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Short–wavelength asymptotics of time correlation functions (TCF) of simple
classical fluids is considered in the framework of short time expansion.
The explicit expressions for zeroth time moments up to the 8-th order of
cumulant are presented in the framework of additive approach. It is shown
that unlike the dynamic structure factor which is found to have Gaussian
form in short-wavelength limit, nongaussian corrections are present in TCF
“density–energy” and “energy–energy”. The comparison with generalized
collective modes approach as well as data for quantum liquids is discussed.
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1. Introduction

During the last years the investigations of dynamic properties of liquids (sim-
ple [1], quantum [2], polar [3], multicomponent [4]) have shown great interest both
among theoretical and experimental physicists. First of all they deal with the im-
provement of scattering techniques in conjunction with the possibility of a more
complex computer simulation of the dynamic processes in the systems mentioned
above. At the same time, there arises a problem of creating the computer-adapted
theories, which could allow one to carry out investigations of the dynamics of liq-
uids taking the microscopic variables with different space and time scales as a basic
set. In the case of liquids, such a problem is complicated by the absence of a small
parameter in density (or interaction) and the subject of the research should be
time correlation functions (TCF) themselves, where one has to take into account all
collective effects in fluids.

As a rule, the dynamic structure factor S(ω, k), directly related to TCF “density–
density”, is one of the experimentally observable values by neutron scattering. For
ionic liquids one can study TCF “charge–charge” by light scattering on inhomo-
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geneities of electric field [5]. Light scattering experiments allow one to investigate
the dynamics of liquids in the domain of small values of wave vector k and fre-
quency ω, that is in hydrodynamic region. In this domain the dynamic structure
factor S(k, ω) could be expressed via some thermodynamic functions (such as spe-
cific heats, compressibility) and transport coefficients (bulk and shear viscosities,
thermal conductivity) by the mean of Landau–Plachek relation [6]. When going
from hydrodynamic region one has to perform generalization of this formula by
considering k-dependent thermodynamic functions and (k, ω)-dependent transport
coefficients. In such a case, the first of them are expressed through static correlation
functions (SCF), while transport coefficients – via memory kernels, that is, TCF
related to corresponding dissipative fluxes. Such an approach forms the basis of
generalized collective modes conception [7] and demonstrated its efficiency through
various investigations in the liquids [1–4].

On the other hand, one can formally expand TCFs in the series of time t and
estimate the contribution of every order of the moments [8]. Such a procedure turned
out to be the most efficient in the domain of large k > 15 Å−1, when the interaction
of a particular molecule with its surrounding could be neglected. It is possible when
the relation ~k ≫ Fτ is fulfilled, where F denotes the force acting on the molecule,
τ means an effective scattering time and ~ means Planck constant. From this point
of view, it corresponds to incoherent scattering [9]. When k increases, characteristics
of dynamic structure factor (line width, amplitudes) cease to oscillate and approach
their asymptotical values. Thus, in incoherent scattering it is possible to study one-
particle effects. In quantum liquids, short-wavelength scattering is applied to study
the deviation of one-particle distribution function from Maxwellian form [10] or to
determine the Bose condensate fraction in superfluid helium [9].

In this paper, we study short-wavelength dynamics of a simple liquid. It will
be shown that even in the domain of large k, TCF “density–energy” and “energy–
energy”, unlike dynamic structure factor, could not be written down in the Gaussian
form. It should be stressed that short-wavelength asymptotics of these TCFs have
not almost been investigated because contrary to dynamic structure factor, TCFs
“density–energy” and “energy–energy” are not experimentally observed and, conse-
quently, don’t present “independent”interest.

In the next section we investigate TCFs in the domain of large k using short time
expansion up to the 8-th order cumulant. We show that the so-called final-state ef-
fects [8–10] that correspond to the interaction of the particles with its neighbourhood
are negligible in the large k limit. For a dynamic structure factor, this directly results
in its Gaussian form, for the other TCFs the only relevant corrections are related
to the first and to the second moments of interaction potential. In the additive ap-
proach [8] it is possible to obtain the explicit expressions for zero time moments of
TCFs “density–energy” and “energy–energy” well convergent almost in all cases. In
the last section there is a brief discussion of the obtained results in their connection
with the generalized collective modes approach [7,11].
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2. Short time expansion of TCF

