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The reduced distribution functions
for charged particles
with many-body interactions
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We consider a multi-component system of charged particles that inter-
act via a general many-body potential, and calculate the reduced distribu-
tion functions from the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy
of equations in the form of a screened virial expansion through second
order.
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1. Introduction

The calculation of the spatial distribution of particles in a given physical system
with defined microscopic interactions belongs to the most fundamental problems in
the statistical theory of the equilibrium properties of matter. If the particle species of
the system and the global features of the relevant interaction potentials are known,
one can derive the appropriate Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy as the basic set of equations for the distribution functions (see, e. g., [1]).
Here, it is of particular interest to state whether these potentials are short-ranged,
long-ranged, or even have components of both types, since as soon as long-range
interaction is involved, the BBGKY hierarchy must be screened in a suitable way
to insure convergence of the results.

The present paper deals with a multi-component system of classical particles
that may differ in their mass, charge, and internal structure, and interact through
a very general potential describing the two-body Coulomb forces, and arbitrary
short-range forces between two and more particles as well. In the first part, we
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fully specify the steps in the derivation of the BBGKY hierarchy for this system,
starting from the definition of the reduced distribution function and proceeding to
a decoupled set of differential equations for the coefficients in its virial expansion,
where the adopted screening procedure was proposed by Schmitz [2,3]. The second
part then presents details of getting analytic solutions of these equations for the
first and the second-order virial coefficients which are given as multiple integrals
over various combinations of the screened Coulomb potential and generalized Mayer
cluster functions.

It should be mentioned that the exact determination of the virial expansion of
the distribution function up to a certain order is only the starting-point in our whole
programme to calculate the thermodynamic properties of non-ideal quantum plasma
at low densities within the framework of the effective-potential approach [4,5], and
a series of further papers on this subject will appear in the near future. For the sole
purpose of obtaining the corresponding Helmholtz free energy, however, a formal
treatment of the screened BBGKY hierarchy in terms of Mayer functions is quite
sufficient, and hence we made no efforts to explicitly evaluate the integrals in the
virial coefficients for a special choice of the short-range potentials as, e. g., hard-core
interaction [6]. A brief account of the present results has been already published [7].

2. The screened BBGKY hierarchy

Let us examine a fluid mixture in the volume V at temperature T consisting of
a total number of N charged particles with spatial coordinates {r i} (i = 1, . . . , N)
whose species are denoted by either a1, a2, . . . or a, b, . . . , so that N =

∑

aNa, where
Na is the number of particles of species a. In order to shorten our notation, we only
retain all subscripts for the species but omit the coordinates which always means
that, for any function, Fa1a2... ≡ Fa1a2...(r1, r2, . . .). The interaction between the N
particles is described by the general many-body potential wa1...aN [8] made up of all
two-, three-, . . . , N -particle contributions uab, uabc, . . . , ua1...aN respectively,

wa1...aN =
N
∑

i<j=1

uaiaj +
N
∑

i<j<k=1

uaiajak + · · ·+ ua1...aN . (1)

This interacting multi-component system will be treated with the conventional
methods of classical statistics, and the specific objective of our work is to relate the
spatial distributions of the particles with the irreducible, or component, potentials
ua1...aλ (λ = 2, 3, . . . , N) in equation (1). We begin the calculation by making a
random selection of s particles from the system, 2 6 s < N , for which we define the
reduced distribution function fa1...as as an integral over the exponential of the total,
or direct, potential wa1...aN with respect to the coordinates of the N − s remaining
particles,

fa1...as =
V s

QN

∫

drs+1 . . .drN exp(−βwa1...aN ) . (2)
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β = 1/kBT is the inverse temperature, and the well-known configuration integral

QN =

∫

dr1 . . .drN exp(−βwa1...aN ) (3)

in the denominator of the prefactor in equation (2) guarantees the normalization
of the distribution to V s,

∫

dr1 . . .drs fa1...as = V s, i. e., fa1...as is a dimensionless
function.

