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The excited states structural analysis (ESSA) which was previously developed by the
author and coll. (1980, 2010) is extended to a typical equation-of-motion approach within
the coupled cluster theory. The extended ESSA allows one to interpret highly correlated
excited states, particularly those which occur in molecular singlet fission processes and
related optoelectronic devices.

Passuteiit pamee asTopom u corp. (1980, 2010) cTpyKTypHBIII aHAIU3 BO3OYKISHHBIX
COCTOSHHUII paclIMpeH Ha CAyd4Yail MeTona ypaBHEHUU ABUMKEHNA HPUMEHHUTEILHO K Teopuu
CBABAHHBIX KJACTepoB. PaciimpenHas cxeMa aHAJIN3A II03BOJISET MHTEPIPETUPOBATE CUIBHOKOD-
penupoBaHHbIe BO3OYMKIEHHBIE COCTOSHIS, BOSHUKAIOI[NE B YACTHOCTH B MOJEKYJISAPHBIX IIPO-
IIeccax CHHIVIETHOI'O PACIICIUIEHWA U B COOTBETCTBYIOIIUX OIITOSJIEKTPOHHBIX YCTPOMCTBAX.

CrpykTypHHii aHanmi3 30yq:KeHHX CTaHIB AJA KOPEJIHOBAHUX 0araToeJeKTPOHHHUX CHUC-
TeMm. A.B.JIysaHo8.

CrpyrTypHMil aHamis 30yAsKeHUX CTaHiB, 110 IIOTO paHille PO3BMHYTO aBTOPOM Ta CIIiBP.
(1980, 2010), momrpeHO HA BUMAAOK MeETOAY PIBHAHb PYXY CTOCOBHO Teopii 3’BABaHUX
KJacTepiB. ¥YsaraiabHeHa CXeMa aHaJi8y A03BOJSAE IHTEePIPETAIil0 CUJILHOKOPEIHOBAHUX
30y/PKeHUX CTAHiB, IO BUHUKATL Y MOJEKYISIPHUX TPOIEcax CUHTVIETHOTO POBIETJIEHHS
Ta BiAMOBIIHMX ONTOENEKTPOHHUX TPUCTPOAX.

© 2014 — STC "Institute for Single Crystals”

1. Introduction

Excited states analysis of complex mo-
lecular structures remains one of the princi-
pal topics of the molecular electronic struc-
ture theory and its multifarious applica-
tions. In particular, understanding of
excited states and the microscopic theory of
photoarrangements provides a conceptual
framework for devising new materials from
"first principles”. These problems are of
deep interest in the modern optoelectronics
(OLEDs [1, 2], solar cells [3], multiple exci-
ton generation in quantum dots [4], singlet
fission processes [6—7], and many others).

Many years ago a practically useful ap-
proach was proposed [8] for analyzing the
so-called CIS (singly excited configuration
interaction) states. Our approach was
termed the excited state structural analysis

Functional materials, 21, 2, 2014

(ESSA) [9, 10]. The key quantities of ESSA
are the excitation indices L*, and charge
transfer numbers !, _,p, giving together an
intuitive chemical-like description of the
CIS states.

The extension of the previous ESSA
scheme [8] to the popular TDDFT method
(the time-dependent density functional the-
ory) was given in [9]. Nevertheless, CIS and
TDDFT are not reliable models for highly
correlated electronic states. Just such are
the electronic states involved in the multi-
ple exciton generation and singlet fission
processes. Therefore, we need an extension
of the ESSA scheme to multiconfigurational
excited states other than too simplified CIS
or DFT states. Unfortunately, the more ad-
vanced approaches to the excited state
analysis (via one-particle transition density
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matrices) [10, 11] are seemingly not able to
treat some important excited states which
occur in multiple exciton generation proc-
esses. One of many-body approaches which
effectively treat electron correlation in ex-
cited states is the EOM-CCSD scheme (equa-
tion-of-motion coupled-cluster singles and
doubles method) [12]. A simplified EOM-
CCSD variant in the form of the so-called
SAC-CI (symmetry adapted cluster/configura-
tion interaction) method is just applicable to
multiexciton states [4]. Thus the primary
purpose of the present work is to provide the
intuitive understanding of the appropriate
sophisticated correlated methods by con-
structing suitable EOM-CCSD analogues of
the above mentioned indices L* 4 and I, p.

