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ator. The generalized hydrodynamic equations are derived and analyzed.
Based on this, the hydrodynamic collective modes spectrum is calculat-
ed and expressions for sound velocity and damping coefficients of these
modes are obtained. We also propose the consistent scheme for calcula-
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1. Introduction

Magnetic liquids, mixtures of magnetic and non-magnetic particles in the ex-
ternal fields of mechanical or electromagnetic origin have already occupied their
significant place in chemical, electronic and other modern technologies. The recent
experimental investigations [1] have already proved the existence of ferromagnetic
phase in under-cooled liquid alloy Co80-Pd20 with Heisenberg exchange interaction.
A similar result has been obtained previously for metallic alloy Au-Co [2–4]. This re-
vives investigations in the area of physics of magnetic liquids. We note that this issue
remains urgent regardless of whether there exists a ferromagnetic state in magnetic
liquids or not, because the study of dynamic properties in the systems with transla-
tional and spin degrees of freedom in external magnetic fields is of great importance.
In particular, one faces the above mentioned problem while describing spin relax-
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ation in liquids [5–7], and while investigating the dynamics of ferrocolloid systems
[8–12], polar liquids [13–18] as well as surface absorption phenomena [18,19]. That
is why the investigations of thermodynamic, structural and dynamic properties of
liquid magnets are very urgent for a deeper understanding and forecasting of their
behaviour [4,8,9].

The investigation of time-dependent correlation functions as well as of general-
ized transport coefficients of a liquid mixture of magnetic and non-magnetic par-
ticles enable us to have a deep insight into the dynamic processes in the systems
with coupled degrees of freedom. One of the most interesting tasks is to investigate
the behaviour of hydrodynamic collective modes, which describe the properties of
heat, sound, and mass fluctuations. From the experimental point of view, the study
of these phenomena as well as the study of effects of sound propagation, spin waves
and their dependence on temperature, concentration and pressure is very valuable.
The explicit information concerning the bulk properties of mixtures of magnetic
and non-magnetic particles is also essential for understanding of their interaction
with active surfaces (metals, semiconductors or dielectrics), where the processes of
metallic arrangement, absorption, desorption, and chemical transformation can take
place. Another important aspect of this problem is the derivation of expressions for
dynamic structure factors. It is known that these functions can be extracted from
neutron scattering experiments. Such a theoretical study should be based on the sta-
tistical approach, and, particularly, on the equations of generalized hydrodynamics.
A similar approach was previously applied to one-component magnetic fluid [20–24].
The hydrodynamic collective modes of a Heisenberg ferrofluid were studied in [24].

Statistical hydrodynamics for a mixture of magnetic and non-magnetic parti-
cles in an external inhomogeneous magnetic field B(r; t) was considered recently
in our paper [25]. Note that from the physical point of view, the models of a bi-
nary mixture are more interesting to the theoretical studies (comparing with the
case of one-component magnetic fluid [20–24]), because of a wider range of practical
applications. For example, if a ratio of masses for particles in different species is
large, such models can be used for the description of a ferrocolloid suspension. In
particular, in paper [25] using the non-equilibrium statistical operator method, we
derived the generalized hydrodynamic equations for a mixture which are valid for
a description of both strong and weak non-equilibrium states. In the latter case,
magnetic and non-magnetic subsystems were characterized by individual non-local
thermodynamic parameters. As a result, the generalized thermodynamic relations
and the generalized hydrodynamic equations were obtained.

The goal of this paper is to study the spectrum of hydrodynamic collective modes
for a binary magnetic mixture, consisting of magnetic and non-magnetic particles.
We use the perturbation like theory, which permits us to obtain two sound prop-
agating modes for the system considered and three purely diffusive hydrodynamic
modes. The expression derived for sound velocity generalizes the result obtained
previously for a simple ferrofluid [24].

In chapter 2 we briefly overview the main ideas of the method of non-equilibrium
statistical operator [26], used for derivation of the generalized hydrodynamic equa-
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tions for a binary mixture of magnetic and non-magnetic particles. The description
of the model as well as the definitions of the basic dynamic variables is given in the
next chapter. In chapter 4 we consider static correlation functions, and some useful
relations for them are derived in the limit k → 0. This enables us to calculate the
frequency matrix and the matrix of memory functions in the hydrodynamic lim-
it. The collective mode spectrum is obtained and analyzed in detail in chapter 6.
Then, in chapter 7, the problem of calculation of time correlation functions is con-
sidered. For this purpose, we develop a consistent scheme which permits us to find
the weight coefficients describing the partial contributions from each mode to the
hydrodynamic time correlation functions. The results obtained are discussed in the
case of a binary magnetic mixture in paramagnetic state.

2. Theoretical framework: Non-equilibrium statistical operator
method

Let us start with the Liouville equation:

∂

∂t
ρ(xN ) + iL̂ ρ(xN ) = 0, (1)

where classical part of iL̂ is determined as a Poisson brackets of the function ρ with
a classical part of the Hamiltonian of the system and the quantum one is determined
as a commutator with its quantum part. Statistical operator ρ(xN ) is a function of
phase variables xN = {r,p, ŝ}N , where N is a total number of particles.

Following Zubarev’s method of non-equilibrium statistical operator [26], we can
rewrite equation (1) in the form:

(

∂

∂t
+ iL̂

)

ρ(xN ) = −ε
[

ρ(xN)− ρq(x
N )
]

, (2)

where ε → 0 after the thermodynamic limit, ρq is the so-called quasi-equilibrium
statistical operator. Nonzero right-hand side of the equation (2) imposes the bound-
ary conditions which destroy the time reversal symmetry of the Liouville equation
and permits one to choose the retarded solutions.

