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The excited states of materials with the structure of crystals were analyzed in the
paper. Here the reaction of crystalline lattice on excitation was taken into account. Such
consideration leads to nonlinear Schr\"{o}dinger equations. At a solution of these equa-
tions some possible variants of the nonlinearities which are different from the cubic are
considered. The possibility of constructing of spherically-symmetric analytical solutions
with finite norm analyzed. The analytical solutions in the form of centrally symmetric
solitons were found. The obtained solutions show the expressed wave-corpuscle dualism. It
is shown, that dynamic properties of excitation are identical to dynamics of not self-
trapped quasiparticle. An important feature of these solutions is that their amplitudes (or
squares of the amplitudes) have an asymptotic behavior of the type of 1/p, with p — oo.

B pabore mpoaHaMMsUpPOBAHLI BO30YIKIEHHBIE COCTOSHUS MAaTepPUAJOB CO CTPYKTYPOi
KPUCTANJIOB. 3/eCh YUUTHIBAMACH PEaKIMA KPHUCTANINUYECKOIl pellleTKM HA BO30YIKIeHUE.
Takoe paccMOTpeHVe TPUBOAUT K HeauHeHHbIM ypaBHeHusMm Illpexmurepa. Ilpu perrenun
9TUX YPaBHEHUI PAaCCMOTPEHO HECKOJHLKO BOBMOKHBIX BAapMaHTOB HeJUWHeilHOCTeil, OTIHY-
HBIX OT Kybuueckoii. IIpoamamusmpoBaHa BO3MOKHOCTL IOCTPOEHUA cheprUecKM-CHMMET-
PUUYHEIX aHATUTUYECKUX PeEIIeHWi ¢ KOoHeuHOI HopMmoii. IlonmyyeHBl aHaINTHUUYECKMUEe pelle-
HUA B BUJE IeHTPATBHO-CHMMETPUYHBLIX COMUTOHOB. IlosyUyeHHBIe PellIeHUA AeMOHCTPUPYIOT
BEIPAIKEHHYI0 KOPIYCKYJSPHO-BOJHOBYIO AyajbHOCTE. TaKike MOKasaHo, YTO AWHAMHUYECKUE
cBOlicTBa BO3OYKAEHUSA TOMKIECTBEHHBI He aBTOJOKAJMN30BAHHON KBaswuacTuile. BasHoil oco-
GEeHHOCTHI0 TIONYYEHHBIX PEITeHUul ABJIAETCA TO, UTO UX AMILIUTYIABl (MJIM KBaApPATHI aMILIU-
TYZA) UMEIOT CTEMEeHHYI0 aCUMIOTOTUKY TUTa 1/p, mpu p —> oo.

Henmpanono-cumempushi conimonu erekmponHux 306ydicensv HaniénpoeidnHukie &
YMmo6ax pPensimueicmcoKo-nodionozo eupodncenns dunamivhux énacmusocmei. AJJ.Cyn-
pyn, JI.BIllmenvosa. VY pobori mpoaHanisoBaHo 30yKeHi cTaHU MaTepianis 31 ¢cTpyKTypOIO
kpucrasnis. TyT BpaxoByBajacd peakIia KpucTaJiuHol rparkm Ha 30ya:Kenud. Tarkuii poa-
Ik NPUBOAUTHL A0 HesiHiHux pisusanbs Illpexinrepa. Ilpu poss’asaHHi X piBHAHL PO3-
IJISHYTO KiJlbKa MOMKJIMBHX BapiauTiB HeximiiiHocTell, 1o BigpisusamTrbesa Big xybiumoi. ITpo-
aHAJIZ30BAHO MOMKJIMBiCTE IOGYZOBU CHPEepHUHO-CUMETPUUYHMX AHAJITHYHUX POSB A3KiB 3
KiHnepoo HOpMoo. OTpuMAaHO aHAJITHYHI POSB’ABKM y BUIVIALL IEHTPAJbHO-CUMETPHUUYHUX
coairouis. OrTpumaHi pPOSB’ABKM AeMOHCTPYIOTh BHPAMKEHY KOPHYCKYJIAPHO-XBUJILOBY V-
anpHicTb. TakomK mOKasaHo, 1[0 AuHaMiuHi BJacTuBOCTI 30yIKeHHS TOTOMKHI BilapHIiN
KBasivacrunni. Bamanpow ocobiauicTio oTpuMaHux possB’sa3KiB € Te, o ix ammiaityxu (abo
KBaIpaTu aMILIiTyI) MAalOTh CTYIIEHEBY ACHMIITOTUKY THUIY 1/p, AKIIO p — oo,
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1. Introduction