The subject of our interest are TCF ΦAB(k, t) constructed on the dynamic vari-
ables Â(k), B̂(k) and defined as follows1:

ΦAB(k, t) = 〈∆Â(k) exp{−iL̂t}∆B̂(−k)〉; ∆Â(k) = Â(k)− 〈Â(k)〉, (1)

where iL̂ means Liouville operator and averaging is being performed over the equi-
librium distribution. For quantum systems, there is a corresponding definition of
TCF [13]:

ΦAB(k, t)=

1
∫

0

〈∆Â(k, t+ i~βτ)∆B̂(−k)〉 dτ, (2)

where β = 1/T means inverse temperature (we put Boltzmann constant to be equal
to unity) while time dependance of the operators is introduced through Heisenberg

representation with Hamiltonian Ĥ ; iL̂Â(k) ≡ ˙̂
A(k) = i/~

[

Ĥ, Â(k)
]

.

Fourier transform of TCF “density–density”

S(k, ω) =
1

2π

∞
∫

−∞

exp(−iωt)Φnn(k, t) dt (3)

is directly related to the dynamic structure factor (in quantum case, the Fourier
transform of TCF Φnn(k, t) defined according to (2) determines symmetrized dy-
namic structure factor Ssym(k, ω) [13], which by means of a detailed balance principle
could be related to the experimentally observed nonsymmetrized dynamic structure
factor).

Let us choose the Fourier transforms of hydrodynamic variables as a basic set:
number density

n̂(k) =
1√
N

N
∑

i=1

exp(ikri), (4)

longitudinal component (along the wave vector) of momentum density

ĵ(k) =
1√
N

N
∑

i=1

kpi

k
exp(ikri) (5)

and total energy density

ε̂(k) =
1√
N

N
∑

i=1

(

p2
i

2m
+

N
∑

j 6=i=1

U(|ri − rj |)
)

exp(ikri), (6)

1We will use the abbreviation TCF for Fourier transforms of the corresponding time correlation
functions as well.
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where ri and pi denote the position and the momentum of the i-th particle,m means
the mass of the particle, N means the total particle number and U(|r i−rj|) denotes
the total interaction potential of the system.

TCF (1) could be formally expanded in series of t and then presented as a
cumulant exponent [8,9,12]

ΦAB(k, t) = M0(k) exp

{

∞
∑

s=1

(−1)s
t2s

(2s)!
K2s(k)

}

, (7)

where M0(k) = ΦAB(k, t = 0), and cumulants Ks(k) are related with the corre-
sponding moments

M2s(k) =
〈(iL̂)sÂ(k)(iL̂)sB̂(−k)〉

M0(k)
(8)

in the well-known manner [14]:

K2 = M2; K4 = M4 − 3M2
2 ; K6 = M6 − 15M4M2 + 30M3

2 ;

K8 = M8 − 28M2M6 − 35M2
4 + 420M4M

2
2 − 630M4

2 . (9)

Obviously, it is difficult to explore the expression (7) in calculation of time and
frequency moments of TCFs. Frequently, additive approximation for short time ex-
pansion of TCFs is used [8–10]:

ΦAB(k, t) = M0(k) exp[−1/2K2(k)t
2]

{

1 +
∞
∑

s=2

(−1)s
t2s

(2s)!
K2s(k)

}

. (10)

Now, all the necessary integration could be easily performed: one can obtain analytic
expressions both for time and frequency moments of (10). The subject of our interest
are zeroth time moments of TCFs because exactly these functions along with SCFs
define the elements of a dynamic matrix in the generalized collective modes approach
[7]. Thus we have:

TAB(k) =

∞
∫

−∞

ΦAB(k, t) dt = g2(k)

{

1 +

∞
∑

i=2

(−1)i

2ii!