In hydrodynamic region we can restrict our consideration to the set of most slow
dynamical quantities {P̂α} which are thought to determine a weak non-equilibrium
state. According to the ideas of abbreviated description of the system, these vari-
ables are naturally connected with the set of conserved quantities. The Gibbs-like
form for statistical operator ρq can be found from the extremum principle for infor-

mation entropy with fixed parameters of abbreviated description 〈P̂α〉
t, preserving

the normalizing condition Sp ρq(t) = 1. This gives

ρq = exp

{

−Φ(t) −
∑

α

P̂αFα(t)

}

, (3)
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where the parameters {Fα(t)} are defined from the self-consistency conditions:

〈P̂α〉
t = 〈P̂α〉

t
q or Sp

[

P̂αρ(x
N , t)

]

= Sp
[

P̂αρq(x
N , t)

]

. (4)

The index α = {i,k} in (3) and (4) denotes a combination of discrete index i,
labelling the variables, and wave vector k, so that this summation means:

∑

α

. . . =
∑

i

∑

k

. . . .

Taking into account the properties of projection operators, the formal solution of
equation (2) can be written [26] as follows

ρ(t) = ρq(t) +
∑

α

t
∫

−∞

dt′ e−ε(t−t′)Fα(t
′)T (t, t′)

1
∫

0

dτρτq (t
′)Îα(t

′)ρ1−τ
q (t′), (5)

where
Îα(t) = (1− P(t))

˙̂
P α

are the generalized fluxes,
˙̂
P α ≡ iL̂ P̂α, and

T (t, t′) = exp+







−

t
∫

t′

dτ(1 −Pq(τ))iL̂ (τ)







(6)

is the operator of time evolution with the Kawasaki-Gunton projection operator
Pq(t). Operator Pq(t) is simply connected with the generalized Mori projection
operator P(t)

Pq(t) · Âρ =

1
∫

0

dτρτP(t)Âρ1−τ .

We note that P(t) acts on the dynamical variables as follows

P(t) . . . = 〈. . .〉+
∑

α

δ〈. . .〉tq

δ〈P̂α〉t

{

P̂α − 〈P̂α〉
t
}

(7)

and has the following properties:

P(t)P̂α = P̂α, P(t)P(t′) = P(t), P(t)(1−P(t′)) = 0.

Using the solution (5) for the non-equilibrium statistical operator ρ(t) one can
derive the generalized transport equations in the form [26]

∂

∂t
〈P̂α〉

t = 〈
˙̂
Pα〉

t
q +

∑

β

t
∫

−∞

dt′ eε(t−t′)φαβ(t, t
′)Fβ(t

′) , (8)
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where

φαβ(t, t
′) =

1
∫

0

dτ 〈Îα(t) , T (t, t
′) ρτq Îβ(t

′) ρ−τ
q 〉tq (9)

are the generalized memory functions, or generalized transport kernels. The equa-
tions (4), (8), and (9) make up the basic set of nonlinear equations which describes
both strong and weak non-equilibrium states.

Let us consider now in more detail a weak non-equilibrium case. Then, the de-
viations

δP̂α(t) = 〈P̂α〉
t − 〈P̂α〉0 (10)

of the averages 〈P̂α〉
t = Sp P̂αρ(t) from the equilibrium values 〈P̂α〉0 = Sp P̂αρ0(x

N ),
where

ρ0(x
N ) = exp

{

−Φ0 −
∑

α

P̂αF
0
α

}

,

is the equilibrium statistical operator, as well as the deviations of the intensive
quantities δFn(t) = Fn(t)− F 0

n can be considered as small quantities. The relations
between them follow from the self-consistency conditions (4). This gives

δF (t) = −(∆P̂ ,∆P̂+)−1δP̂ (t), (11)

where
||(∆P̂ ,∆P̂+)||ij = (∆P̂i,∆P̂j)

with ∆P̂i ≡ P̂i − 〈P̂i〉 and (Â, B̂) denotes a correlation function defined as follows

(Â, B̂) =

1
∫

0

〈Âρτ0B̂ρ−τ
0 〉0 dτ. (12)

Note that (Â, B̂) ≡ 〈ÂB̂〉0 in the case of classical treatment. For small deviations
from an equilibrium we can rewrite (8) in the form

δρ(t) = δρq(t) +
∑

α

t
∫

−∞

dt′ e−ε(t−t′) δFα(t
′) T0(t− t′)

1
∫

0

dτ ρτ0 (1−P)
˙̂
Pα ρ1−τ

0 , (13)

where the projection operator is given by

P . . . = (. . . ,∆P̂+)(∆P̂ ,∆P̂+)−1∆P̂ . (14)

Using (13) and the equality

∂

∂t
〈∆P̂ 〉t = 〈iL̂ P̂ 〉t,

we get the generalized transport equations in the form

{iω − iΩ + φε(ω)} δP̂ (ω) = 0, (15)
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where

iΩ = (
˙̂
P,∆P̂+)(∆P̂ ,∆P̂+)−1, (16)

φε(ω) =

(

(1− P)
˙̂
P ,

1

iω + ε+ (1− P)iL̂
(1−P)

˙̂
P

+
)

× (∆P̂ ,∆P̂+)−1 (17)

are the frequency matrix and the matrix of memory functions, and δP̂ (ω) denotes
the Fourier transform of δP̂ (t). The matrix equation for the Laplace transforms
(∆P̂ ,∆P̂+)z of time correlation functions (∆P̂ ,∆P̂+)t,

(∆P̂ ,∆P̂+)z =

(

∆P̂ ,
1

z + iL̂
∆P̂+

)

,

has the structure similar to (15), namely,

{z − iΩ + φε(z)} (∆P̂ ,∆P̂+)z = (∆P̂ ,∆P̂+). (18)

We note that the retarded correlation Green functions G
(r)
ij (t) are simply expressed

in terms of time correlation functions (∆P̂ ,∆P̂+)t

G
(r)
ij (t) = −iΘ(t)(∆P̂ ,∆P̂+)t.

