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The temperature dependence of the dispersion and damping coefficients
of transverse excitations in metallic alloy Mgr¢Zn3, at the number den-
sity n = 0.0435 A3 is studied using the method of generalized collective
modes. The spectra of generalized transverse modes have been obtained
within the four-variable approximation for three temperatures 1210 K, 833 K
and 713 K. It is shown that the propagating gap which characterizes the
crossover between hydrodynamic fluid-like and viscoelastic solid-like be-
haviour reduces when the temperature decreases. The generalized k-de-
pendent shear viscosity 7(k) calculated within the same approximation in-
creases rapidly at £ = 0 and its shape becomes more narrow by transition
from a well-defined liquid state to an undercooled one.
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1. Introduction

Dynamical properties of the glass-forming metallic alloy Mg7oZn3o were the sub-
ject of numerous experimental [1-4] and theoretical [5-7] studies due to well-defined
collective phonon-like excitations in amorphous state. The spectra of collective ex-
citations of another glass-forming system Zrg;Nizs have been investigated in [8] at
four different thermodynamic points both above and below the melting temperature.
However, the region of very small wavenumbers, where the transverse propagating
gap could be located, has not been reached. In the cited theoretical investigations
a very simple analysis of power spectrum of ‘current-current’ correlation functions
was applied to derive the dispersion of collective excitations.
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In this paper we report investigations of the generalized transverse excitations
spectra in glass-forming metallic alloy Mg7oZn3o based on the modern method of gen-
eralized collective modes (GCM) [11,12], which enables us to analyze MD-derived
time correlation function in terms of partial contributions corresponding to eigen-
modes of the system considered.

As far as we can judge, this work is the first application of the parameter-free
GCM approach to the study of transverse excitations in a binary mixture. Most at-
tention in our research is paid to the study of two main objectives: (i) the calculation
of collective transverse mode spectrum in MgrqZn3y and the study of temperature
dependence of the propagating gap width; (ii) the investigation of the generalized
static shear viscosity behaviour in liquid glass-forming binary alloy by decreasing
temperature into undercooled region.

2. Theoretical framework

The general expressions of the GCM method (see [12,14,15]) can be applied to
the system investigated through the appropriate choice of basis set of dynamical
variables. Since there is only one conserved transverse variable the basis set A (k, 1)
of dynamic variables for the transverse fluctuations in a binary liquid consists of the
total transverse current operator J(k,t)

2 Na

J(k,t) = Jy(k,t) = J}(k,t) + J2 (K, ) \/_ 3> mgvl; explikrgit), (2.1

a=1i=1

(ra;, v%; denote a position and a transverse component of velocity of the ith particle
for the ath species) and its first time derivatives up to the s-th order, namely,

Ak, 1) = {Ai(k, D)y = [Tk, 1), J(k, 1), J (k. 1), ... GLw)* T (k. )1, (2.2)

where iLy is the Liouville operator and .J(k,t) = iLyJ(k, t), J(k,t) = (iLy)2J (k, ).
Thus, we have A;(k,t) = (iLy)""'J(k,t), i=1,2,...,5+ 1.

To obtain the expression for transverse ‘current-current’ time correlation function
F}?(k, t) in the hydrodynamic limit it is enough to consider the only variable J(k,t)
[14], and this corresponds to the case s = 0. Thus, the well-known single-exponential

form for F\")(k, ) [9,10],
M
Fyy(k,1) = kT exp{=nk’t/p} = phaT exp{~t/7};}. (2.3)

is easily reproduced, where p = M/V and 7 are a mass density and shear viscosity,
respectively. Note that M = m{N; +msNy and N = Ny + N,. For the intermediate
values of wavenumbers k and frequencies w, where the short-time kinetic properties
become more important, one has to consider an extended set of dynamic variables.
In our study we use the basis set of dynamic variables (2.2) with s = 3 containing
the total current operator and its first three time derivatives as well. This means
that the first frequency moments of the function F}?(k, t) are explicitly reproduced
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up to and including the sixth order moment [14]. This result can be improved in a
systematic way by taking into account the higher-order time derivatives in (2.2).

To calculate the generalized collective mode spectrum one has to solve the eigen-
values problem for the matrix T(k) which is simply expressed via the matrices
of static correlation functions F(k) = F(k,t = 0) and the Laplace transforms
F(k) = F(k, 2 = 0) [12-16]. The explicit expressions for these matrices for s = 3
can be found in [14]. It is worth mentioning that all the matrix elements of F (k)
and F(k) are the static correlation functions which can be directly determined by
molecular dynamics. Only one exception is a quantity 7, (k),

TJJ(k) /OOO FJJ(k, t)dt, (24)

= Fyy(k,0)

which is of dynamical origin and is called the transverse correlation time [12,13].
However, as it is seen from (2.4), 7;;(k) can be calculated in computer experiments
as well.

