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We develop the Enskog theory for the self-diffusion coefficient for fluids
with continuous potentials. General expressions for the memory kernel
and the self-diffusion coefficient are derived starting from the Green-Kubo
formula. The time-dependent memory kernel is calculated and compared
with molecular dynamics simulations for the Lennard-Jones fluid. Excel-
lent agreement is obtained at low density. The self-diffusion coefficient is
evaluated for several temperatures and densities. The ratio of the Enskog
self-diffusion coefficient to the simulation value is plotted against density for
the Lennard-Jones fluid. Significant difference of this density dependence
from that for the hard-sphere fluid is observed. In particular, the well-known
maximum observed in the hard-sphere fluid is found to be completely ab-
sent in the Lennard-Jones fluid.
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1. Introduction

The well-known Enskog theory for the hard-sphere fluid provides a very good
approximation to the transport phenomena in dense gases. Although it is a sim-
ple generalization of the Boltzmann equation, its usefulness is beyond dispute. For
example, the self-diffusion coefficient calculated from Enskog theory differs by less
than 20% from the simulation value [1,2] in the dense gas and low density liquid
phase. The Enskog approximation is thus not only practically useful in a wide den-
sity range, but it also plays an important role in the mode-coupling theory (MCT)
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[3,4] calculations. As the density increases, each collision of atoms is not indepen-
dent any more and the ring collisions become important. These effects are taken
into account through generalized hydrodynamic modes in the MCT scheme. Most
of the input functions necessary to MCT analysis, such as the density correlation
function, are usually evaluated using the Enskog theory for the hard-sphere fluid.

However, the Enskog theory, at present, is fully developed only for the hard-
sphere fluid and in its present form cannot be applied to more realistic continuous
potentials. Considering the usefulness of the Enskog theory for the hard-sphere flu-
id, it is quite tempting to develop a similar theory for continuous potentials. An
Enskog-type theory for the fluids with continuous potentials should be also useful in
the calculation of the time-dependent memory kernels whose integration over time
provides the transport coefficients. The Enskog-type theory is expected to be a very
good approximation to describe the short-time behaviour of the memory kernel be-
cause the binary-collisions are dominant dynamical processes at short times. This
fact is very important to evaluate the transport coefficient in the high density region
under MCT scheme where the knowledge of the short-time dynamics is indispens-
able. The short-time dynamics depends critically on the details of the intermolecular
potential. So far, ad hoc fitting functions such as the Gaussian approximation have
been used [4,5]. While the Gaussian approximation is satisfactory at very high den-
sities, it fails miserably at low and intermediate densities. Enskog-type theory will
provide a much better understanding of the dynamics without any ad hoc parameter.

In this paper, we develop an “Enskog theory” for the memory kernel and the
self-diffusion coefficient of simple fluids with continuous potentials. Here we shall
focus on the Lennard-Jones and soft-core potential.

2. The memory kernels and self diffusion coefficients

We consider an atom in a simple fluid which interacts with other identical atoms
with a pairwise potential φ(r). The frequency-dependent friction coefficient of an
atom, ζ(z), (which is often called the memory kernel) is given by the Green-Kubo
formula [3],

ζ(z) =
1

3kBT

∫ ∞

0
dt e−zt 〈F (t)·F (0)〉 . (2.1)

Here F (t) is the force between the solute and surrounding solvents at a time t, kB is
the Boltzmann constant and T is the absolute temperature. Note that the integrand
in equation (2.1) is not the usual force-force time correlation function. The time
evolution of F (t) is driven by a projected Liouville operator,

F (t) ≡ exp[iQLN t]F (0), (2.2)

where iLN is the Liouville operator for the N -particle system and Q = 1 − P and
P is a projection operator defined by P ∗ = 〈 ∗ vx〉 vx/ 〈v2x〉. This equation can
be established by using the Mori-Zwanzig projection-operator method [3]. The self-
diffusion coefficient D is related to the friction coefficient ζ via the Einstein relation
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as D = kBT/ζ , where ζ ≡ ζ(z = 0) is the friction coefficient in the stationary
limit. In [6], we have shown that, neglecting all multiple collision contributions, the
memory kernel is given by