K2i(k)

Ki
2(k)

}

, (11)

where g2(k) denotes Gaussian contribution of TCFs in the additive approach form:

g2(k) = M0(k)

√

π

2

M0(k)

K2(k)
. (12)

Now we are ready to consider all particular cases for {Â, B̂} = {n̂(k), ĵ(k), ε̂(k)}.
To obtain the explicit expressions for cumulant expansion of TCFs and their

zero order time moments, let us present the expressions for some SCFs in the limit
k∗ ≫ 1 (the expressions for the other high-order SCFs, the reader could find in [7]):2

Fnn(k, 0) = 1; Fnε(k, 0) =
3

2
T + 〈φi〉; Fεε(k, 0) =

15

4
T 2 + 3T 〈φi〉+ 〈φ2

i 〉;

2We use denotation k
∗ = kσLJ for a dimensionless wave vector where σLJ means the diameter

of Lennard-Jones particle.
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Φj̇ε(k, 0) = ikT

(

5

2
T + 〈φi〉

)

; Φj̇ j̇(k, 0) = Cjj + 3T 2k2;

Φε̇ε̇(k, 0) = Cεε +
T

m

[

35

4
T 2 + 5T 〈φi〉+ 〈φ2

i 〉
]

k2. (13)

In (13) we have introduced the following notations: φi = 1/2
∑N

j 6=i=1U(|ri − rj|),
Cjj = 1/3〈F 2

i 〉 > 0, where dots mean the action of Liouville operator on the corre-
sponding dynamic variables, F i means the force acting on the i-th particle from the
remaining molecules and the positive constant Cεε is related to the derivative of the
total energy of the i-th particle.

From the relations (13), it is seen that to calculate the corresponding SCF, one
has to know the distribution function one order lower in comparison with the case of
intermediate k. For instance, to calculate the static structure factor S(k) ≡ Φnn(k, 0)
it is sufficient to know one-particle distribution function which is known to be equal
to unity in the uniform case, the information about binary function allows one
to evaluate Φnε(k, 0) and to calculate Φεε(k, 0) it is necessary to know the triple
distribution function.

Now let us turn our attention to the two last formulae in equation (13). The
second terms in Φj̇j̇(k, 0) and Φε̇ε̇(k, 0) are dealt with kinetic component of stress
tensor and heat current respectively. They are of the leading order in the wave
vector while the first terms describe the contribution of a potential component of
the mentioned dynamic variables and form the so-called final state effects in neutron
scattering experiments [8–10]. The other higher order SFCs involved in cumulants
(9) have a similar form. In fact, they are series in k where the leading term gives
the main contribution in the corresponding TCFs.

Now we consider TCF “density–density”. Taking use of the expression for SCFs
one can write down the Gaussian contribution as follows:

gnn2 (k) =
1

k

√

πm

2T
∼ (vTk)

−1, (14)

where vT =
√

2T/m means the thermal velocity of the particle. The contributions of
higher cumulants in (11) contain the only terms related to the final state effects which
are found to be proportional to k−3. The terms related to the kinetic components
of the corresponding fluxes cancel each other for Maxwellian distribution that could
be easily verified. When we have a quantum liquid with a distribution function
in a momentum space which differs from Maxwellian form, the contributions from
K2i(k), i > 2 are comparable with Gaussian part, and hence could be observable on
the dynamic structure factor in high energy scattering experiments [8–10].

To calculate Tnε(k), note that the main contribution in higher moments ofM nε
2s (k)

arising from kinetic parts of the fluxes could be calculated explicitly:

Mnε
2s (k

∗ ≫ 1) =
ik

m

〈(iL̂)sĵ(k)(iL̂)s−1ε̂(−k)〉
Φnε(k, 0)

=
k2sT s

ms

s+ 1.5 + x

1.5 + x
(2s− 1)!!,
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where we have introduced the notation x = 〈φi〉/T for a dimensionless mean poten-
tial. Now the expression for Tnε(k) can be presented as follows:

Tne(k) = gnε2 (k)

{

1− 3

8
a2 − 5

8
a3 − 105

64
a4 + o(k−2)

}

, a = (2.5 + x)−1, (15)

where we have omitted cumulants higher than the 8-th while the Gaussian contri-
bution equals

gnε2 (k) =
1

k

√

πmT (1.5 + x)3

2(2.5 + x)
. (16)

Note that the formal divergency of series (15) for slightly attractive potentials with
−2.5 6 x 6 −1.5 is only the result of an additive approach (10). When we operate
with a more general form (7) for TCF, no divergency is observed but then we
can evaluate a zero order time moment only numerically for each particular mean
potential. Of course, one has to pay attention to the sign of the highest cumulant
retained to obtain a convergent result (for instance, Knε

6 (k) is found to be negative
for an attractive potential and this is true for slightly attractive potentials in case
of Kεε

6 (k) as well).

In a similar way, having calculated higher moments for {A,B} = ε

Mεε
2s (k

∗ ≫ 1) =
k2sT s

ms

(2s− 1)!!