2. ESSA for single excited
configuration interaction

Following [8, 9] we shortly recall the
ESSA basic notions. Given a molecule con-
taining fragments (molecular subunits) A,
B, ..., C, let the state vector |AB...C) (a
formal reference product of the fragment
wave functions) be a representation of the
ground-state wave function. How to esti-
mate a percent excitation character which
can be assigned to each molecular fragment
A? The corresponding quantity L*A (excita-
tion index) can be introduced to give the
probability of the excitation localization on
the given fragment A. By construction, the full

set {L*,} is normalized to unity: ZLA =1.
A

One can further detail the analysis by dis-
tinguishing two excitation localization types.
The first one is referred to as purely local exci-
tations |A*B...), |AB"...) etc. (LE type), while
the second one is referred to as charge transfer
excitations |ATB™...), |[A"B"...), etc. (CT type).
With each LE type |A*B...) we will relate
the corresponding probability weight I,
(partial excitation localization index), and
with each CT type |ATB™...) we will relate a
weight I, p (charge transfer number, or CT
number). It is natural to make the identifi-
cation [, _,4, =14, and then the full prob-
ability set {I4_,p} should be also normalized
to unity. Two sets, {L",} and {l, g}, are
interrelated as follows:

L:Z:E(ZA_>3+ZB_>A)/2. For CIS wave
B

functions, the CT numbers are computed
very simply [8, 9, 13].
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3. EOM — CCSD in a nutshell

Before extending ESSA we recall the
main features of the EOM-CCSD theory of
excited states [12]. The key idea of the
equation of motion method is to find a gen-
eral type excitation operator R, such that it
will generate an excited state as follows:
[Py =IA%|‘P0) where [P0) is an exact or al-
most exact ground state wave function. It
allows to study highly correlated states by
taking into account most essential elec-
tronic degrees of freedom of R [12, 14]. Re-
ally, R can be generally decomposed into
components including the most important
one-body R; and two-body R, excitation op-

erators. In practice |[¥*) is taken as the
CCSD ground state vector, so [¥*) =
(R, +R,)[¥0). Operators R, and R, can be
formed as the usual one-electron and two-
electron excitation operators:

occ vac 1)
Do +
R1 - 2 2 Tai®q%i»
i a
occ vac

Ry = %2 2 Tab,ij 4 950 %;-
ij ab

Here a} is a creation operator for vacant
(virtual) spin-orbital |@,), @; is an annihila-
tion operator for occupied spin-orbital |g;),
and r,;, Tab,ij are corresponding excitation
(particle-hole) amplitudes. Then the special
EOM-CCSD secular problem is formulated
for amplitudes rg;, Tabij- However, in the
EOM-CCSD approach the Hamiltonian ma-

trix is non-Hermitian, and the corresponding
eigenvectors obey the specific normalization

condition: Y l,ira; + Y lap ijTap,ij = 1 where Iy,
a,i ab,ij

lab,ij are components of the left eigenvector

corresponding to the right eigen vector with

components rq;, yp jj-

4. ESSA for EOM-CCSD

Now we proceed to our main problem:
how to define CT numbers at the EOM-CC
level. As in the case of CIS states we must
transform excitation amplitudes r;, Tabij»
etc. to an orthonormal atomic spin-orbital
basis {[,)}. This customary procedure gives
us atomic amplitudes Tuv Tuv,po €te., and in
these notations the normalization is equiva-
lent to the equation
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DTy + Dhav,poTav,po = 1- @

uv uvpo
The individual contributions here can be
analyzed in the same manner as similar
atomic terms (‘ltw)2 in the CIS theory [8, 9].
Indeed, in practice the right and left vector
components, such as ry, and [, turn out to
be sufficiently close each other. Thus, terms
lwrMl = r‘w2 allow the same interp;‘etation as
purely local excitation indices (TMM) = lM sy N
[8, 9]. Analogously, the other terms in the
probability sum (2) can be naturally charac-

terized in terms of LE and CT states.

For definiteness, below we present the charge
transfer analysis for a two-fragment molecule
AB. The required additional information can be
extracted from atomic two-electron excitation
amplitudes ry, o5 and f, 5. We recall that the
CIS atomic amplitude Ty has a meaning of the
probability amplitude for transferring single elec-
tron from [x,) to |XM>' In the same manner, EOM-
CCSD atomic amplitudes can be interpreted. For
instance, if u,v,p,0€A4, then the quantities Wyy
= lu,vru,v and Wiy o0 = duv,pe”uv,po contribute to
the purely local excitation |A“B...). As a result,
we obtain the partial localization index I, at the
EOM-CCSD level:

1y = WHA*) + WIlA™), (3)

where
@A)
wian =Y w,,, (4)

uv
“)

WHA™) =Y w

Uvpo
Analogously, Ig is defined: Iz = WI(B*)+
WI{B**). The EOM-CCSD charge transfer

numbers can be computed in terms of indi-
vidual probabilities w as follows:

1,V,p0 -

uv,po?
Ly, g=WIA*B") + WIA*B") +
+ WI(A*B*) + WI[(At*B—),
A (B
wlate) =3 Yw,,

uov
@) (B)

wiA*B) = 2 Yw,

upo v
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oup

) (B
Wit = 2Y Ywysy > (5)

U vpo
Q) (B)

WII(A++B——) = 2 ZwVG,Mp
up vo

Evidently, lp_,4 is produced by inter-
changing A and B in (5).

