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The hydrodynamics of a multicomponent mixture of magnetic and nonmag-
netic particles is investigated. The hydrodynamic modes spectrum is ob-
tained. It is shown that two collective modes are responsible for the propa-
gation of sound while the other ones ( j−2 modes, where j is determined
by the number of additive integrals of motion) are purely diffusive.
The analytical expressions for all the hydrodynamic time correlation func-
tions are derived and written via the well-defined thermodynamical quan-
tities and transport coefficients of the system. Based on this, the expres-
sions for the dynamical structure factors for a binary magnetic mixture in
the paramagnetic state and for a three-component nonmagnetic mixture
are derived.
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1. Introduction

Magnetic liquids, mixtures of magnetic and nonmagnetic particles in the external
fields of mechanical or electromagnetic origin, have already taken their significant
place in chemical, electronic and other modern technologies. The recent experimental
investigations [1] have already proved the existence of a ferromagnetic phase in
a supercooled liquid alloy Co80–Pd20. Similar results were obtained previously for
an alloy Au–Co [2–4] with Heisenberg exchange interaction. Description of spin
relaxation in liquids [5], investigations of the dynamics of ferrocolloid systems [6–8],
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dynamical properties of polar liquids [9–11], surface absorption dynamics [11,12],
etc, still need rigorous theoretical explanation.

The statistical hydrodynamics for a mixture of magnetic and non-magnetic par-
ticles in a non-homogeneous external magnetic field has been presented in [13,14].
Using the method of non-equilibrium statistical operator [15,16], the generalized hy-
drodynamic equations, valid for describing both strong and weak non-equilibrium
states, are derived herein. To study weak non-equilibrium processes, the linearized
equations of molecular hydrodynamics and the equations for time correlations func-
tions were found, and corresponding memory functions were analyzed.

The goal of this paper is to investigate the hydrodynamic region of wave num-
ber k and frequency ω, using the results obtained in [13,14]. The peculiarity of the
proposed approach is that the results are presented for a more general case of a
multicomponent mixture which includes an arbitrary number of magnetic and non-
magnetic components. In section 3 the hydrodynamic modes spectrum is found.
Time dependent correlation functions are analyzed in section 4, where the analyti-
cal expressions for weight coefficients describing contributions of each mode to time
correlation functions are given. The subsequent sections are devoted to the analysis
of particular cases of mixtures. In sections 6 and 7, the cases of binary magnetic mix-
ture and three-component nonmagnetic mixture are analyzed. The hydrodynamic
modes spectrum, expressions for dynamical structure factors and magnetic struc-
ture factor (for a binary magnetic mixture) are written via the thermodynamical
parameters and transport coefficients.

2. Equations of molecular hydrodynamics

Let us consider a general case of multicomponent liquid mixture in hydrodynam-
ic limit with an arbitrary number of magnetic and nonmagnetic components [17–19].
The results obtained will be applied for particular cases of simple, binary ferromag-
netic liquid, three-component mixture of simple fluids. While studying the dynamics
of such a generalized multicomponent magnetic mixture (GMMM), we will use the
method of nonequilibrium statistical operator [15,16], so that an appropriate set of
parameters of abbreviated description (also called “relevant variables”) has to be
chosen. These parameters, averages of which are expected to describe the dynam-
ics of the system most adequately, should include the densities of all the conserved
quantities. Considering an m1-component magnetic mixture (m1 is number of both
magnetic and nonmagnetic species), we introduce the first portion of the relevant
parameters as the Fourier-transforms of microscopical densities of particle numbers

{n̂1(k), n̂2(k), . . ., n̂m1(k)}, where n̂i(k) =
∑Ni

j=1 e
ikr

(i)
j . The next two parameters

are the densities of total momentum p̂(k) and the enthalpy ĥ(k) which is related
to the energy density [17]. The last portion of the parameters of the abbreviated
description which correspond to the spin subsystem, can be chosen as densities of
partial magnetizations ŝ1(k), . . ., ŝm2(k), where m2 is the number of magnetic com-
ponents, if the operators of partial magnetizations Ŝi (= ŝi(k = 0)) commute with
the Hamiltonian of the system considered. Otherwise, the parameters of the abbre-
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viated description should be chosen as some of them which are conserved (commute
with Hamiltonian) when k = 0. So, let m2 will be the member of these variables,
connected with the spin subsystem. Performing the orthogonalization procedure (see
[19]) for the set of variables listed above, we get the set of m+ 2 parameters of the
abbreviated description:

Ŷ (k) = {p̂(k), ĥ(k), n̂1(k), . . . , n̂m1(k), ŝ1(k), . . . , ŝm2(k)}, (1)

where m = m1 +m2.
Considering a GMMM in the hydrodynamic state, for small deviations of the

system from an equilibrium, we can write the equations of molecular hydrodynamics
in the matrix form [17] as follows:

{

iω·1̃− iΩ̃(k) + Φ̃(k, iω + ε)
}

〈∆Ŷi(k)〉ω = 0. (2)

The Laplace transforms of the time correlation functions, F̂ (k, z), satisfy the equa-
tion

{

z·1̃− iΩ̃(k) + Φ̃(k, z)
}

F̃ (k, z) = F̃0(k), (3)

with z = iω + ε and ε = +0, where iΩ̃(k) and Φ̃(k, z) are the (m + 2)×(m + 2)
matrices of frequencies and of memory functions, respectively, defined as follows:

iΩ̃(k) = (iL̂·Ŷ (k), Ŷ (−k)) (Ŷ (k), Ŷ +(−k))−1, (4)

Φ̃(k, z) =

(

(1− P) iL̂·Ŷ ,
1

z + (1− P) iL̂
(1− P) iL̂·Ŷ +

)

(

Ŷ (k), Ŷ +(−k)
)−1

(5)

Here iL̂ is a Liouville operator of the system and P is a projection Mori operator
which obeys:

P · Ã =
(

Ã, Ŷ (−k)
) (

Ŷ (k), Ŷ +(−k)
)−1

Ŷ (k), (6)

and (Â, B̂) denotes a correlation function:

(Â, B̂) =
∫ 1

0
〈Âρτ0B̂ρ−τ

0 〉 dτ, (7)

where 〈. . .〉 is an average with respect to the equilibrium Gibbs distribution ρ 0, and
Ŷ (k) is the parameters of the abbreviated description column vector.

The static correlations function matrix F̃0(k) =
(

Ŷi(k), Ŷ
+
i (k)

)

in the right-hand

side of (3) for the orthogonalized parameters of the abbreviated description (1), has
a quasi-diagonal structure [19].

Due to conservation of the parameters of the abbreviated description, the fre-
quency matrix (4) in hydrodynamic approximation is linear with respect to k, while
the matrix of the memory functions is of order k2. Hence:

iΩ̃ = ik·ν̃, Φ̃ = (ik)2·ϕ̃, (8)
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where frequency matrix ν̃ and matrix of memory functions ϕ̃ for the special choice
of the parameters of the abbreviated description (1) have the following structure
[19]:

ν̃ =













0 ν1,2 · · · ν1,m+2

ν2,1 0 · · · 0
...

...
. . .

...
νm+2,1 0 · · · 0













, ϕ̃ =













ϕ1,1 0 · · · 0
0 ϕ2,2 · · · ϕ2,m+2
...

...
. . .

...
0 ϕm+2,2 · · · ϕm+2,m+2













. (9)

The index ‘1’ in (9) corresponds to the momentum variable p̂(k) in the set (1). We
note that all the nonzero elements of matrices ν̃ and ϕ̃ can be expressed [19] via
the thermodynamical parameters and transport coefficients defined by Green-Cubo
formulas, respectively.

3. Hydrodynamic collective modes

The hydrodynamic excitation spectrum for a GMMM can be found from the
eigenvalues problem for the hydrodynamic matrix T̃H = iΩ̃− Φ̃. As it follows from
(8), the value ik may be considered as a small parameter. Thus, for the eigenvalues
{Zi} we are looking for solutions in the form of series:

Zi = ikλi + (ik)2·Di + . . . . (10)

Note that terms of (ik)l with l > 2 are not significant, as we are restricted to the
hydrodynamic range.