In accordance with the separation of theN particles into s andN−s particles, the
total interaction potential, equation (1), can be decomposed into the contributions
wa1...as from the s-particle system and was+1...aN from the (N−s)-particle system, and
the sum of contributions from the mutual interactions between these two systems,

wa1...aN = wa1...as + was+1...aN +
N−s
∑

α=1

w(α)
a1...as,as+1...aN

, (4)

where w
(α)
a1...as,as+1...aN is the composite potential for the interaction between all the

s particles and α particles from the (N − s)-particle system which starts with a
(1 + α)-particle contribution and ends with an (s+ α)-particle contribution, α > 0,

w(1)
a1...as,as+1...aN

=

s
∑

i=1

N
∑

µ=s+1

uaiaµ +

s
∑

i<j=1

N
∑

µ=s+1

uaiajaµ + · · ·+

N
∑

µ=s+1

ua1...asaµ , (5)

w(2)
a1...as,as+1...aN

=

s
∑

i=1

N
∑

µ<ν=s+1

uaiaµaν + · · ·+

N
∑

µ<ν=s+1

ua1...asaµaν , (6)

...

w(N−s)
a1...as,as+1...aN

=

s
∑

i=1

uaias+1...aN +

s
∑

i<j=1

uaiajas+1...aN + · · ·+ ua1...aN , (7)

or, in compact form,

w(α)
a1...as,as+1...aN

=

s
∑

p=1

s
∑

µ1<···<µp=1

N
∑

ν1<···<να=s+1

uaµ1 ...aµpaν1 ...aνα
. (8)

Note that the potentials for the separated systems, wa1...as and was+1...aN , are given
by expressions like equation (1) but with sums running from 1 to s and from s+1 to

N respectively, and one may include α = 0 by realizing that wa1...as ≡ w
(0)
a1...as,as+1...aN .

Now we set out to derive an equation for the distribution function, equation (2),
by taking the gradient ∇

r
≡ ∂/∂r of fa1...as with respect to any coordinate as, e. g.,

r1 and using for wa1...aN the above decomposition. The second term in equation (4),
was+1...aN , does not contribute to this partial derivative, and with equation (8) we
immediately find

∇
r1
fa1...as + fa1...as∇r1

βwa1...as +

s
∑

p=1

s
∑

µ1<···<µp=1

N−s
∑

α=1

N
∑

ν1<···<να=s+1

1

V α

∫

drν1 . . .drνα fa1...asaν1 ...aνα∇r1
βuaµ1 ...aµpaν1 ...aνα

= 0 , (9)
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where the higher distribution functions fa1...asaν1 ...aνα for s + α particles have been
introduced under the 3α-fold integral; to be precise, similar to equation (2) for
α < N − s and fa1...aN = (V N/QN) exp(−βwa1...aN ) for α = N − s, i. e., equation (9)
is a coupled set of integro-differential equations that exactly determines fa1...as for
2 6 s 6 N − 1. While in the case of mere two-body interaction the two-particle
distribution couples to that for three particles, and so on, the general many-body
interaction, equation (1), produces a coupling of fa1...as to the whole sequence of all
higher distribution functions.

Usually one is only interested in the distributions of few particles up to, let’s say,
s = 4 and, therefore, wants to solve equation (9) for s ≪ N . On this condition we
can extend the range of the α summations over the ν’s from s + 1 . . . N to 1 . . .N ,
and then apply the following relation for any function Ga1a2..., that solely depends on
the species, to replace sums over particle numbers with sums over particle species,

N
∑

λ1 6=...6=λα=1

Gaλ1 ...aλα
=

∑

a1,...,aα

Na1 . . . Naα Ga1...aα +O(Nα−1) , (10)

e. g.,

N
∑

i=1

Gai =
∑

a

Na Ga , (11)

N
∑

i 6=j=1

Gaiaj =
∑

a,b

NaNb Gab −
∑

a

Na Gaa , (12)

N
∑

i 6=j 6=k=1

Gaiajak =
∑

a,b,c

NaNbNc Gabc − 3
∑

a,b

NaNb Gaab + 2
∑

a

Na Gaaa . (13)

The contributions from equation (10) of the orders N α−1, Nα−2, . . . , N will vanish
when they are divided by V α and the thermodynamic limit is performed for Na, V →
∞, whereas the partial densities na = Na/V remain finite. In this way one arrives
at the famous BBGKY hierarchy of equations for fa1...as in the generalized version

∇
r1
fa1...as + fa1...as∇r1

βwa1...as +

N−s
∑

α=1

1

α!