Hence, the poles of the Laplace transforms of G
(r)
ij (t), which give the spectrum of

collective excitations, are determined by the matrix equation

det |z − iΩ + φε(z)| = 0. (19)

3. Model Hamiltonian and hydrodynamic variables

Let us consider the system consisting of N1 non-magnetic and N2 magnetic parti-
cles posed in an external magnetic field. Taking into account the interaction between
subsystems, the Hamiltonian of such a system can be written as follows [29,30]

Ĥ(t) = H1 + Ĥ2 +Hint + Ĥex . (20)

Here and further the subscripts 1 , 2 or superscripts in parentheses (1) , (2) indicate
the non-magnetic and magnetic subsystems, respectively. Thus, H1 and Ĥ2 denote
the Hamiltonians of isolated non-magnetic and magnetic subsystems, H int describes
interaction between them, and Ĥex is the energy of the spin interaction with an
external magnetic field. The Hamiltonian H1 of non-magnetic subsystem can be
taken in the classical form

H1 =

N1
∑

j=1

p
(1)
j

2

2m1

+
1

2

N1,N1
∑

j 6=l

V (11)(rjl), (21)
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where p
(1)
j is the momentum of jth non-magnetic particle; V (11)(rjl) denotes the

potential of interaction between two non-magnetic particles j and l; and m1 is a
mass of nonmagnetic particle. The term Ĥ2 in (20),

Ĥ2 = H2L −
1

2

N2,N2
∑

j 6=l

J(rjl)(ŝj, ŝl), (22)

consists of classical “liquid” partH2L, having the same structure as the termH1, and
quantum part, which describes the spin subsystem and can be taken in Heisenberg-
like form. Other terms in (20) could be written as follows

Hint =

N1,N2
∑

i,j

V (12)(rij), Ĥex = −
N2
∑

i

ŝi·B̂(ri, t), (23)

where V (12)(rij) is the potential of interaction between i-th non-magnetic and j-th

magnetic particles, and B̂(ri, t) describes an external magnetic field. The Liouville
operator, which corresponds to Hamiltonian (20) can be written in the form

iL̂ = iL1 + iL̂2 + iLint + iL̂ex + iL̂s, (24)

where

iL1 =

(1)
∑

i

p
(1)
i

m1

∂

∂ri
−

1

2

(1,1)
∑

i 6=j

∂

∂ri
V (11)(rij)

(

∂

∂p
(1)
i

−
∂

∂p
(1)
j

)

,

iL̂2 = iL(1→2) +
1

2

(2,2)
∑

i 6=j

∂

∂ri
J(rij)(ŝi, ŝj)

(

∂

∂p
(2)
i

−
∂

∂p
(2)
j

)

,

iLint = −

(1,2)
∑

i,j

∂

∂ri
V (12)(rij)

(

∂

∂p
(1)
i

−
∂

∂p
(2)
j

)

,

iL̂ex =

(2)
∑

i

∂
(

B̂(ri, t)·ŝ
)

∂ri
·

∂

∂p
(2)
i

,

and iL̂s is a purely quantum part of Liouville operator, determined by the commu-
tator

iL̂s·Â =
i

~



−
1

2

(2,2)
∑

i 6=j

J(rij)(ŝi, ŝj)−

(2)
∑

i

(

B̂(ri, t)·ŝi

)

, Â



 . (25)

It is well-known that in the hydrodynamic region the dynamics near an equilib-
rium is mainly determined by the slowest processes, which are directly associated
with the densities of the conserved quantities. Hence, for the model considered five
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parameters of abbreviated description {P̂i}, i = 1 . . . 5 can be chosen. They are: the
partial densities of particles’ numbers n̂1(k) and n̂2(k),

n̂1(k) =

(1)
∑

i

eikri, n̂2(k) =

(2)
∑

i

eikri; (26)

the density of total momentum p̂(k),

p̂
α(k) =

(1)
∑

i

p
(1)
i

α
eikri +

(2)
∑

i

p
(2)
i

α
eikri; (27)

the spin (or magnetization) density m̂(k),

m̂α(k) =

(2)
∑

i

ŝαi e
ikri; (28)

and the density of total energy ε̂(k),

ε̂(k) =

(1)
∑

i

ε̂
(1)
i eikri +

(2)
∑

i

ε̂
(2)
i eikri, (29)

where the index α indicates now the spatial α-component of the corresponding
vector, and

ε̂
(1)
i =

p
(1)
i

2

2m1
+

1

2

(1)
∑

j(6=i)

V (11)(rij) +
1

2

(2)
∑

j

V (12)(rij),

ε̂
(2)
i = ε̂

(1→2)
i −

1

2

(2,2)
∑

i 6=j

J(rij)(ŝi, ŝj).

For the set of dynamical variables P̂i, the microscopic equations of motion could be
written in the following form (see Appendix)

˙̂
P i(k) = ikαJα

i (k) +Ri(k) or
˙̂
P

α

l (k) = ikβJαβ
l (k) +Rα

l (k), (30)

where P̂i(k) and P̂ α
l (k) denote the scalar [n̂1(k), n̂2(k), ε̂(k)] and vector [p̂(k), m̂(k)]

variables, respectively. The terms Ri(k) and Rα
l (k) appear in (30) mainly due to an

effect of inhomogeneous external magnetic field. If the applied field B̂(r, t) does not
depend on r [i. e., B̂(r, t) = B̂(t)], these terms disappear and the corresponding
dynamic variables become conservative.
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4. Static correlation functions

Let us assume that the external magnetic field is static, homogeneous, and di-
rected along the ‘0z’ axis, so that B̂(r, t) = {0, 0, b}. In this case only the z-th
component of spin density m̂z(k) ≡ m̂(k) is conservative (see (A.10)). This means
that the basic set of dynamic variables

P̂ (k) = {n̂1(k), n̂2(k), p̂(k), m̂(k), ε̂(k)} (31)

includes four scalar dynamic variables and one vector-like dynamic variable p̂(k).
Moreover, because the transverse and longitudinal dynamics can be considered sep-
arately, for the study of the longitudinal dynamics we deal in fact with five scalar
variables P̂ (k) = {n̂1(k), n̂2(k), p̂(k), m̂(k), ε̂(k)}, where p̂(k) denotes the longitudi-
nal component of p̂(k). We also note that in this sense the transverse dynamics of
the “liquid” subsystem (for the model (20)) is equivalent to the transverse dynamics
of a simple liquid.

In order to calculate the frequency matrix (16) and the matrix of memory func-
tions (17) we have to analyze in more detail the properties of static correlation
functions constructed on the dynamic variables P̂ (k).