The coefficients λi, which are responsible for the propagation processes in a
GMMM, can be easily found as eigenvalues of matrix ν̃. They are:

λ+ = vs, λ− = −vs, λ0 = 0, (11)

where λ0 is an m times degenerated solution and vs is the sound velocity given by:

v2s =
1

2
Sp (ν̃2) =

1

2

m+2
∑

i=2

ν1,i·νi,1, (12)

where Sp (...) denotes the trace of the matrix. Thus, we see that in a GMMM there
exists only one propagation process connected with sound excitations. The other
ones are purely diffusive when k is small enough.

In the next approximation for eigenvalues Zi (see (10)), the damping coefficients
of collective modes can be found. For the sound modes they are:

Γ ≡ D+ = D− =
Sp (ϕ̃ν̃2)

Sp (ν̃2)
=

Sp (ϕ̃ν̃2)

2v2s
. (13)

The other damping coefficients {Di}, corresponding to eigenvalue λ0, can be ob-
tained from the m-th order algebraic equation which reads:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ν1,2 · · · ν1,m+2

ν2,1 ϕ2,2 −D · · · ϕ2,m+2
...

...
. . .

...
νm+2,1 ϕm+2,2 · · · ϕm+2,m+2 −D

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (14)
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Finally, we conclude that hydrodynamic modes spectrum (10) is given by two con-
jugated sound propagation modes

Z± = ±ik·vs − (ik)2·Γ, (15)

and by m purely diffusive modes

Zi = −k2·Di, i = 1, . . . , m, (16)

where all coefficients are defined by equations (12), (13) and (14).

4. Time-dependent correlation functions

The formal solution for spectral functions F̃ (k, z) can be found from (3)

F̃ (k, z) = {z − iΩ̃(k) + Φ̃(k, z)}−1F̃0(k) = M̃(z)·F̃0(k). (17)

From the matrix theory [20] one gets for M(z) the following representation

M(z) = (z·1̃− T̃H(k))
−1 =

m+2
∑

i=1

(z − Zi)
−1G̃i, (18)

where Zi are the eigenvalues (15), (16) of matrix T̃H and G̃i are the so-called weight
coefficients. The formula (18) is a particular case of a more general expression

f(T̃H) =
m+2
∑

i=1

f(Zi) G̃
i, (19)

which is valid for an arbitrary analytical function f(x). This last result can be easily
proved using the properties of the matrix T̃H.

The weight coefficients G̃i can be also presented as power series in (ik):

G̃i = g̃i0 + ik·g̃i1 + . . . , i = 1, . . . , m. (20)

Note that the higher order terms (starting from quadratic one) are not important
for the hydrodynamic domain of k.

For calculations of the weight coefficients we used the representation (19) for
different choices of f(x). After some algebra we find:

g̃±0 =
ν̃(ν̃ ± vs)

2v2s
, (21)

g̃i0 =
m
∏

k=1(6=i)

P̃
Dk − ϕ̃

Dk −Di

P̃ , i = 1, . . . , m (22)

g̃±1 = ± 1

vs
g̃±0 ϕ̃(P̃ +

1

2
g̃∓0 )±

1

vs
(P̃ +

1

2
g̃∓0 )ϕ̃g̃

±
0 , (23)

g̃j1 =
1

v2s
(R̃j·ϕ̃− 1)ν̃ϕ̃g̃j0 +

1

v2s
g̃j0ϕ̃ν̃(ϕ̃·R̃j − 1), (24)
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where

P̃ = 1− ν̃2/v2s , (25)

R̃j =
m
∑

k=1(6=j)

g̃k0
Dk −Dj

, j = 1, . . . , m. (26)

Finally, taking into account equations (18), (20), (15), (16), we obtain spectral func-
tions of the system considered

F̃ (k, z) =







∑

+,−

g̃±0 + ik·g̃±1
z ∓ ikvs + k2Γ

+
m
∑

i=1

g̃i0 + ik·g̃i1
z + k2Di







· F̃0(k). (27)