∑

as+1

. . .
∑

as+α

nas+1
. . . nas+α

×

∫

drs+1 . . .drs+α fa1...as+α
∇

r1
βwa1...as,as+1...as+α

= 0 (14)

which takes into account many-body interactions. The second term in equation (14)
comes from the direct interaction among the s particles via wa1...as , the third term
describes the collective influence of the N − s particles on the former, where the
potential

wa1...as,as+1...as+α
=

s
∑

p=1

s
∑

µ1<···<µp=1

uaµ1 ...aµpas+1...as+α
(15)
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differs from equation (8) in that the α particles are now those of species as+1, . . ., as+α

at positions rs+1, . . . , rs+α and no longer a varying choice from the N − s particles,

wa1...as,as+1
=

s
∑

i=1

uaias+1
+

s
∑

i<j=1

uaiajas+1
+ · · ·+ ua1...asas+1

, (16)

wa1...as,as+1as+2
=

s
∑

i=1

uaias+1as+2
+ · · ·+ ua1...asas+1as+2

, (17)

...

wa1...as,as+1...aN =

s
∑

i=1

uaias+1...aN +

s
∑

i<j=1

uaiajas+1...aN + · · ·+ ua1...aN . (18)

Though equation (14) has been derived for small s, the distribution fa1...as nev-
ertheless couples to fa1...as+1

, . . . , fa1...aN as in equation (9), but seeing that fa1...as+α

is associated with the density power nα, one might hope to decouple the hierarchy
by expanding the distribution functions at low densities. Such a procedure will only
work without difficulty if all the interactions are strictly short-ranged, i. e., the po-
tentials drop off more rapidly than 1 / r3ij for rij ≡ |ri− rj| → ∞ ; otherwise some of
the resulting integrals will diverge in the thermodynamic limit. In the system under
consideration, however, each particle of species a bears a charge qa, and so the most
characteristic type of interaction is the long-range, two-body Coulomb interaction
via the potential vab(rij) = qaqb / rij, which is part of uab and, hence, also of wa1...as

and wa1...as,as+1
. Because the higher components uabc, uabcd, . . . are supposed to be

short-ranged, vab is the only long-range potential at all, and uab = vab + v′ab can be
written as the sum of vab and a short-range part v′ab. In the same manner, we split
up wa1...as and wa1...as,as+1

, thereby defining the short-range potentials w ′
a1...as

and
w′

a1...as,as+1
,

wa1...as =
s

∑

i<j=1

vaiaj + w′
a1...as

, (19)

w′
a1...as

=

s
∑

i<j=1

v′aiaj +

s
∑

i<j<k=1

uaiajak + · · ·+ ua1...as , (20)

wa1...as,as+1
=

s
∑

i=1

vaias+1
+ w′

a1...as,as+1
, (21)

w′
a1...as,as+1

=
s

∑

i=1

v′aias+1
+

s
∑

i<j=1

uaiajas+1
+ · · ·+ ua1...asas+1

. (22)

At this point of our derivation, screening of the Coulomb potential is introduced,
for which we will utilize the following integral equation [1] in two opposite directions,

βvab − βṽab −
∑

c

nc

∫

dr3 βvac βṽbc = 0 , (23)

191



T.Kahlbaum

that relates the bare potential vab and the screened potential ṽab with each other.
The traditional “forward” use [9] consists in converting equation (23) into a par-
tial differential equation, the linearized Poisson-Boltzmann equation, and solving
it by the Fourier transform method to get the well-known expression ṽab(rij) =
qaqb exp(−κ rij) / rij, where the Debye-Hückel parameter κ =

√

4πβ
∑

a naq2a plays
the role of the inverse classical screening length, as usual. Vice versa, one may
regard ṽab as given quantity and go “backwards” to substitute for the Coulomb po-
tential occurring twice in the BBGKY hierarchy, equation (14), the series expansion

βvab = limN→∞

∑N−2
m=0 G

(m)
ab [3,10], the terms of which are found from an iteration of

the screening equation, equation (23),

G
(0)
ab = − gab , G

(m)
ab = −

∑

c

nc

∫

dr3G
(m−1)
ac gbc , m > 0 , (24)

so that

βvab = − gab +
∑

c

nc

∫

dr3 gac gbc −
∑

c,d

ncnd

∫

dr3dr4 gac gbd gcd + · · · , (25)

with gab = −βṽab being the correlation function in the Debye-Hückel approximation.
In the limit of infinite dilution, na → 0 for all species, the hierarchy reduces

to the first two terms of equation (14) and then has the simple solution fa1...as ∝
exp(−βwa1...as). This suggests constructing an ansatz for fa1...as at finite density in
the form [9]

fa1...as = Ca1...as exp
[

−β
(

s
∑

i<j=1

ṽaiaj + w′
a1...as

)]