Let us define now a static correlation function (â, b̂) as an average, constructed
on the deviations â and b̂ from its equilibrium values:

(â, b̂) =

1
∫

0

dτ〈∆âρτ0∆b̂ρ−τ
0 〉0. (32)

In order to have the relation with thermodynamics we consider the equilibrium sta-
tistical operator ρ0(x

N ) as a Gibbs distribution for the grand canonical (µ1, µ2, V, T,
b)-ensemble, so that

ρ0 = exp [β(Ω− ω̂)] (33)

with

ω̂ ≡ ε̂− µ1n̂1 − µ2n̂2 − bm̂, (34)

where Ω(µ, b, T ) is the thermodynamic potential; β is the inverse temperature;
n̂1, . . . , ε̂ are the variables (31), taken at k = 0 [n̂1 ≡ n̂1(k = 0), . . ., ε̂ ≡ ε̂(k = 0)];
and b denotes an external magnetic field.

For an arbitrary operator â and parameter γ (â does not depend on γ) it is easy
to prove the equality

∂〈â〉

∂γ
= −

(

â,
∂(βω̂)

∂γ

)

, (35)

where the averaging is performed with the operator (33). If we put, for example,
â = n̂1 and γ = µ1 in (35), one gets

∂N1

∂µ1
= β(n̂1, n̂2).
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Here and further the quantity, written by a capital letter, denotes the average value
of a corresponding operator, written in a small letter, for instance, N1 = 〈n̂1〉0. In
the same manner using (35) we obtain

(n̂i, n̂j) =
1

β

(

∂Ni

∂µj

)

T,b

=
1

β

(

∂Nj

∂µi

)

T,b

, i, j = 1, 2, (36)

(n̂i, m̂) =
1

β

∂Ni

∂b
=

1

β

(

∂M

∂µi

)

T,b

, (37)

(m̂, m̂) =
1

β

(

∂M

∂b

)

T,µ

, (ε̂, m̂) =
1

β

(

∂E

∂b

)

T,µ

. (38)

Considering (32) as the definition of scalar product, it is seen in (36)–(38), that the
set of P̂i(k = 0) is not orthogonal in the sense that the non-diagonal elements of
matrix (P̂ , P̂+) are nonzero. For practical needs it is often more convenient to use
orthogonalized dynamic variables. Such a new set can be found using Gram-Schmidt
orthogonalization procedure. Let us introduce new dynamic variables being mutually
orthogonal with one exception: the first two variables in (32), namely, n̂1 and n̂2,
form the non-orthogonal (2×2) sub-block of matrix (P̂ , P̂+) with the non-diagonal
elements (n̂i, n̂j), i 6= j. In order to proceed further, we define the projection operator

P n̂ . . . =

2
∑

i,j=1

(. . . , n̂i)(n̂, n̂)
−1
i,j · n̂j , (39)

where (n̂, n̂)−1
ij denotes the {ij}th element of the inverse matrix (n̂, n̂+)−1, and con-

sider the new variable defined by

ŝ = (1− P n̂)m̂. (40)

It is obvious that ŝ is simply connected with the spin density m̂ and orthogonal to
n̂1 and n̂2 in the sense that

(ŝ, n̂1) = (ŝ, n̂2) = 0.

In a similar way, introducing another projection operator P ŝ,

P ŝ . . . = (. . . , ŝ)(ŝ, ŝ)−1ŝ, (41)

we can construct the so-called ‘enthalpy’ operator

ĥ = (1−P n̂ − P ŝ)ε̂ = (1− P n̂ −P ŝ)ω̂, (42)

being orthogonal to all the other dynamic variables, i.e.

(ĥ, n̂1) = (ĥ, n̂2) = (ĥ, ŝ) = 0.
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Note that the density of momentum p̂(k) is orthogonal to all the variables by the
definition, and

(

p̂
α(k), p̂β(−k)

)

=
δαβ
β

(m1N1 +m2N2) =
δαβ
β

m̄N, (43)

where m̄N = N1m1+N2m2 is a total mass of all particles in the mixture considered.
It is important to stress that the projection using the operators (39) and (41)

permits us to perform the transition from one ensemble to another. For example,
the projection, given by (39), describes, in fact, the transition from (µ, V, T, b) to
(N, V, T, b) ensemble. Thus, the magnetic susceptibility in (N, V, T )-ensemble can
be defined on the ‘projected’ variable ŝ, namely,

χT,N =

(

∂M

∂b

)

N,V,T

=

(

∂M

∂b

)

µ,V,T

−

(

∂M

∂µ1

)(

∂N1

∂µ1

)−1(
∂N1

∂b

)

−

(

∂M

∂µ2

)(

∂N2

∂µ2

)−1(
∂N2

∂b

)

= β
{

(m̂, m̂)− (m̂, n̂1)(n̂1, n̂1)
−1(n̂1, m̂)− (m̂, n̂2)(n̂2, n̂2)

−1(n̂2, m̂)
}

= β
(

(1− P n̂)m̂ , m̂
)

≡ β(ŝ, ŝ). (44)

Using (35) we can prove another equality for the entropy in grand canonical
ensemble

∂S

∂γ
= −β

(

ω̂,
∂(βω̂)

∂γ

)

,

so that an expression for the specific heat in (µ, V, T, b)-ensemble can be written as
follows

Cµ,b = T (∂S/∂T ) = β2(ω̂, ω̂),

and performing the transition to (N,M, V, T )-ensemble, as it was done in (44), we
obtain

CN,M = β2 ((1− P n̂ − P ŝ)ω̂ , ω̂) = β2(ĥ, ĥ). (45)

Taking into account the relations (40) and (42), it is seen that the set of variables
{n̂1, n̂2, p̂, ŝ, ĥ} is orthogonal in the sense mentioned above. Generalizing the results
obtained, one can introduce the new dynamic k-dependent variables

Ŷ (k) = {n̂1(k), n̂2(k), p̂(k), ŝ(k), ĥ(k)}, (46)

which are mutually orthogonal. One exception is for the variables n̂1(k) and n̂2(k).
For the dynamic variables ŝ(k) and ĥ(k) one has