5. Simple fluid

Let us now apply the results obtained above to the case of a one-component
fluid, being described by three parameters of the abbreviated description {n̂(k),
p̂(k), ĥ(k)}. In this case, the matrices of frequencies ν̃ and of the memory functions
ϕ̃ are

ν̃ =







0 n/ρ 0
1/(nκT ) 0 αp/(cV ·κT )

0 T ·αp/(n·κT ) 0





 , ϕ̃ =







0 0 0
0 ηl/ρ 0
0 0 λ/cV





 , (28)

where n = N/V and ρ = m/V are the concentration and the mass density, ηl =
Lpp = 4

3
η + ξ and λ = Lhh/T are a longitudinal viscosity and thermoconductivity,

respectively.
For the sound velocity, sound damping coefficient and damping coefficient of the

heat mode we have found the well-known results [21]:

v2s =

(

∂P

∂ρ

)

NS

=
1

ρ

γ

κT

, Γ =
1

2

(

ηl
ρ
+

λ(γ − 1)

cP

)

, (29)

DH =
ηl
ρ
+

λ

cV
− 2Γ =

λ

cP
, (30)

where all the thermodynamical quantities in (28)–(30) are defined as follows:

κT = − 1

V

(

∂V

∂P

)

T,N,b

, αp =
1

V

(

∂V

∂T

)

P,N,M

, (31)

cV =
T

V

(

∂S

∂T

)

V N

, cP =
T

V

(

∂S

∂T

)

PN

, (32)

γ = cP/cV , (33)

and are the isothermal compressibility κT , isobaric thermal expansion coefficient αp,
specific heat cV and cP at constant volume, and constant pressure, respectively.
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Performing simple calculations using the equations (21)–(26) we obtain for the
hydrodynamic spectral functions the results known in the literature [21]. For in-
stance, the dynamic structure factor is given by the generalized Landau-Placek for-
mula:

S(k, ω)

S(k)
=

1

2γ

∑

+,−

k2Γ− k(±ω/vs + k)(ηl/ρ− 3Γ)

(ω ± kvs)2 + (Γk2)2
+

γ − 1

γ
· k2·λ/cP
ω2 + (k2·λ/cP )2

. (34)

6. Paramagnetic mixture of magnetic and nonmagnetic
particles

Let us now consider a binary mixture of magnetic and non-magnetic particles
with the following parameters of abbreviated description

Ŷ (k) = {p̂(k), n̂1(k), n̂2(k), ŝ(k), ĥ(k)}. (35)

The frequency matrix ν̃ for this case is [19]

ν̃ =

















0 v1/κT v2/κT π/(χκT ) αpξ/(cV κT )
c1/ρ 0 0 0 0
c2/ρ 0 0 0 0

π/(ρκT ) 0 0 0 0
Tαpξ/(ρκT ) 0 0 0 0

















, (36)

where ξ = 1 + π2/(χ·κT ) and

χ =
1

V

(

∂〈Ŝ〉
∂h

)

NTV

, πp =
1

V

(

∂V

∂h

)

PNT

, (37)

ci = Ni/V, vi =

(

∂V

∂Ni

)

TPbNı̄

(38)

are the magnetic susceptibility χ, coefficient of magnetostriction πp, partial concen-
tration ci and partial molar volume per molecule in the i-th species, respectively. All
other themodynamic parameters are the same as in (31)–(33) and h is an external
magnetic field.

The matrix of the memory functions has a form opposite to that of ν̃ (see
equation(9)) with elements which can be expressed via the transport coefficients
Lik,

ϕij = TV
∑

k

Lik(F̃
−1
0 )kj. (39)

For the paramagnetic case, in which we are interested, we have

νp,s = νs,p = 0, ϕs,Ŷ = ϕŶ ,s = 0, (40)

for Ŷ 6= ŝ.
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From the expression (12) (see also [19]) it can be proved that the sound velocity
is proportional to the inverse adiabatic compressibility defined in the ensemble with
constant magnetization and number of particles, namely

v2s = −V 2

M̄

(

∂P

∂V

)

NSM

=

(

∂P

∂ρ

)

NSM

, (41)

where M̄ = N1mm +N2mn, V , ρ, P are a mass, volume, mass density and pressure
of the system, respectively; mm and mn are the masses of particles of magnetic and
nonmagnetic species.