, (26)

where screening directly enters through ṽab that replaces vab = limκ→0 ṽab in wa1...as ,
equation (19), and other collective effects are handled by allowing the coefficient
Ca1...as to depend on the particles’ densities under the constraint limna→0Ca1...as = 1.
Inserting equation (26) into the full BBGKY hierarchy, with the term for α = 1 taken
separately, and dividing by the exponential with the help of w ′

a1...as+1
− w′

a1...as
=

w′
a1...as,as+1

and

w′
a1...as+α

− w′
a1...as

= w′
as+1...as+α

+
s+α
∑

λ=s+1

w′
a1...as,aλ

+
α
∑

p=2

s+α
∑

λ1<···<λp=s+1

wa1...as,aλ1 ...aλp

for α > 1, leads to coupled equations for Ca1...as which are free of the bare potential,

∇
r1
Ca1...as + Ca1...as∇r1

N−s
∑

m=1

s
∑

i<j=1

G(m)
aiaj

+
∑

as+1

nas+1

∫

drs+1Ca1...as+1

× exp(−βw̃a1...as,as+1
)∇

r1

(

N−s−1
∑

m=1

s
∑

i=1

G(m)
aias+1

+ βw̃a1...as,as+1

)
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+

N−s
∑

α=2

1

α!

∑

as+1

. . .
∑

as+α

nas+1
. . . nas+α

∫

drs+1 . . .drs+αCa1...as+α

× exp
[

−β
(

s+α
∑

λ=s+1

w̃a1...as,aλ +
α
∑

p=2

s+α
∑

λ1<···<λp=s+1

wa1...as,aλ1 ...aλp

+ w̃as+1...as+α

)]

∇
r1
βwa1...as,as+1...as+α

= 0 . (27)

The screened composite potentials in equation (27), w̃as+1...as+α
and w̃a1...as,as+1

, orig-
inate from the unscreened ones, was+1...as+α

and wa1...as,as+1
, with ṽab instead of vab,

w̃as+1...as+α
=

s+α
∑

i<j=s+1

ṽaiaj + w′
as+1...as+α

(28)

=
s+α
∑

i<j=s+1

ũaiaj +
s+α
∑

i<j<k=s+1

uaiajak + · · ·+ uas+1...as+α
(29)

and

w̃a1...as,as+1
=

s
∑

i=1

ṽaias+1
+ w′

a1...as,as+1
(30)

=

s
∑

i=1

ũaias+1
+

s
∑

i<j=1

uaiajas+1
+ · · ·+ ua1...asas+1

, (31)

where the two-body potential ũab = ṽab + v′ab is the screened analogue to uab.

3. The virial expansion of the distribution functions

As we learnt in the preceding section, equation (27) holds for a many-particle
system with two-body Coulomb interaction and additional short-range interactions
between two and more particles. Since screening has removed all long-range com-
ponents, the hierarchy now only contains screened and short-range potentials, ṽab,
v′ab, uabc, . . . , and thus can be decoupled by doing the virial expansion Ca1...as =
∑N−s

m=0C
(m)
a1...as that is very similar to the one above for βvab. A careful analysis of its

structure clearly reveals that the coefficient C
(m)
a1...as , for m > 0, includes the factor

nas+1
. . . nas+m

, i. e., disregarding at the moment the functional dependence upon κ,

it is formally of the density order nm, and the same correspondingly applies to G
(m)
ab .

This provides the following recipe how one obtains an equation for C
(k)
a1...as: introduce

the auxiliary parameter γ and assign it to each density in equation (27) occurring
as a factor (i. e., not to κ), multiply the terms and collect up those which belong to
γk. The result reads

∇
r1
C(k)

a1...as
+

k
∑

m=1

(

∇
r1
G(m)

a1...as

)

C(k−m)
a1...as
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−
∑

as+1

nas+1

∫

drs+1

[(

∇
r1
Ha1...as,as+1

)

C(k−1)
a1...as+1

−

k−1
∑

m=1

(

∇
r1
G(m)

a1...as,as+1

)(

Ha1...as,as+1
+ 1

)

C(k−1−m)
a1...as+1

]

−
k

∑

α=2

1

α!