ŝ(k) = (1− P n̂(k)) · m̂(k), ĥ(k) = (1− P n̂(k)−P ŝ(k)) · ε̂(k) (47)

with the projection operators defined as follows

P n̂(k) . . . =

2
∑

i,j=1

( . . . , n̂i(−k)) (n̂(k), n̂(−k))−1
i,j · n̂j(k), (48)

P ŝ(k) . . . = (. . . , ŝ(−k)) · (ŝ(k), ŝ(−k))−1 · ŝ(k). (49)
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The correlation functions, constructed on the variables (46), can be considered as
the generalization of the thermodynamic derivatives, derived above (see (36)–(38),
(44), and (45)), for nonzero values of k. Hence,

(n̂i(k), n̂j(−k)) = [NiNj ]
1

2 Sij(k), i, j = 1 . . . 2, (50)

(p̂α(k), p̂β(−k)) =
δαβ
β

m̄N, (51)

(ŝ(k), ŝ(−k)) =
1

β
χT,N(k), (52)

(ĥ(k), ĥ(−k)) =
1

β2
CN,M(k), (53)

where Sij(k) are the so-called partial structure factors, and χT,N(k) and CN,M(k)
denote the generalized magnetic susceptibility and specific heat for the mixture of
magnetic and non-magnetic particles, respectively.

5. Frequency matrix and matrix of memory functions

Taking into account the symmetry of the correlation functions under time in-
version and spatial symmetry operations, or performing the direct calculations, one
can prove that

(

˙̂
Y i(k), Ŷj(−k)

)

= 0, if (Ŷi 6= p̂ and Ŷj 6= p̂)

or (Ŷi = p̂ and Ŷj = p̂). (54)

Moreover, because of the equality

(

˙̂
Y i(k), Ŷj(−k)

)

= −
(

Ŷi(k),
˙̂
Y j(−k)

)

,

using (54), it can be shown that to calculate the frequency matrix we have to find
only the correlation functions which involve the operator of momentum density:

(

˙̂p
α
(k), Ŷj(−k)

)

= ikβ
(

Jαβ
p (k), Ŷj(−k)

)

, Ŷj 6= p̂.

In the limit k → 0 one can prove that (see [24])

〈Jαβ
p (k)〉k→0 =

{

(N1 +N2)T −
1

3

〈

N1+N2
∑

i

ri
∂U(rN )

∂ri

〉}

δαβ, (55)

where U(rN ) is the total potential energy of the system

U(rN) = ε̂−

(1)
∑

i

p
(1)
i

2

2m1

−

(2)
∑

i

p
(2)
i

2

2m2

.
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Let us remind now the expression for pressure P , which follows from the equilibrium
treatment (see [24])

P = T
N1 +N2

V
−

1

3V

〈

N1+N2
∑

i

ri
∂U(rN )

∂ri

〉

. (56)

Comparing (55) and (56), one obtains

〈Jαβ
p (k)〉0 = δαβPV = −δ(k)δαβΩ. (57)

From (57) one can conclude that in homogeneous external field
(

∂B̂(r, t)/∂r = 0
)

the pressure of a system with the ‘isotropic’ interactions, which depend only on a
distance between particles, is expressed via the average of the stress tensor J αβ

p (k).
In particular, using (57) we get

(

˙̂p
α
(k), n̂1(−k)

)

k→0
= ikβ

(

Jαβ
p , n̂1

)

=
ikβ

β

∂〈Jαβ
p 〉

∂µ1
=

ikα

β

∂Ω

∂µ1
=

ikα

β
N1. (58)

It is seen in (58) that only the longitudinal component p̂(k) of the current density
p̂(k) is coupled with the density and thermal fluctuations. Taking into account this
result and using (57), the following relations for static correlation functions can be
derived

( ˙̂p, n̂i) =
ik

β
Ni,

( ˙̂p, m̂) =
ik

β
V

(

∂P

∂b

)

µ,V,T

, ( ˙̂p, ω̂) =
ik

β2
V

(

∂P

∂T

)

µ,V,b

,

where k = |k|. For the orthogonalized variables we get

( ˙̂p, ŝ) =
ik

β
V

(

∂P

∂b

)

N,V,T

, ( ˙̂p, ĥ) =
ik

β2
V

(

∂P

∂T

)

N,V,M

. (59)

Using Gibbs-Duhem equation

S dT +N1 dµ1 +N2 dµ2 +M db− V dp = 0,

the right-hand sides of (59) can be rewritten in another form

(

∂P

∂b

)

N,V,T

=
π

κT

,

(

∂P

∂T

)

N,V,M

= −αp

[

1

V

(

∂V

∂P

)

T,N,M

]−1

, (60)

where

π =
1

V

(

∂V

∂b

)

P,N,T

, κT = −
1

V

(

∂V

∂P

)

T,N,b

, αp =
1

V

(

∂V

∂T

)

P,N,M

(61)
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are the coefficients of magnetostriction, isothermal compressibility and isobaric ther-
mal expansion for the mixture of magnetic and non-magnetic particles, respectively.
The derivative (∂V/∂P ) in the second equation of (60) is defined at constant mag-
netization M . After some algebra using Gibbs-Duhem and Maxwell relations, one
has

−
1

V

(

∂V

∂P

)

T,N,M

= κT −
V π2

χ

{

1 +
π2V

χκT

}−1

,

and
(

∂P

∂T

)

V,N,M

=
αp

κT

(

1 +
V π2

χκT

)

.

Using the results obtained above and performing the generalization for k 6= 0 we
can write some elements of the frequency matrix iΩ as follows

iΩp,s(k) = ik
V

χ(k)

π(k)

κT (k)
, iΩs,p(k) = ik

V

N

π(k)

κT (k)m̄
,

iΩp,h(k) = ik
V

CNMV (k)

αp(k)

κT (k)

(

1 +
V

χ(k)

π2(k)

κT (k)

)

, (62)

iΩh,p(k) = ik
V

N

αp(k)

βm̄κT (k)

(

1 +
V

χ(k)

π2(k)

κT (k)

)

, iΩni,p =
ik

m̄

Ni

N
.