The sound damping coefficient (13) is given by:

Γ =
1

2





1

v2s

∑

i,j

νp,iϕi,jνj,p + ϕp,p



 . (42)

where index ‘p’ in νp,i, νj,p stands for the momentum variable.
Equation (14) for the damping coefficients of the diffusive modes can be easily

factorized, and we have:

D1 = ϕs,s, D2;3 = −1

2
b± 1

2

√
b2 − 4c, (43)

where D1, D2, D3 are the spin diffusion, mutual diffusion and thermo-diffusion
coefficients, respectively, and

b = 2Γ− Sp ϕ̃1, c =
1

v2s
det (ν̃1 + ϕ̃1). (44)

Performing some algebra, we can also calculate all the spectral functions with
weight coefficients given by (21)–(26).

Taking into account the expressions for the static structure factors

Sij ≡ Sni,nj
= TV

(

∂ci
∂µj

)

T,V,b,µ̄

, (45)

and introducing the following notations:

α = 2Γ− ηl/ρ, (46)

γk =
∑

l

Lkl

vl
κT

+ Lkh

αp

cV κT

, γH =
∑

l

Lhl

vl
κT

+ Lhh

αp

cV κT

, (47)

where small Latin indices take the values {1, 2} (or variables {n̂1, n̂2}) and subscript
‘h’ corresponds to the heat mode, we get for the ij-th partial dynamical structure
factor the following expression:

Sij(ω, k) =
TV

2ρv2s

∑

±

k2Γ·cicj − k(k ± ω/vs)(ciγj + γicj − cicj·(α+ Γ))

(ω ± kvs)2 + (k2Γ)2
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+
TV

D3−D2
· k2D2

ω2+(k2D2)2
·






D3

(

∂ci
∂µj

)

TV bµ̄

+
[ciγj + γicj − cicj ·(α +D3)]

(ρv2s )
− Lij







+
TV

D2−D3
· k2D3

ω2+(k2D3)2
·






D2

(

∂ci
∂µj

)

TV bµ̄

+
[ciγj + γicj − cicj ·(α +D2)]

(ρv2s )
− Lij







,

(48)

where Lij are the mutual diffusion coefficients, Lih are the thermodiffusion coeffi-
cients, ηl = Lpp = 4

3
η + ξ is a longitudinal viscosity, Lhh is a coefficient of thermo-

conductivity. No spin contribution to Sn1,n1(k, ω) is found, as it should be expected
[22].

It can be easily proved that the weight coefficients g̃ i
1 (see (24)) for the diffusive

modes will be nonzero only for the spectral functions which involve the momentum
density as one of their variables. Thus, for example, from two Fourier-transforms
Fp,p(k, ω) and Fp,h(k, ω) of the time correlation functions, only the second one will
have a non-zero linear contributions from the diffusive modes:

Fp,p(k, ω)/Fp,p(k) =
1

2

∑

+,−

k2vsΓ± k(ω ∓ kvs)(ϕp,p − 2Γ)

(ω ∓ kvs)2 + (vsΓk2)2
, (49)

Fp,h(k, ω)/Fh,h(k) =
1

2

∑

+,−

±k2vsΓ · νp,h + k(ω ∓ kvs)(ξ
′
h + νp,h(ϕp,p − 2Γ))

(ω ∓ kvs)2 + (vsΓk2)2

+
3
∑

µ=2

kω(g̃µ1 )p,h
ω2 + (vsDµk2)2

, (50)

The expressions for (g̃µ1 )p,h with µ = 2, 3 are too complicated and will be given
elsewhere [23].

Because of properties (40), the spin-spin dynamical structure factor can be easily
calculated and has the simple form

Fs,s(k, ω)/Fs,s =
k2vsD1

ω2 + (D1k2)2
. (51)

It is worth noticing here that the other spectral functions, constructed on the vari-
ables {n1, n2, p, h}, have got the expressions similar to the ones known for a binary
mixture of simple liquids [24,25].