ζE(z) = −ρ

3

∑

α=x,y,z

∫

dp
∫

dr f0(p)
∂g(r)

∂rα
[z − iL(r,p)]−1 ∂φ(r)

∂rα
, (2.3)

where ρ is the number density, r and p are the relative position and the relative
momentum of the two particle system, f0(p) is the Maxwell distribution function,
g(r) is the radial distribution function, and iL(r,p) is the Liouville operator for the
relative coordinate of the two particle system. The stationary value is obtained by
putting z = 0 in the above expression and can be given by

ζE =
8ρ
√
π

3(mkBT )3/2

∫ ∞

0
dp

∫ ∞

0
r2dr

∫ π/2

0
sin θdθ p∞p2e−p2/mkBT dg(r)

dr

×{cos [χ(p, h, b)− θ]− cos [χ(p,−h, b) + θ]} , (2.4)

where m is the mass of the atom and h = r cos θ and b = r sin θ are the parallel and
perpendicular distances of the initial position of the two particle system from the
collision center. b is often called the impact parameter. p∞ is the intensity of the mo-
mentum at the final state after the collision and given from the energy conservation

by p∞ =
√

p2 +mφ(r). χ(p,±h, b) is the deflection angle which represents the angle
formed by the directions between the initial velocity and the velocity at t = ∞. The
deflection angle can be evaluated from the solution of the equation of motion with
the initial condition (p, r, θ) for the momentum and position, respectively.

We may prove that equations (2.3) and (2.4) satisfy the following three important
properties.

(i) Equation (2.3) gives the exact initial value for arbitrary density.

ζE(t = 0) =
ρ

3

∫

dr g(r)∇2φ(r), (2.5)

which is the well-known expression for the Einstein frequency. This was first
shown by Pathak et al. [7].

(ii) In the low density limit, equation (2.4) reduces to the familiar Chapman-
Enskog expression [8],

ζE =
16ρ

√
π

3(mkBT )3/2

∫ ∞

0
dp

∫ ∞

0
b db p5e−p2/mkBT {1− cosχ(b, p)} . (2.6)

with the deflection angle χ(b, p) given by

χ(b, p) = π − 2b
∫ ∞

rmin

dr
1

r2
√

1− mφ(r)
p2

− b2

r2

, (2.7)

where rmin is the turning point of the collision process.
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Figure 1. ζE(t)/ζE(0) for T
∗ = 1.5, where t∗ = t/

√

mσ2/ǫ for ρ∗ = 0.1. The solid
line and empty circles are the Enskog calculation and the molecular simulation
results given by Yamaguchi et al. [9] for the Lennard-Jones fluid, respectively.
The dashed line is for the soft-core potential.

(iii) For the hard-sphere potential, we have the well known Enskog expression,

ζE,HS =
8

3
ρσ2g(σ)

√

mπkBT , (2.8)

where σ is the radius of the sphere.

Let us now consider the Lennard-Jones potential defined by

φ(r) = 4ǫ

{

(

σ

r

)12

−
(

σ

r

)6
}

, (2.9)

and the soft-core potential defined by omitting attractive r−6 term from the above
expression. ǫ and σ are the standard Lennard-Jones parameters. In order to evaluate
the memory kernel, one needs the positions at an arbitrary time of all possible
trajectories of the two particle system. This is done by solving the equation of
motion. g(r) was calculated using the Percus-Yevick closure. The result for ρ∗ = 0.1
at T ∗ = 1.5 is given in figure 1 for both of the Lennard-Jones and soft-core potentials.
The result of the molecular dynamics simulation given by Yamaguchi et al. [9] for
the Lennard-Jones fluid is also plotted. Here ρ∗ = ρσ3 and T ∗ = kBT/ǫ. The results
are normalized by their initial values. The agreement with the simulation result is
excellent for the Lennard-Jones fluid. One observes that the initial fast decay is
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Figure 2. DE/DB for the Lennard-Jones and soft-core potentials at T ∗ = 1.5 and
6.0. The result for the hard-sphere fluid is also shown.

followed by a negative tail. This negative dip is due to the attractive part of the
potential. This dip is absent in the soft-core fluid.