Let us consider now the elements iΩp,ni
of the frequency matrix iΩ, which involve

the densities of particles’ numbers n̂ν

iΩp,nν
=

ik

β

2
∑

ν′=1

Nν′

(

n̂(k), n̂+(−k)
)−1

ν′ν
. (63)

The elements of matrix (n̂, n̂+) in the limit k→0 are the derivatives β−1∂Ni/∂µj

(see (36)), therefore it can be proved that in the canonical (N1, N2, V, T, b)-ensemble
one has

lim
k→0

(

n̂(k), n̂+(−k)
)−1

ν′ν
= β

(

∂µν′

∂Nν

)

V Tb

. (64)

The right-hand side of this equation can be rewritten by performing the transition
to the ensemble with constant pressure

(

∂µν′

∂Nν

)

PTb

=

(

∂µν

∂Nν

)

PTb

+
vν′vν
V κT

, (65)

where vν = (∂V/∂Nν)TPb is the partial molar volume per particle in the νth species.
Taking into account that

∑

ν

Nνvν = V

and using Gibbs-Duhem equation, we find for isobaric processes

∑

ν

Nν

(

∂µν

∂Nν′

)

V Tb

= 0. (66)
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This allows us to express the matrix elements (63) via the partial molar volume v ν .
In general case k 6= 0 one has [27]

iΩp,n1
(k) = ik

v1(k)

κT (k)
, iΩp,n2

(k) = ik
v2(k)

κT (k)
, (67)

where the generalized k-dependent functions vν(k) are introduced.
The matrix of time-dependent longitudinal memory functions for the set of dy-

namic variables (46) is defined as follows

φ(k, t) =
(

(1−P)
˙̂
Y i(k), e

−(1−P)iL̂ t(1− P)
˙̂
Y j(−k)

)(

Ŷ (k), Ŷ (−k)+
)−1

, (68)

where the k-dependence of the hydrodynamic projection operator P(k),

P . . . =
∑

ν,ν′

(

. . . , n̂ν

)(

n̂, n̂
)−1

ν,ν′
· n̂ν′

+
(

. . . , p̂
)(

p̂, p̂
)−1

p̂+
(

. . . , ŝ
)(

ŝ, ŝ
)−1

ŝ +
(

. . . , ĥ
)(

ĥ, ĥ
)−1

ĥ,

is omitted for the sake of simplicity. For the generalized fluxes

Ii(k) = (1−P)
˙̂
Y i(k) =

˙̂
Y i(k)−

∑

j

iΩijŶj, (69)

in the limit k → 0 one has
Ii(k) ≃ ikfi, (70)

where fi are regular longitudinal parts of fluxes. Using (68) and (70), it is seen that
all the matrix elements of φ(k, t) are proportional at least to k 2. We also note that
in the hydrodynamic limit the Markovian approximation for the memory functions
is in fact explicit and, therefore, can be used for the subsequent calculations.

Summarizing the results obtained above one gets the frequency matrix in the
form

iΩ = ik













0 0 ωn1,p 0 0
0 0 ωn2,p 0 0

ωp,n1
ωp,n2

0 ωp,s ωp,ε

0 0 ωs,p 0 0
0 0 ωε,p 0 0













. (71)

It can be proved that due to the symmetry properties, the matrix of memory func-
tions in the hydrodynamic limit k → 0, ω → 0 has an opposite structure to iΩ,
namely,

φ = k2













ϕn1,n1
ϕn1,n2

0 ϕn1,s ϕn1,h

ϕn2,n1
ϕn2,n2

0 ϕn2,s ϕn2,h

0 0 ϕp,p 0 0
ϕs,n1

ϕs,n2
0 ϕs,s ϕs,h

ϕh,n1
ϕh,n2

0 ϕh,s ϕh,h













. (72)
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All the other elements in (72) could be neglected because they are proportional to
the higher powers of k. Thus, in the hydrodynamic limit, the Laplace transforms of
memory functions can be written as follows

φij = k2V

β

∑

j

Lik·
(

Ŷ , Ŷ +
)−1

kj
, (73)

where Lij are the kinetic coefficients, defined by Green-Kubo-like formulas

Lij = lim
ε→0+

β

V

(

fi,
1

ε+ iL̂
fj

)

=
β

V

∞
∫

0

(

fi, e
−iL̂ tfj

)

dt. (74)

6. Hydrodynamic collective modes

The spectrum of collective modes can be found from the equation (19)

det |z1̃− iΩ + φ| = 0 (75)

and gives in fact the set of eigenvalues for the matrix

T̃ = iΩ− φ. (76)

Considering δ ≡ ik as a small parameter and taking into account that iΩ ∼ δ and
φ ∼ δ2, we can develop the perturbation-like theory which permits us to solve the
equation (75). Introducing the notations

ω̃ = iΩ/δ, ϕ̃ = φ/δ2, (77)

in the first approximation with respect to δ one has from (75) two nonzero propa-
gating sound modes

z1,2 = ±ikvs,

with
vs =

√

ωp,n1
ωn1,p + ωp,n2

ωn2,p + ωp,sωs,p + ωp,hωh,p (78)

being the sound velocity. Three other eigenvalues z3,4,5 describe the diffusive modes
and vanish (z3,4,5 = 0) in this approximation. Using the results, obtained in the
previous section, the expression (78) can be rewritten as follows

v2s = −
V

ρ

(

∂P

∂V

)

NSM

=

(

∂P

∂ρ

)

NSM

, (79)

where the mass density ρ = m̄N/V is introduced. To find the next approximation
let us consider z in (75) as a series over δ, so that

z = δ · z0 + δ2 ·D + . . . . (80)
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Putting (80) into (75), the new set of algebraic equations for the coefficients z0 and
D can be derived. In such a way we find for the propagating sound modes

z = ±ikvs + k2D∗, (81)

while for purely diffusive hydrodynamic modes one has

zi = k2Di, i = 3, 4, 5 , (82)

where D∗ and Di are the corresponding damping coefficients. For sound modes this
results in the expression

D∗ =
1

2v2s
Sp(ϕ̃·ω̃2) =

Sp(ϕ̃·ω̃2)

Sp(ω̃2)
, (83)

and damping coefficients Di for the purely diffusive modes can be found as the roots
of an algebraic equation of third order

D3p3 +D2p2 +D1p1 + p0 = 0 (84)

with coefficients pi, defined via the elements of matrix κ̃ ≡ ω̃+ ϕ̃ with an additional
constraint κpp = 0. Namely, it can be shown that

pi = (−1)i
(

∂

∂κn1n1

+
∂

∂κn2n2

+
∂

∂κss

+
∂

∂κhh

)i

· det κ̃.