∑

as+1

. . .
∑

as+α

nas+1
. . . nas+α

∫

drs+1 . . .drs+α

(

∇
r1
Ha1...as,as+1...as+α

)

×
α−1
∏

p=1

s+α
∏

λ1<···<λp=s+1

(

Ha1...as,aλ1 ...aλp
+ 1

)(

Has+1...as+α
+ 1

)

C(k−α)
a1...as+α

= 0 , (32)

and has been cast in this highly compact form by using sums over G
(m)
ab , equa-

tion (24),

G(m)
a1...as

=

s
∑

i<j=1

G(m)
aiaj

and G(m)
a1...as,as+1

=

s
∑

i=1

G(m)
aias+1

, (33)

and Mayer cluster functions for the composite potentials, equations (29), (31), (15),
α > 1,

Has+1...as+α
= exp(−βw̃as+1...as+α

)− 1 , (34)

Ha1...as,as+1
= exp(−βw̃a1...as,as+1

)− 1 , (35)

Ha1...as,as+1...as+α
= exp(−βwa1...as,as+1...as+α

)− 1 . (36)

Unlike the truncated equation (3.6) in [3], equation (32) displays in its last two

lines the general term needed for the calculation of C
(k)
a1...as , k > 2, and therefore

yields, at least in principle, the complete series of virial coefficients for s particles
at the order k = 0, . . . , N − s. As a consequence of the screened virial, or cluster,
expansion of Ca1...as , the sum over α is now cut off at k, and so C

(k)
a1...as couples to the

coefficients for at most s+ k particles whose order is lowered to k− 1, k− 2, . . . , 0.
Then, it is obvious to solve equation (32) step by step from k = 0 to the desired
order, where the solution must satisfy the boundary condition for vanishing particle
correlations at infinity, lim rµν→∞C

(k)
a1...as = δk,0 (µ < ν = 1, . . . , s). At zeroth order,

k = 0, equation (32) collapses to ∇
r1
C

(0)
a1...as = 0, and in view of the boundary

condition we have at once C
(0)
a1...as = 1.

Although equation (32) would also permit to be treated at higher orders without
too much effort, we will restrict ourselves to the first two non-trivial coefficients
C

(1)
a1...as and C

(2)
a1...as . Let k = 1, and the first-order coefficient C

(1)
a1...as obeys the equa-

tion

∇
r1
C(1)

a1...as
+∇

r1

(

G(1)
a1...as

−
∑

as+1

nas+1

∫

drs+1Ha1...as,as+1

)

= 0 , (37)

from which the result of integration is evident while the integration constant can
be derived as follows. We consider the integral over the cluster function Ha1...as,as+1

,
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equation (35), with respect to rs+1, depending on the
(

s

2

)

= 1
2
s(s − 1) relative

coordinates {rij} = r12, . . . , rs−1 s that are simultaneously sent to infinity. In this
limit, all the component potentials uaiaj ...as+1

in w̃a1...as,as+1
with at least two variables

ri, rj, . . . do not contribute, i. e., only the first sum in equation (31) remains and
∫

drs+1Ha1...as,as+1
approaches

∫

drs+1 Ĥa1...as,as+1
, where we meet the (asymptotic)

cluster function

Ĥa1...as,as+1
= exp

(

−β

s
∑

i=1

ũaias+1

)

− 1 . (38)

According to Guernsey [11], one can identically rewrite Ĥa1...as,as+1
in terms of prod-

ucts of Mayer functions hab = exp(−βũab)− 1 for the screened pair potential ũab,

Ĥa1...as,as+1
=

s
∑

i=1

haias+1
+

s
∑

i<j=1

haias+1
hajas+1

+ · · ·+ ha1as+1
ha2as+1

. . . hasas+1
. (39)

Due to the localization of haias+1
around ri, the overlap between the different h’s in

equation (39) vanishes at infinite particle separation, rij → ∞, and again only the
first sum is left over under the integral. Putting these steps together, we conclude
that

lim
rµν→∞

∫

drs+1Ha1...as,as+1
=

∫

drs+1

s
∑

i=1

haias+1
= const , (40)

which is indeed a constant because of the spherical symmetry of the last integrand.
The other term in equation (37), G

(1)
a1...as, gives no contribution to the integration

constant for the same reason as before, and, with equation (40), C
(1)
a1...as eventually

becomes

C(1)
a1...as

=
∑

as+1

nas+1

∫

drs+1

(

Ha1...as,as+1
−

s
∑

i=1

haias+1

)

−G(1)
a1...as

. (41)