To carry out calculations in the region of extremely small k-values, having not
been accessed in MD, we used the extrapolation procedure developed for describing
the k-dependence of matrix elements Fj;(k) and Fj;(k) in [16]. This procedure has
been successfully applied to the study of transverse excitations in liquid Cs near the
melting point [16].

3. Results and concluding remarks

To study the liquid metallic alloy Mgr¢Znsy we have performed MD simulations of
a system composed of 864 particles with the number density n = 0.0435 A= at con-
stant volume V = L3. The effective two-body oscillating potentials ®;;(r) obtained
from the optimized OPW-pseudopotentials have been taken from [5]. Three different
temperatures 7' = 1210 K, 833 K and 713 K have been considered. Due to a strong
pressure of 4.8 kbar in MD simulations the second and the third states corresponded
to an undercooled liquid. The states at different temperatures were prepared from
the same liquid state (~ 2000 K) by a very slow scaling of the velocities avoiding a
high-speed quench. The results for the generalized transverse collective modes ob-
tained within the four-variables approximation at different temperatures are shown
in figure 1. At T = 1210 K (see figures 1a and 1b) for k£ > 0.116 A~" the spectrum
of transverse excitations consists of two pairs of complex-conjugated propagating
modes with
z (k) = iw;(k) + 0j(k),  o;j=Rez(k)>0, j=1,2 (3.1)
The k-dependence of the damping coefficients o;(k) is quite typical of the fluids (see
[14,16]). When £ is small, the damping coefficient of the high-frequency mode is
nearly six times bigger than the damping coefficient of the lower lying mode. This
means that for small wavenumbers the contribution of the higher lying propagat-
ing kinetic mode into all dynamical processes will be negligibly small. For larger
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Figure 1. Dispersions and damping coefficients of transverse excitations for
Mgr9Zngy at T =1210 K (a,b), T =833 K (c,d), and T" =713 K (e,f). Time
scales 71=0.826 ps, 79=0.991 ps, 73=1.071 ps.

wavenumbers the ratio of damping coefficients decreases, so that the role of kinetic
processes is becoming more important.

The most interesting for the analysis is the range of small wavenumbers where the
crossover from hydrodynamic regime to an intermediate behaviour takes place. We
see in figures la and 1b that at &, = 0.116 A~! the pair of lower-lying propagating
modes disappears and transforms into two modes with purely real eigenvalues. This
means that in a liquid state, shear waves cannot propagate when k£ < ky and ky
is the width of the propagating gap. For £ > ky, when the system supports shear
propagating excitations the liquid behaves like a viscoelastic solid-like medium. Note
also that for & < ky one of the purely real eigenvalues behaves like 2" (k) ~ nk?/p
when k tends to zero in full agreement with the hydrodynamics. Another one tends,
within this limit, to a finite damping coefficient, so this mode is called a kinetic one.

When the temperature decreases the propagating gap becomes narrower. We
found ky = 0.0464 A~' for T = 833 K (see figures 1c and 1d) and in deep under-
cooled state at T = 713 K (see figure le and 1f) the width of propagating gap is
extremely small, at least smaller than the minimal value kg = 0.0232 A~! consid-
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ered in our study'. Comparing the results obtained, one can conclude that: (i) the
imaginary part of the low-lying propagating modes for small wavenumbers becomes
closer to the linear function of k£ when T decreases; (ii) the damping coefficient of the
high-frequency pair of propagating kinetic modes decreases, when the temperature
decreases. This means that in order to reproduce more precisely the time depen-
dence of F}?(k, t) for an undercooled liquid the higher order approximations can be
needed; (iii) another important thing is that for & > 1.5 A~! the dispersion of low-
lying propagating modes is very flat and its temperature dependence is rather weak.
Practically the same relates to the dispersion of the higher lying modes in a whole
range of k considered. In figure 2 we plot the dispersions of the generalized trans-
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Figure 2. Imaginary parts of eigenvalues for Mgr¢Zngo at T =833 K obtained in
the eight-variable approximation. Time scale 79=0.991 ps.

verse excitations obtained within the eight-variable description at 7' = 833 K. The
basis set of dynamic variables (with s = 3) contained the partial currents J} (k, 1)
and J2(k,t) and their time derivatives. Hence, the total number of variables was
twice as big as before. It is seen, that the lower and the upper curves in figure 2
are nearly the same as those obtained for the four-variable description (compare
with figure 1c). Two more new pairs of propagating kinetic modes have appeared.
They resemble the dispersions of optic phonons in solid-like medium and describe
the processes related to the difference in motion of Mg and Zn atoms. One may
suppose that one of these modes (labelled by crosses in figure 2) having transferred
into the amorphous state will transform into ‘the optic mode’ found by Hafner [5]
in amorphous Mg7qZns,.