7. Hydrodynamic time correlation functions

The matrix equation (18) for the Laplace transforms of time correlation functions
can be rewritten as follows

Ã(k, z)·F̃ (k, z) = F̃0(k), (85)

where Ã(k, z) = z·1̃− T̃ (k), the matrix T̃ is defined by (76), and F̃ (k, z) = (Ŷ , Ŷ +)z

and F̃0(k) are the matrices of Laplace transforms of time correlation functions and
static correlation functions, respectively. The formal solution of (85) is given by

F̃ (k, z) = Ã−1(k, z)·F̃0(k) (86)

with Ã−1(k, z) = (z1̃ − T̃ )−1 being the matrix inverse to Ã(k, z). The ijth element
(Ã−1)ij of this matrix can be written as an algebraic adjunct (Ad [Aij]) of element
Aij, divided by the determinant ∆(Ã), so that one has

(Ã−1)ij =
Ad [Aij ]

∆(Ã)
. (87)

For Ad [Aij ] we have

Ad [Aij ] =
∂∆(Ã)

∂Aij

, (88)
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where the dependence on z is omitted for the sake of simplicity. The determinant

of matrix T̃ can be presented as a product of its eigenvalues {zγ}, ∆(T̃ ) ≡
5
∏

γ=1

zγ .

Therefore, one gets

∆(Ã) =
5
∏

γ=1

(z − zγ). (89)

The eigenvalues {zγ} were found in the previous section up to the second order with
respect to the small parameter δ (see (81) and (82)). Note also that, because the
matrices ω̃ and ϕ̃ have the opposite structure (see (71) and (72)), we can write

∂

∂Aij

= −
∂

∂ iΩij

+
∂

∂φij

= −
1

δ

∂

∂ωij

−
1

δ2
∂

∂ϕij

. (90)

Hence, using (88), one gets

Ad [Aij ] = −
∑

γ

∆

z − zγ

∂zγ
∂Aij

= ∆
∑

γ

1

z − zγ
·

(

1

δ

∂zγ
∂ωij

+
1

δ2
∂zγ
∂ϕij

)

, (91)

and Ã−1
ij now reads

Ã−1
ij (z) =

∑

γ

1

z − zγ
Gγ
ij , (92)

where

Gγ
ij =

1

δ

∂zk
∂ωij

+
1

δ2
∂zk
∂ϕij

(93)

are the so-called ‘weight coefficients’, describing the contribution from corresponding
collective modes. Because of {zk} are found as series in δ (see (81) and (82)), the
expression for Gγ

ij can be written as follows

Gγ
ij =

∂z0γ
∂ωij

+
∂z1γ
∂ϕij

. (94)

It should be stressed that the expression (94) is valid only in the hydrodynamic
limit. A more general result can be found from (86) using simple matrix relations.
Let us introduce the notation X̃ for the matrix of eigenvectors of T̃ [see (76)], so
that

T̃ ·X̃ = X̃·Z̃,

with Z̃ = ||zγδγγ′ || being the diagonal matrix of eigenvalues {zγ}. It is easy to
show that the matrix Ã(z) = z·1̃ − T̃ has the same set of eigenvectors X̃ with the
eigenvalues {z − zγ}, therefore we get

Ã−1(z) =
[

Ã·X̃·X̃−1
]−1

=
[

X̃·(z1̃− Z̃)·X̃−1
]−1

= X̃· [z1̃ − Z̃]−1·X̃−1.
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Taking into account that the matrix (z 1̃− Z̃) is diagonal, the last expression can be
rewritten in the following form

Ã−1
ij (z) =

∑

γ

X̃iγX̃
−1
γj

z − zγ
. (95)

Hence, comparing (92) and (95), we conclude that

Gγ
ij = X̃iγX̃

−1
γj . (96)

This expression can be used to calculate the weight coefficient for an arbitrary value
of wavenumber k. In particular, the result (94) can be easily reproduced from (96),
when k is small. Note also that for practical applications, the expressions (94) can
be more convenient if analytical results are needed.

8. Discussion and concluding remarks

In this paper the spectrum of collective hydrodynamic modes for a binary fer-
romagnetic mixture is studied based on the rigorous statistical treatment. We have
found two complex-conjugated collective modes, which are responsible for propagat-
ing the sound excitations. All the other modes are purely diffusive and describe the
processes connected with relaxations of temperature-, mass- and spin-fluctuations.
The results, obtained in the hydrodynamic region, are valid for an arbitrary binary
mixture under the same external conditions, namely, when the external magnetic
field is homogeneous and the interactions are isotropic. In particular, it was shown
that the sound velocity is inversely proportional to the adiabatic compressibility in
the ensemble with constant magnetization. This conclusion coincides with the result
found previously for a simple magnetic liquid [24]. We also derived the expression
for the damping coefficient of sound excitations [see (83)] and the equation (84),
which permits one to calculate the damping coefficients of purely diffusive collective
modes.

For zero magnetic field (b = 0), if we consider paramagnetic phase, the spin
and liquid subsystems are decoupled and the damping coefficient of spin mode Dm

can be easily found from (84). This results in Dm = ϕss. The expressions for two
other damping coefficients, describing the hydrodynamic thermal and concentration
excitations, coincide formally with the results known for a binary mixture of simple
fluids. The same can be said about the expression for hydrodynamic time correlation
functions. For instance, the Laplace transform of “spin density–spin density” time
correlation function can be written in the form

(ŝ, ŝ)z =
T · χTNV

(z + k2ϕss)
, (97)

used widely in the theory of solid magnets.
In a more general case, when b 6= 0, an additional coupling between spin and

translational degrees of freedom appears and the expressions for time correlation
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functions become more complicate. In this case the Fourier transforms F (k, ω) of
time correlation functions have the following structure

F (k, ω) = Re F̃ (k, ω)

=
{

∑

+,−

k2D∗ · G̃
±
0 + k(ω ∓ kvs)G̃

±
1

(ω ∓ kvs)2 + (Dsk2)2
+

∑

µ=d,m,h

k2Dµ · G̃
µ
0 + kωG̃µ

1

ω2 + (Dµk2)2

}

F̃0(k), (98)

where D∗, Dd, Dm, Dh are damping coefficients of sound, diffusive, spin-diffusive and
heat modes, respectively. The matrices G̃±

0 , G̃
±
1 , G̃

µ
0 , and G̃µ

1 are the matrices of weight
coefficients calculated in the first and the second approximations with respect to
parameter δ, respectively. The problem of their calculations is a nontrivial one and
will be considered more in detail elsewhere.