7. Three-component mixture of non-magnetic particles

The case of a three-component non-magnetic fluid is very similar to the previous
one. It is described by 5 parameters of the abbreviated description {p̂; n̂1, n̂2, n̂3; ĥ},
which are the densities of the momentum, the partial densities of particles, and the
enthalpy, respectively. Here and further all the Latin indices will take the values
{2, 3, 4} (or variables {n1, n2, n3}). The sound damping coefficient Γ as well as other
damping coefficients Di for this case can be derived from the expressions (13) and

357



O.F.Batsevych et al.

(14). The static correlation functions Sij and the elements of the frequency matrix
νp,i, νi,p, with i = 2, 3, 4 are in fact the generalizations of what is found for the
previous case (see (36), (45)). Considering the first approximations for the matrix of
the weight coefficients (24), (26) we can conclude that they have the same structure
as matrix ν̃ and thus will give no contribution to the dynamical structure factors.

The dynamical structure factors for a three-component mixture can be written
as follows:

Sij(k, ω) =
TV

2ρv2s

∑

±

Γk2·cicj − k(k ± (ω/vs))(ciγj + γicj − (α + Γ)cicj)

(ω ± kvs)2 + (Γk2)2

+ TV
3
∑

µ=1

Dµk
2Gµ

ij

ω2 + (Dµk2)2
, (52)

where

α =
1

ρv2s

(

γk
vk
κT

+ γH
αp

cV κT

)

, β =
1

ρv2s



γk

(

∂µk

∂cl

)

Nl̄,V,T

γl +
γ2
H

TcV



 , (53)

and γk, γH are given by the (47). For example, the weight coefficient G 1
ij with µ = 1

can be written as follows:

G1
ij =

1

(D2 −D1)(D3 −D1)

{

D2D3

(

∂ci
∂µj

)

µ̄,V,T

− (D2 +D3)Lij

+ Lim

(

∂µm

∂ck

)

Nk̄,V,T

Lkj +
LihLhj

TcV

+
(ciγj + γicj)(α +D2 +D3) + cicj [β − (α +D2)(α +D3)]− ciδj − δicj − γiγj

ρv2s

}

,

(54)

where δj = Lil (∂µl/∂ck)Nk̄,V,T
γk +LihγH/(TcV ). The coefficients G2

ij and G3
ij can be

derived from (54) by cyclic permutation of diffusion coefficients {D1, D2, D3}.
In conclusion, we note that the results obtained in this paper:

• are valid in the hydrodynamic range of wave numbers k and frequencies ω;

• are quite general to be applied for an arbitrary mixture of simple liquids or
mixture of magnetic and nonmagnetic particles.

In the last case it is important that the spin-spin interactions should be isotropic
and depend only on the distance between particles. To illustrate, we considered
three different cases of model systems (simple liquid, a binary mixture of magnetic
and nonmagnetic particles, and a three-component mixture of simple fluids). It was
shown that the results known in the literature for a simple liquid and a binary
mixture can be easily reproduced in our approach. The results found for a three-
component mixture have been obtained for the first time and can be especially useful
for the interpretation of scattering experiments.
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Отримано 23 серпня 2000 р.

У роботі розглядається гідродинаміка рідкої суміші магнітних та

немагнітних частинок з довільною кількістю компонент. Отримано

спектр колективних збуджень і показано, що дві колективні моди є

звуковими, а решта j − 2 мод є чисто дифузійними, де число j ви-

значається кількістю адитивних інтегралів руху.

Знайдено аналітичні вирази для усіх гідродинамічних часових коре-

ляційних функцій, в яких фігурують відомі термодинамічні парамет-

ри та коефіцієнти переносу системи. На цій основі записані вирази

для динамічних структурних факторів бінарної магнітної суміші у па-

рамагнітному стані та для трикомпонентної суміші немагнітних час-

тинок.

Ключові слова: магнітні суміші, часові кореляційні функції

PACS: 75.50.Mm, 05.60.+w, 51.10.+y, 05.70.Ln, 05.20.-y
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