The self-diffusion coefficient is calculated from equation (2.4) and the Einstein
relation D = kBT/ζ . In figure 2, we plot the density dependence of DE/DB for the
reduced temperature T ∗ = 1.5 and 6.0. For reference, we also show the Enskog result
for the hard-sphere fluid. For the soft-core fluid, we calculated the self-diffusion
coefficients for different temperatures using the scaling property which holds for
power-low potential fluids,

1

σ

√

m

kBT
D = T ∗−1/lF (ρ∗T ∗−3/l), (2.10)

where l is the exponent of the power low potential and F (x) is a scaling function.
An important point to note is that the deviation of the Enskog values from the
Boltzmann values are always smaller for the continuous potential fluid than those
for the hard-sphere fluid. For the soft-core fluid, the line gets closer to the hard-sphere
as the temperature gets lower. This is expected because at higher temperatures, the
potential becomes effectively less repulsive. On the other hand, for the Lennard-
Jones fluid, the slope in the low density gets steeper while the opposite trend is
observed in the high density region, as the temperature increases. These tendencies
are absent for both the soft-core and the hard-sphere fluid. These results may be
rationalized as follows. It is known that g(r) of the Lennard-Jones fluid is influenced
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Figure 3. D/DE for T ∗ = 1.5. The empty circles are for the Lennard-Jones fluid
at T ∗ = 1.5 [9], The simulation result for hard-sphere fluid is given by filled circles
[2].

mostly by the attractive part of the potential in the small density region. As far
as the structure in liquid is dominated by the attractive force, g(r) is insensitive
to the density. The tendencies are enhanced as the temperature gets lower. This
explains the weak dependence of DE/DB on the density at low temperatures, as
shown in the figure. On the other hand, as the density increases, the repulsive part
starts playing a more important role in g(r). In the repulsion dominated region,
the structure becomes more hard-sphere like as the temperature goes down. For the
larger temperatures, the potential is effectively “softened” and the excluded volume
effect becomes smaller, which leads to lower sensitivity of g(r) on the density. This
explains the larger density slope for the lower temperature.

In figure 3, we plot the ratio of the self-diffusion coefficient to its Enskog value,
D/DE, for the Lennard-Jones fluid at T ∗ = 1.5. The result for the soft-core potential
is not shown because of the lack of the simulation data. The hard-sphere result is
also plotted. The Enskog theory gives the values closer to the simulation results
than the Chapman-Enskog theory at all densities. The figure shows the role of the
correlated (and multiple) collisions for the Lennard-Jones potential. In the hard-
sphere fluid, one sees an increase ofD/DE in the intermediate density followed by the
rapid decrease in the high density region. This behaviour can be semi-quantitatively
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described by the formula proposed based on the mode-coupling theory [5,10];

D =
DE

1 + Rρ

+Rt, (2.11)

where Rρ and Rt are the contributions from the coupling of the solute motion to
the density and the transverse current fluctuations of the solvents, respectively. In
the low density limit, both Rρ and Rt are negligible but as the density increases,
the transverse current term Rt starts to increase first to give a positive contribution
to diffusion. It is due to the back-flow effect where the long-time and long-ranged
current fluctuations make a vortex-shaped flow around the atom which enhances
diffusion. The decrease at even higher density is attributed to the rapid increase of
the density mode contribution, Rρ in the denominator. The increase in Rρ indicates
a jamming effect on diffusion.

For the Lennard-Jones fluid, however, we do not observe any increase inD/DE in
the intermediate density. Instead it decreases monotonically as the density increases.
The decrease in the high density region can be explained by the same “caging”
scenario as for the hard-sphere fluid. On the other hand, the absence of the increase
in D/DE at the intermediate density indicates the absence of any significant back-
flow effect. It is surprising because the back-flow originates from the coupling of
solute’s motion with the long-range hydrodynamic fluctuations and, therefore, it is
expected to be insensitive to the details of intermolecular potential.