The determination of C
(2)
a1...as , the coefficient at second order, is more difficult

as expected, and requires some additional steps. First, we specify equation (32) for
k = 2,

∇
r1
C(2)

a1...as
+
(

∇
r1
G(1)

a1...as

)

C(1)
a1...as

+∇
r1
G(2)

a1...as
−

∑

as+1

nas+1

∫

drs+1

×
[(

∇
r1
Ha1...as,as+1

)

C(1)
a1...as+1

−
(

∇
r1
G(1)

a1...as,as+1

)

Ha1...as,as+1

]

−
1

2

∑

as+1

∑

as+2

nas+1
nas+2

∫

drs+1drs+2

(

∇
r1
Ha1...as,as+1as+2

)

×
(

Ha1...as,as+1
+ 1

)(

Ha1...as,as+2
+ 1

)(

has+1as+2
+ 1

)

= 0 , (42)

where
∫

drs+1G
(1)
a1...as,as+1 = const and Has+1as+2

= has+1as+2
have been used, cf.

equations (33), (40), and (34). With equation (41) inserted for C
(1)
a1...as , and with the
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two relations

Ha1...as+1,as+2
− has+1as+2

=

= Ha1...as,as+1as+2

(

Ha1...as,as+2
+ 1

)(

has+1as+2
+ 1

)

+Ha1...as,as+2

(

has+1as+2
+ 1

)

and G
(1)
a1...as + G

(1)
a1...as,as+1 = G

(1)
a1...as+1 , we can bring equation (42) to the integrable

form

∇
r1
C(2)

a1...as
+∇

r1

{

G(2)
a1...as

−
1

2

(

G(1)
a1...as

)2

+
∑

as+1

nas+1

∫

drs+1

(

G(1)
a1...as+1

Ha1...as,as+1
− G(1)

a1...as

s
∑

i=1

haias+1

)

−
1

2

∑

as+1

∑

as+2

nas+1
nas+2

∫

drs+1drs+2

×
[

Ha1...as,as+1as+2

(

Ha1...as,as+1
+ 1

)(

Ha1...as,as+2
+ 1

)(

has+1as+2
+ 1

)

+Ha1...as,as+1
Ha1...as,as+2

(

has+1as+2
+ 1

)

−Ha1...as,as+1

s
∑

i=1

haias+2
−Ha1...as,as+2

s
∑

i=1

haias+1

]}

= 0 , (43)

the correctness of which is most easily verified backwards: taking the derivative in
equation (43), employing equation (40) and the symmetry of the terms in the square
brackets against the interchange s + 1 ↔ s + 2, we get a complete agreement with
equation (42). The rest of the calculation is then almost as straightforward as for

C
(1)
a1...as , and the same arguments as above lead to some new contributions to the

integration constant,

lim
rµν→∞

∫

drs+1G
(1)
a1...as,as+1

Ha1...as,as+1
=

∫

drs+1

s
∑

i=1

G(1)
aias+1

haias+1
, (44)

lim
rµν→∞

∫

drs+1drs+2Ha1...as,as+1as+2

×
(

Ha1...as,as+1
+ 1

)(

Ha1...as,as+2
+ 1

)(

has+1as+2
+ 1

)

=

∫

drs+1drs+2

(

has+1as+2
+ 1

)

s
∑

i=1

haias+1as+2

(

haias+1
+ 1

)(

haias+2
+ 1

)

, (45)

lim
rµν→∞

∫

drs+1drs+2Ha1...as,as+1
Ha1...as,as+2

(

has+1as+2
+ 1

)

=

∫

drs+1drs+2

(

has+1as+2

s
∑

i=1

haias+1
haias+2

+
s

∑

i=1

haias+1

s
∑

j=1

hajas+2

)

, (46)

besides those, from the last two terms in equation (43), already familiar from equa-
tion (40), with the three-particle Mayer function habc = exp(−βuabc)− 1. The final
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result is

C(2)
a1...as

=
1

2

(

C(1)
a1...as

)2

−
∑

as+1

nas+1

∫

drs+1

(

G(1)
a1...as,as+1

Ha1...as,as+1
−

s
∑

i=1

G(1)
aias+1

haias+1

)

+
1

2

∑

as+1

∑

as+2

nas+1
nas+2

∫

drs+1drs+2

×
{[

Ha1...as,as+1as+2

(

Ha1...as,as+1
+ 1

)(

Ha1...as,as+2
+ 1

)

−

s
∑

i=1

haias+1as+2

(

haias+1
+ 1

)(

haias+2
+ 1

)](

has+1as+2
+ 1

)

+has+1as+2

(

Ha1...as,as+1
Ha1...as,as+2

−
s

∑

i=1

haias+1
haias+2

)}

−G(2)
a1...as

, (47)

where C
(1)
a1...as , equation (41), has been reintroduced to make this expression shorter.