The generalized k-dependent shear viscosity n(k) is simply expressed via the
transverse correlation time 7;;(k), which has been used as one of the input pa-
rameters of the GCM approach (see (2.4)), namely, (k) = p/k*7;;(k). Using this

IThe minimal wavenumber ki, in our molecular dynamics simulations was kmyin = 0.232 A-t
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Figure 3. Generalized static shear viscosity n(k) for MgroZngg at T = 713 K,
T =833 Kand T = 1210 K.

expression the function 7(k) has been calculated, and the obtained results in di-
mensionless form are shown in figure 3. It is seen that for small wavenumbers the
generalized shear viscosity has a Lorentian-like shape, and in the free-particle limit
n(k) behaves as 1/k. The values of shear viscosity, obtained in the limit £ tends to
zero, could be compared with experimental data, namely, we found: 3.642-1073 Pa-s
at T = 1210 K; 1.428 - 1072 Pa-s at T' = 833 K, and 2.444 - 107! Pa-s at T = 713 K.
Note that the shear viscosity increases rapidly when the temperature decreases and
the system reaches an undercooled state.
We conclude with the following remarks:

(i) Applying the free-parameter GCM approach to the study of the dense metal-
lic binary alloy Mg7iZn3y, we have obtained the spectra of generalized transverse
collective modes and estimated the width of propagating gap that displayed the
crossover from the hydrodynamic fluid-like behaviour to the viscoelastic solid-like
behaviour;

(ii) It is shown that the propagating gap becomes narrower when the temperature
decreases. For the state of undercooled liquid at T = 713 K its width is extremely
small (less than 0.023 A~! reached in our study) and the transverse sound-like
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excitations are well defined;

(iii) Within the four-variable approximation of GCM approach, used in our study,
the transverse ‘current-current’ time correlation function can be found in the form
which reproduces explicitly the sum rules up to and including the sixth order fre-
quency moment. For comparison, the memory function formalism, being in a com-
mon practice, takes usually into account the frequency moments up to the second
order only;

(iv) The temperature dependence of the generalized shear viscosity n(k) for a
liquid metallic binary alloy has been investigated. We found that the value of this
function at k£ = 0 increases and the shape becomes narrower when the temperature
decreases from a well-defined liquid state to an undercooled state.
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CnekTpu nonepe4yHux 30ya)keHb y piagkomy
cknodpopmyroyomy metanidyHomy cnnasi Mg,oZns,:
BIJIMB TEMNepaTtypm

T.Bpuk 2, I.Mpurnop,?

T dakynbTeT disuku YHisepeutety Texacy, OcTiH, Texac 78712, CLLA

IHCTUTYT ®i3nkn koHaeHcoBaHMXx cnctem HAH YkpaiHn,
290011 JibBiB, ByN. CBEHLjLbKOrO, 1

OtpumaHo 31 cepnHa 1998 p.

MeToaom y3aranbHEHUX KONEKTUBHUX MO, AOCNIAXKYETLCS TEMNEPATyp-
Ha 3anexHicTb gucnepcii Ta KoedilieHTiB 3racaHHa nonepeyHnx 36y-
IKEHb Y MeTaniyHomMy crnnaei MgroZngg 3 ryCTUHOK YaCTUHOK n =
0.0435 A=3. CnekTpun nonepeynnx 36ymxeHb PO3paxoBaHi Y HOTUPUMO-
[0OBOMY HabnuXeHHi ansa Tpbox 3HavyeHb Temnepatypu: 1210 K, 833 K
713 K. lNokasaHo, Lo po3Mip NponaratopHOi WiNvHW, ka BUSHA4ae ne-
pexig, Big, riopoanHamMivHOI PIAMHHOT NOBEAIHKN A0 NOBEAIHKN BNACTUBOI
NMPY>XHOMY TBEPAOTINIBHOMY CEPEA0BULLY, 3MEHLLYETLCS NMPU MOHMKEHHI
Temnepartypu. lNpoBeaeHO po3paxyHOK y3araabHEHOI (3aneXxHOoi Big MO-
Dyns XxBuUnbOBOro BekTopa k) 3cyBHOI B's13kocTi n(k) i nokasaHo, Lo ii Be-
NnuumHa npu k = 0 wWBMaKo 3pocTae, a dyHkuis (k) cTae 6inbL By3bKOIO
npw nepexogi Big, Ao6pe BU3HA4YeHOro piakoro cTaHy 40 CTaHy Nepeoxo-
JNIOKEHOT PigviHN.

Knio4oBi cnoBa: rnonepeyHi 30yaxxeHHsi, 3CyBHi XBUJli, CKITIOGOpMYyroHi
PigvHN, MeTanidHni criaB, KOJeKTUBHI MOaN

PACS: 61.25.Mv, 61.20.Ja, 61.20.Lc , 05.60.+w
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