Appendix

It is easy to show that

˙̂n1(k) = ik·
p
(1)(k)

m1

, ˙̂n2(k) = ik·
p
(2)(k)

m2

, (A.1)

where p
(ν)(k) =

Nν
∑

j

p
(ν)
j eikrj , so that according to (30) one has

Jα
n1

=
p
(1)α(k)

m1

, Jα
n2

=
p
(2)α(k)

m2

, Rn1
= 0. (A.2)

Considering the time derivative of the total momentum density p(k) we can
obtain the expressions for the microscopic stress tensor J αβ

p and relaxation term
Rα

p (k) as follows

Jαβ
p (k) = Jαβ

p,1(k) + Jαβ
p,2(k) + Jαβ

p,s (k) + Jαβ
p,int(k), (A.3)

Rα
p (k) =

(2)
∑

i

∂
(

B̂(ri), ŝi

)

∂rαi
eikri, (A.4)

where

Jαβ
p,1(k) =

(1)
∑

i

p
(1)
i,αp

(1)
i,β

m1
eikri −

1

2

(1,1)
∑

i 6=j

[V (11)]′(rij)
rαijr

β
ij

|rij|
Pk(rij)e

ikri, (A.5)

Pk(r) =
1− e−ikr

ikr
, (A.6)

and [V (11)]′(rij) denotes a derivative of V (11) over its argument |rij|. The term Jαβ
p,2

has the same structure as Jαβ
p,1 and can be obtained from (A.5) by implying the

substitution of indices ‘1’→‘2’. For two other contributions in (A.3) we get

Jαβ
p,s =

1

2

(2,2)
∑

i 6=j

J ′(rij)(ŝi, ŝj)
rαijr

β
ij

|rij|
Pk(rij)e

ikri, (A.7)
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and

Jαβ
p,int = −

(1,2)
∑

i,j

V (12)′(rij)
rαijr

β
ij

|rij|
Pk(rij)e

ikri. (A.8)

In a similar way, the corresponding expressions for the spin-density current can
be derived. We find

Jαβ
m =

(2)
∑

i

p
(1)
i,β

m2
sαi e

ikri +
1

2

(2,2)
∑

i 6=j

J(rij) [ŝi × ŝj ]
α
r
β
ijPk(rij)e

ikri, (A.9)

Rα
m =

(2)
∑

i

[

ŝi × B̂(ri; t)
]α

eikrj . (A.10)

And, finally, for the density of total energy, the flux and the relaxation term can
be written as follows

Jα
ε = Jα

ε,1 + Jα
ε,2 + Jα

ε,ss + Jα
ε,int, (A.11)

Rε =

(2)
∑

j

∂B̂(rj)ŝj
∂rj

p
(2)
j

m2

eikrj

+
1

2

(2,2)
∑

i 6=j

J(rij)(B̂i, [ŝj, ŝi])(e
ikri + eikrj), (A.12)

where

Jα
ε,1 =

(1)
∑

i







p
(1)
i,α

m1
ε̂
(1)
i −

1

2

(1)
∑

j(6=i)

[V (11)]′(rij)
(rijp

(1)
i )

|rij|m1
rαijPk(rij)







eikri, (A.13)

Jα
ε,2 has the same as Jα

ε,1 with the substitution ‘1’→‘2’ and implying difference be-

tween ε̂
(1)
i and ε̂

(2)
i ; and

Jα
ε,ss =

1

2

(2,2)
∑

i 6=j

{

J ′(rij)(ŝiŝj)
(rijp

(2)
i )

|rij|m2
rαijPk(rij)

−

(2)
∑

l(6=i 6=j)

J(rij)J(ril)(ŝi, [ŝj, ŝl])r
α
ijPk(rij)

}

eikri, (A.14)

Jα
ε,int = −

(1)
∑

i

eikri
(2)
∑

j

[V (12)]′(rij)

(

rijp
(1)
i

|rij|m1

+
rijp

(2)
j

|rij|m1

)

rαijPk(rij). (A.15)
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Hydrodynamics of a binary magnetic mixture

До статистичної гідродинаміки бінарної суміші

магнітних та немагнітних частинок

О.Бацевич 1 , І.Мриглод 2 , Ю.Рудавський 1 , М.Токарчук 2

1 Національний університет “Львівська Політехніка”,

79013 Львів, вул. С.Бандери, 12
2 Інститут фізики конденсованих систем НАН України,

79011 Львів, вул. Свєнціцького, 1

Отримано 10 квітня 2001 р.

За допомогою методу нерівноважного статистичного оператора в

цiй роботі розглядаються динамічні властивості бінарної суміші маг-

нітних та немагнітних частинок. Отримано та проаналізовано рівнян-

ня узагальненої гідродинаміки. На цій основі знаходиться спектр ко-

лективних гідродинамічних мод, вираз для швидкості звуку та коефі-

цієнтів згасання для відповідних колективних збуджень. Запропоно-

вано схему розрахунку часових кореляційних функцій у гідродинаміч-

ній границі і проаналізовано вирази для них, що отримані у частково-

му випадку суміші в парамагнітному стані.

Ключові слова: бінарна магнітна суміш, гідродинамічні моди,

часові кореляційні функції, швидкість звуку

PACS: 75.50.Mm, 05.60.+w, 51.10.+y, 05.70.Ln, 05.20.-y
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