The rest term from the probability sum
(2) is the index

A4) B) (6)

Lip=4Y 2wuv,p0

up vo

This is an additional localization quan-
tity which could not appear in the CIS-type

oversimplistic schemes because Ijp corre-

sponds to contributions from biexcited
states |[A*B*...) (analogues of biexcitons in
the solid state optics). Finaly, consistent
with all these relations, we define the EOM-
CCSD excitation index L*A as follows:

Li=ly+(4 ,g+lg a+Ulpr2. (1)

The analysis of a many-fragment mole-
cule AB..CD is both complicated and en-
riched by extra types of excitations such as
JATB~C*...) and |[ATBC*D ...). The ESSA
full account for this general case will be
given elsewhere. Notice that it is possible
that for highly excited states some indices,
e. g., WI(A*TB™™), can be negative, yet
small, values. In this case one may use the
absolute index values or pass to the Hermi-
tized EOM-CCSD theory.

5. Application and discussion

We will illustrate the given extended
ESSA scheme by two simplest examples (see
Table). The results for three lowest-lying
electronic transitions of both systems are
presented. Each state is characterized by
the ESSA diagram, the double excitation
weight (6), I}, in %, and the collectivity
number K [8, 9]. In the ESSA diagrams we
display, in %, the fragment excitation indi-
ces L*A (at the fragment center or near the
fragment) and the corresponding CT num-
bers I,_,p (at the arrows).

Our first example is the calicene (triap-
entafulvalene) representing a rather typical
conjugated m-system which has been studied
frequently within m-approximation even in
the modern literature (see [15] and refer-
ences therein). The calicene T-system is con-
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Table. ESSA diagrams (all indices in %), double excitation contributions I}z (in %), and transition

collectivity indices k for three lowest-lying m — n* calicene transitions (the left panel) and 6 — ¢*

transitions in the hydrogen dimer (the right panel).

ESSA " ESSA "

No diagram L x| No diagram ap K
762 N

1 » 4 44 212| 1 —<:::]100 0. 1.00
\2_/
765 ™\ o -

. 919 o —— |1

2 » Q 48 212 2 Q/] 0. 100
\2/
790 N 49 -

7 7 |51
3 4 101 1.38] 3 97\] 0.1 1.03

sidered here by applying the conventional
Pariser-Parr-Pople model. The correspond-
ing fragments are the five- and three-mem-
bered carbon rings. We see that the lowest
nn* excitations are assigned to transitions
involving a strong CT. From the direction
of this CT we also observe that the calicene
lowest excited states become less aromatic
that in the ground state. It is essential that
this assignment is obtained in the frame-
work of the high-level electron correlation

EOM-CCSD) theory (see the [%; values in
( v AB

the Table). Incidentally, the transitions are
of a small collectivity. Notice that collectiv-
ity numbers turn out to be quite important
physically for detecting plasmon-like excita-
tions in large molecular systems [16].

The second example is the hydrogen
molecule dimer (Hj,);. For the dimer we
used the observed T-shaped geometry and
carried out the ab initio EOM-CCSD
scheme employing the standard 6-31G
basis set. From the Table we observe that
two lowest-lying transitions are fully lo-
calized on corresponding individual H,
molecules, whereas the third transition is
delocalized and of almost pure CT charac-
ter. These excitations are very similar to
the related CIS states. In addition, how-
ever, EOM-CCSD also allows us to produce
a highly correlated excited state (the fifth
one which was not included in the Table).
The state turns out to be predominantly
biexcited in its nature (I} = 98 %). More
then that, this state has a triplet-triplet
(TT) character. It is just the kind of mo-
lecular excitation which, with some addi-
tional requirements, permits the remark-
able singlet fission photo process (a fis-
sion of the singlet excitation into pairs
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of triplet ones) [6]. In our example the
above assignment to TT-transition is con-
firmed by direct calculations of local squared
spins (the computational scheme [17] is used).
Namely, spin-spin autocorrelators (S,-S,) =
(Sp'Sp) =1.95, that is, in the dimer each
hydrogen molecule is in fact a triplet spe-
cies.

On this account we suggest that EOM-
CCSD, SAC-CI and related models have yet
untapped potential for studies of specifi-
cally entangled spins occurring in singlet
fission and related photovoltaic phenomena
[7, 2]. Previously, such a possibility was not
expected based on few unfavorable examples
in EOM-CCSD applications [18]. At any
rate, additional studies including the pro-
posed ESSA approach for analyzing the
EOM-CCSD excited states are worth under-
taking.
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