of water, g11

HH(r) (figure 2). The first peak of the distribution function
between the -COOH carbon and the water oxygen, g01CO(r) (figure 7a), is formed to a
large extent by all the three arrangements of the water and -COOHmolecules making
the hydrogen bond. In the carbon-hydrogen distribution, g01

CH(r) (figure 7e), first is a
cusp at r ≈ 2.7 Å on the ascending slope which results from the first peak of the water
hydrogen bonding to the -COOH oxygens (largely to O=), smeared due to bonding
at different angles. Next is the first maximum corresponding to water hydrogens
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Figure 6. Excess coordination numbers of water oxygen and hydrogen (solid
and dashed lines, respectively) around a matrix “carbon” atom, following from
the replica RISM/PLHNC-HNC theory. Short- and long-range structure (upper
and lower panels, respectively). Matrix of porosity 80% and of vanishing density
ρ0 → 0 (lower and upper curves, respectively).
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Figure 7. Radial distribution functions between the interaction sites of matrix ac-
tivating carboxylic groups (-COOH) and sorbed water, following from the replica
RISM/PLHNC-HNC theory. Activated matrix of porosity 80% and of vanishing
density ρ0aα → 0 (dashed and solid lines, respectively).
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Table 3. Excess chemical potential, µ1, and its components in equation (40)
for water sorbed in the activated as well as non-activated matrix, and for bulk
ambient water. Results of the replica RISM/PLHNC-HNC approach.

µ1 (kcal/mol) µ10 µ11 −µ(b)

Activated matrix –3.84 2.27 –6.09 –0.0234
Non-activated matrix –4.03 2.30 –6.31 –0.0206
Bulk ambient water –6.62 0. –6.62 0.

directed outward the -COOH molecule in every hydrogen-bonding arrangement.
Much as in the matrix without activating groups, all the matrix-liquid distribu-

tion functions in the activated matrix acquire the same long-range depletion asymp-
totics, as compared to the limit of vanishing matrix density ρ 0

aα → 0 which reduces
to the conventional solute-solvent system at infinite dilution (respectively, dashed
and solid lines in figure 7). The distribution functions between “carbon” atoms con-
stituting matrix chains and water oxygen and hydrogen are very similar to those in
the non-activated matrix (figure 5). In contrast to the latter, however, the short-
range structure reveals considerable enhancement of the hydrogen bonding between
activating carboxylic groups and water molecules as they are sorbed in the matrix.
It manifests in the rise of the first hydration shell peaks for almost all the site-site
distribution functions between -COOH groups and water, in spite of their long-range
depletion.

Table 3 shows the excess chemical potential of sorbed water, µ1, calculated by
equation (40). A comparison of its constituents reveals that the main change with
respect to µ1 in bulk ambient water comes from the liquid-matrix component, µ 10.
For the non-activated matrix, the liquid-liquid term µ11 gives an 11% contribution
to the change. The blocking term µ(b) amounts to a small value of about 1% for the
present system. As activating carboxylic groups are added to the matrix, the term
µ10 somewhat decreases, apparently because of the additional hydrogen bonding
between -COOH and water molecules. The blocking term µ(b) remains almost the
same. However, the change in the liquid-liquid term µ11 rises almost twice, which
results in noticeable increase of the excess chemical potential with the activation of
the matrix.

4. Conclusion

Based on the replica formalism in integral equation theory for a quenched-
annealed system, we have developed a replica RISM integral equation theory for
polar molecular liquids sorbed in a quenched disordered microporous material. The
description is readily extended to the cases of the mobile liquid comprising a mix-
ture of ion-molecular components as well as of the disordered matrix including ionic
and polar species. As compared to the RISM equations in the Madden-Glandt ap-
proximation for a molecular quenched-annealed system, the replica RISM approach
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provides an advanced description of the so-called blocking effects, that is of corre-
lations between mobile liquid particles due to the presence of disordered obstacles
frozen in space. The blocking effects essentially distinguish a quenched-annealed
system from a fully annealed mixture, and are especially important for systems in-
cluding ionic and polar molecular species. The replica RISM approach also improves
the results for the thermodynamics of the sorbed liquid.

We complement the replica RISM integral equations by the HNC closure as well
as its partial linearization (PLHNC), adequate to the case of ionic and polar molecu-
lar liquids. As a merit, the PLHNC approximation ensures the existence and smooth
convergence of the solutions, and on the other hand, provides better description for
liquids near critical and phase transition regions. The HNC closure is employed for
the blocking site-site correlations. The use of the HNC and PLHNC approximations
allowed us to derive a closed analytical form for the excess chemical potential of a
mobile molecular liquid sorbed in a molecular matrix. Further improvement of the
closures would imply bridge corrections to enforce thermodynamic and structural
consistency, similarly to those known for atomic quenched-annealed systems.