3.75 + 3x+ y

{

y + (2s+ 3)x+
(2s+ 3)(2s+ 5)

4

}

, (17)

where y = 〈φ2
i 〉/T 2 denotes the dimensionless second moment of potential, we can

present zeroth time moment of TCS Φεε(k, t) in the explicit form:

Tεε(k) =

= gεε2 (k)
{

1 +
3

16
(4y − 8x2 − 28x− 35)b2 +

5

8
(x+ 2.5)(55 + 44x+ 16x2 − 12y)b3

− 105

512

[

2225 + x(3560 + 2544x+ 896x2 + 128x3 − 544y − 128xy)

+ 16y(y − 42.5)
]

b4 + o(k−2)
}

, b = (8.75 + 5x+ y)−1, (18)

where we have for Gaussian contribution:

gεε2 (k) =
T

k

√

πmT (3.75 + 3x+ y)3

2(8.75 + 5x+ y)
. (19)

The questions concerning the convergency rate for series (11) as well as the contri-
bution of higher order cumulants could be answered separately for each particular
interaction potential and they are not the subject of our interest.
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3. Discussion

In the framework of generalized collective modes approach [7] TCF ΦAB(k, t)
could be presented as a sum of the weighted exponent

ΦAB(k, t) =

M
∑

α=1

GAB
α (k) exp{−zα(k)t}, (20)

where zα(k) denote eigenvalues of a generalized dynamic matrix with elements con-
sisting of SCFs and zero order time moments TAB(k), amplitudes GAB

α (k) are related
to its eigenvectors and sum runs over all collective excitations M depending on the
number of dynamic variables for each particular model: M = 3 for hydrodynamic
level of description [6] when {Â, B̂} = {n̂(k), ĵ(k), ε̂(k)}, M = 5 for thermoviscous
model when first derivatives of momentum and energy densities are included into
the set (4)–(6) and so on.

Now taking derivatives of ΦAB(k, t) in equation (20) with respect to time up to
the s-th order and equating them with short time expansion of TCF in the limit
k∗ ≫ 1, one can prove a collective excitation zα(k) to be linear in a wave vector for all
collective modes while the amplitudes GAB

α (k) are found to approach their constant
asymptotic values (note that the same result could be found by a direct investigation
of generalized dynamic matrix spectrum in the high k limit [7]). Moreover, there is a
reciprocal correspondence between the number of dynamic variables considered and
the order of frequency moment up to which the particular TCF is being correctly
reproduced [11]). For instance, for a dynamic structure factor in the framework of
5-variable thermoviscous model, one can obtain a correct expression up to the 4-th
frequency moment [11,13].

The value of k at which the excitation spectrum approaches its linear form is
closely related to the incoherent scattering regime when final state effects could be
neglected [8] and the dynamic structure factor takes its Gaussian form. The devi-
ations of the other TCFs from Gaussian shape is caused by nonzero higher orders
cumulants calculated in the previous Section. In nondegenerated quantum liquids
due to the deviation of distribution function in momentum space from its Maxwellian
form the Gaussian shape of Ssym(k, ω) is distorted too [10]. The corresponding series
are found to be well convergent and the contribution of higher cumulants could be
neglected. We believe TCFs “energy–density” and “energy–energy” are well conver-
gent for all realistic potentials but as we have already mentioned this could be the
subject of a separate study.
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Короткохвильова асимптотика часових

кореляційних функцій

В.В.Iгнатюк

Інститут фізики конденсованих систем НАН Укpаїни,

79011 Львів, вул. Свєнціцького, 1

Отpимано 1 серпня 2000 p.

Короткочасова асимптотика часових кореляційних функцій (ЧКФ)

простих рідин розглядається в рамках методу розкладу за малими

часами. Вирази для нульових часових моментів з точністю до 8-го

кумулянта представлені в наближенні адитивного підходу. Показа-

но, що на відміну від динамічного структурного фактора, який має

гаусову форму в короткохвильовій границі, в ЧКФ “густина–енергія”

та “енергія–енергія” наявні негаусові поправки. Результати порівню-

ються з концепцією узагальнених колективних мод та даними для

квантових рідин.

Ключові слова: часові кореляційні функції, короткохвильова

границя, узагальнені колективні моди, кумулянтний розклад
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