4. Summary and comparisons

To summarize our paper, we derived the screened BBGKY hierarchy of equations,
equation (27), for the reduced distribution of s charged, classical particles with long-
range and many-body short-range interactions, and solved it for the first coefficients
in the cluster expansion of fa1...as through second order, so that the calculation ends
in

fa1...as =
(

1 + C(1)
a1...as

+ C(2)
a1...as

)

exp(−βw̃a1...as) . (48)

The full expression (41) for C
(1)
a1...as was obtained by Schmitz, equation (3.10) in [3],

more than thirty years ago, but in contrast he failed in getting an equivalent result
for C

(2)
a1...as , which was given by the present author only recently, see equation (6) and

the discussion in [7]. We, therefore, regard the derivation of C
(2)
a1...as , equation (47), in

the last section as the first complete approach to the distribution function at second
order for the described physical system based on the BBGKY hierarchy.

Examples of the coefficients for s = 2 and 3, namely C
(1)
ab , C

(2)
ab , and C

(1)
abc, can be

found in [12] and, in part, compared with Friedman’s corresponding contributions in
graphical representation [9] as far as they are shown in his figure 14.1. In the special

case of pairwise interactions, ua1...aλ ≡ 0 if λ > 2, our expressions for C
(1)
a1...as and

C
(2)
a1...as become identical to Schmitz’ earlier results [13] as it should be; for the sake

of convenience they are repeated here in our notation, especially with equation (38),

Ĉ(1)
a1...as

=
∑

as+1

nas+1

∫

drs+1

(

Ĥa1...as,as+1
−

s
∑

i=1

haias+1

)

−G(1)
a1...as

, (49)

Ĉ(2)
a1...as

=
1

2

(

Ĉ(1)
a1...as

)2

−G(2)
a1...as
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−
∑

as+1

nas+1

∫

drs+1

(

G(1)
a1...as,as+1

Ĥa1...as,as+1
−

s
∑

i=1

G(1)
aias+1

haias+1

)

+
1

2

∑

as+1

∑

as+2

nas+1
nas+2

∫

drs+1drs+2 has+1as+2

×
(

Ĥa1...as,as+1
Ĥa1...as,as+2

−
s

∑

i=1

haias+1
haias+2

)

. (50)

The manner of reduction to these equations from equations (41) and (47) demon-
strates that the effect of higher potential components on the distribution functions
is not simply additive despite the structure of the direct potential, equation (1).
Similar calculations using only pair potentials but with a slightly modified ansatz
for fa1...as have been performed by Guernsey [11] and by Ebeling et al. [14]. Last not
least, equations (49) and (50) coincide for s = 2 with the diagrams for the coeffi-

cients Ĉ
(1)
ab and Ĉ

(2)
ab of the binary distribution fab in the pioneering works by Meeron,

equation (5.4) in [15], and by Yukhnovskii and his students [16–19], equation (2.64)
in [20], way back to the 1950s. More recently, Holovko and Krienke [21] presented
fab in a purely exponential form, their equations (21), (18), and (22), which after
expansion also gets equal to our results.

The detailed knowledge of the distribution function gained in this article consti-
tutes a firm basis for calculating thermodynamic properties. In accordance with the
outline sketched in [22], a subsequent paper will be devoted to the derivation of the
cluster expansion of the Helmholtz free energy up to the fourth cluster integral [12].
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Функції розподілу для заряджених частинок з

багаточастинковими взаємодіями

Т.Кахельбаум

Інститут плазми і лазерної техніки
D-15745 Уілдау, Німеччина

Отримано 14 серпня 2000 р.

Ми розглядаємо багатокомпонентну систему заряджених частинок,
які взаємодіють через загальний багаточастинковий потенціал, і об-
числюємо функції розподілу з ієрархії рівнянь Боголюбова-Борна-
Ґріна-Кірквуда-Івона у формі екранованого віріального розкладу до
другого порядку включно.

Ключові слова: заряджені частинки, функція розподілу, ієрархія
ББҐКІ, віріальний розклад
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