A common description of a quenched-annealed system in the replica integral
equation approach is restricted to either of the components comprising hard-core
particles, in order to circumvent the presence of two different temperatures de-
scribing the equilibrium spatial distributions of the matrix and mobile liquid. To
consider more realistic systems, we have extended the thermodynamic description
of the mobile liquid to the case of soft core interaction potentials between all species
of the quenched-annealed system, in which the liquid and matrix equilibrium dis-
tributions are characterized in general by two different temperatures. The pressure
and the matrix-state derivatives for the sorbed liquid can be expressed in terms
of the s-derivatives of the correlation functions with their analytic continuation at
the number of liquid replicas s = 0. We obtain the latter from the linear integral
equations derived by differentiation of the replica RISM integral equations together
with their closures.

We illustrate the replica RISM/PLHNC-HNC approach by the calculation for
water sorbed in a matrix of “carboneous” material with porosity 80%, modeled as
chain-like clusters of “carbon” atoms. In the other model, the matrix is activated
by carboxylic groups (-COOH) grafted to matrix atoms. The structural and ther-
modynamic properties of the sorbed water are compared with bulk ambient water,
and discussed in view of experimental evidences for water in confined geometry. The
matrix confinement considerably enhances the hydrogen bonding of water and the
adsorption of water at activating -COOH groups. We postpone a detailed analysis
of activation effects as well as the comparison of the results of the replica RISM
approach with simulations to further work.

In the description of quenched-annealed systems, modelling the disordered porous
material is of paramount importance and, in fact, determines salient physico-che-
mical properties of the system. A widely used approach consists in representing
the disordered porous matrix by means of the random or equilibrium distribution of
quenched mesoscopic-size spheres. A more complicated model of porous carbon com-
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prises randomly distributed graphitic platelets [69]. We feel, however, that rather
than to introduce a porous matrix model ad hoc, it is more appropriate to involve
a microscopic description predicting the structure of pores in disordered material
from the real mechanism used in its formation. In the present work, we employ a
simple model describing the formation of a porous material consisting of chain-like
clusters of “carbon” atoms. Matrix formation by gelation process described within
Wertheim’s association theory [70] can be beneficially used instead. A new approach
to obtain porous materials employs a template removed after the synthesis to form a
material with controlled porosity and a pore architecture specific for a given purpose
(see literature in [23]). In exploration of such systems of practical interest, Zhang and
Van Tassel [23] elaborated very recently the replica OZ theory for adsorption of an
atomic liquid in a templated matrix that is formed as a binary atomic mixture with
the template particles removed after quenching. An extension of the replica RISM
theory to this approach would be of great practical as well as theoretical interest for
a description of realistic molecular models of liquids adsorbed in templated porous
materials.
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Опис полярної молекулярної рідини у

невпорядкованому мікропористому середовищі з

активними хімічними групами за допомогою моделі

базисних силових центрів у формалізмі репліки

Ф.Хірата 1 , А.Коваленко 1,2
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Отримано 11 квітня 2001 р.

Ми розвинули узагальнення формалізму репліки в теорії інтеграль-

них рівнянь для моделі базисних силових центрів (МБСЦ) з метою

опису структурних і термодинамічних властивостей полярної моле-

кулярної рідини, сорбованої в заморожену невпорядковану пористу

матрицю, що містить полярні хімічні групи. Це забезпечує успішний

опис реалістичних моделей молекулярних рідин і послідовно врахо-

вує вплив невпорядкованого середовища на сорбовану рідину. Да-

ний опис можна легко узагальнити на випадок рідини, що складає-

ться з іонів та полярних молекул. Інтегральні рівняння МБСЦ у фор-

малізмі репліки доповнено гіперланцюжковим замиканням (ГЛЗ) та

його частинною лінеарізацією (ЧЛГЛЗ), які дають добрі результати

для іонних та полярних молекулярних рідин. У цих наближеннях от-

римано аналітичні вирази для надлишкових хімічних потенціалів сис-

теми із замороженою та рухливою компонентами. Ми поширюємо

опис на випадок взаємодій з м’яким кором між усіма компонентами

замороженої-рухливої системи, в якій рівноважні розподіли рідини

та матриці характеризуються в загальному випадку двома різними

температурами. Теорію МБСЦ/ЧЛГЛЗ-ГЛЗ у формалізмі репліки за-

стосовано до випадку води, сорбованої в пористій матриці, що на-

ближено моделює пористий вуглецевий матеріал, активований кар-

боксильними групами (-ЦООГ) . Результати якісно узгоджуються з

експериментом для води, вміщеної у невпорядковані матеріали.

Ключові слова: молекулярні рідини, пористі матеріали, теорія

структури рідин, інтегральні рівняння, репліка

PACS: 61.20.Gy, 61.25.Em, 61.43.Gt, 61.25.-f, 61.20.Qg, 81.05.Rm
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