There could be two obvious explanations for this sensitivity. The first is that the
transverse current fluctuation is indeed very sensitive to the shape of the intermolec-
ular potential. Rt for the Lennard-Jones fluid might be smaller than that for the
hard-sphere fluid, whereas other contributions, DE and Rρ, remain quantitatively
similar for both the potentials. The second scenario is that Rt is not much different
for both the fluids but DE/(1 + Rρ) is much bigger in the Lennard-Jones than in
the hard-sphere fluid.

There could be an additional scenario which is a bit more subtle. This involves
multiple collisions in fluids for continuous potentials. For hard-sphere potential, the
collision is instantaneous and well-defined. The possibility for three or more particles
to meet at one time is very small and thus can be simply neglected. Therefore, the
deviation from the Enskog values can be attributed to the correlated collisions.
For the continuous potentials, however, the definition of a binary collision becomes
more ambiguous as the density increases since a third particle could be always there
nearby. This multiple collision effect due to the three or more particles is not included
in equation (2.11). The similar analysis for the soft-core fluid is desirable to obtain
the deeper insight of the reasonings mentioned above.

3. Conclusions

In this paper, a generalization of the Enskog theory for the self-diffusion coeffi-
cient and the corresponding memory kernel to fluids with continuous potentials is
given. Our starting point is the Green-Kubo formula rather than the conventional
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kinetic equation. The expression derived in section 2 can be used for fluids with ar-
bitrary potentials. Advantages of our expression over previous works [7] are that one
can relate the Green-Kubo formula to the well-known Chapman-Enskog expression
in a straightforward manner in the low density limit and one needs not integrate
the memory kernel over time in order to evaluate the self-diffusion coefficient. We
evaluated the time-dependent memory kernel and the self-diffusion coefficient for
both of the Lennard-Jones and soft-core fluids. For the Lennard-Jones fluid, agree-
ment of the calculated memory kernel with the simulation result is excellent at low
density. The self-diffusion coefficient evaluated from our theory was compared with
the Chapman-Enskog theory for several densities and temperatures. The result was
also compared with simulation result for T ∗ = 1.5 for the Lennard-Jones fluid. It
was found that the Enskog theory gives very good agreement. The deviations are
within 10% up to ρ∗ = 0.5. The density dependence of D/DE for the Lennard-Jones
fluid is entirely different from that of the hard-sphere fluid. For the Lennard-Jones
fluid, there is no increase of D/DE in the intermediate density region which is signif-
icant for the hard-sphere fluid. Instead, it exhibits a monotonic decrease. This result
might indicate that the effects of correlated and multiple collision to the transport
coefficients are very sensitive to the shape of potentials.

Details of the present paper and more systematic comparison with simulation
results is found elsewhere [6]
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Теорiя Енськога для коефiєнтів самодифузії простих

флюїдів з неперервними потенціалами
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Отримано 1 серпня 2000 р.

Теорія Енськога розвивається нами для коефіцієнта самодифузії у
флюїдах з неперервними потенціалами. Стартуючи із формули Ґрі-
на-Кубо виведені загальні вирази для ядра пам’яті і коефіцієнта са-
модифузії. Розраховано залежне від часу ядро пам’яті і проведе-
но порівняння результатів з даними молекулярної динаміки для лен-
нард-джонсівського флюїду. Отримано чудове узгодження при низь-
кій густині. Коефіцієнт самодифузії розрахований для декількох тем-
ператур і густин. Відношення коефіцієнта самодифузії Енськога до
значення, обчисленого з молекулярної динаміки, представлене як
функція густини для леннард-джонсівського флюїду. Спостерігаєть-
ся суттєва відмінність густинної залежності від відповідної поведінки
у флюїду твердих сфер. Зокрема, добре відомий максимум, що спо-
стерігається у флюїді твердих сфер, повністю відсутній у леннард-
джонсівському випадку.

Ключові слова: теорія Енськога, коефіцієнт самодифузії,

леннард-джонсівський флюїд, ядро пам’яті
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