Soliton excitations in solids are a development of the concept of traditional electronic excitations (the
injected electrons, excitons) or excitations of other physical nature (magnons [1], polarons [2], and others
like that). In materials of crystalline type excitation of solitons is conditioned by the local reaction of
crystalline grate on excitation (one of conditions ((the third) of ideality of crystal). The main feature
that distinguishes the soliton excitation from traditional one — is the appearance of amplitude, which is
distributed in space and time.

This paper deals with the analytical solutions in the form of central-symmetric solitons for the
nonlinear Schrodinger equation (NSE) with different types of nonlinearities. Was analyzed their properties,
in particular, dynamic. It is important for the interpretation of the transfer of energy [3,4], charge [5] and
other physical characteristics [6,7].

General dynamical properties of solitons based on one of the most important characteristics — on the
dispersive dependence of energy or frequency from the wave vector [8-11]. Unlike a previous studies [12]
and in the development of some of the other of them [13,14] is taken into account the effects on these
properties of the nonlinearities.

2. Solitonic excitations in solids. General comments

This research is a natural extension of research [12]. The simplest Hamiltonian of the electronic
excitations in solids with the local response of the crystalline lattice on excitation can be reduced to such
general form [13,15]:

By ({a}) = (1/2) {Zl/wn,nﬂ FE DL lagal+

" (1)
1S (Jaml’) + S M (pnrsn + a;,nmfn)} .
n n
The dash on the double sum means that the lattice vector n takes an arbitrary values and the lattice
vectors 1 — all values except 1 = 0. Factor ay, determines the spatial-temporal distribution of excitation
within bounds of crystal space and within the lifetime of the excitation. It is to be determined. In order
to determine this factor and eigenvalues Ey (k) the procedure of the dynamic Hamilton minimization
[4,13] is used for the functional (1). Matrix elements wn nt1, D), and MI{HH for simple (or simple in
approximation) crystals have precise definitions [13].

The function G, <|len|2) appears in the functional (1) due to the waiver of the third condition of

crystal ideality, which is related to neglect of reaction of crystalline lattice on excitation. Its important
property is that in the performance of the first two conditions of ideality of the crystal (infinity of space
and absence of heterogeneity), it loses an external index n. This property will to be always fulfilled. Near
zero it has the following asymptotic properties actual in future. Its expansion in the series begins from

2
a summand <|afn|2> = |afn|47 if it does not have a symmetry, or if it have an even symmetry. If it

3
has odd symmetry, decomposition begins from an element <|a fn|2) = |a fn|6 . “New” equilibrium values

of vectors of crystalline grate b} in the case of weak reaction of lattice on excitation and depending on
parity are related to “old” their values b by correlations:

2
bl =b— v laml*+ - or bl =b—vm- <|afn|2) SIS (2)

The ~¢n parameters do not depend on the vector n, if two conditions of ideality, which remained, are
satisfied.

Considering only the situation further, when the first two conditions of ideality are executing the
functional (1) can be reduced to a simpler form:

70 Functional materials, 21, 1, 2014



A.D.Suprun, LV.Shmeleva / The centrally-symmetric ...

By ({a)) = BY + (12306 (lagal ) + D2 M{ - (@fntmaa + afniaam) - (3)
n 1(#£0)

Here, the notation: E(})) =Us+ D(f,Nf/Q —is a fixed part of the energy (3). Factor Uy = 3./ wn1/2
nl

is the potential energy of the crystal, and the factor Ny =" |afn|2 is the norm of a ¢, with respect to n.
n

3. Solitonic excitations in solids. Cubic nonlinearity

This case, presumably, is the most investigated [1,3,4,12-16]. Therefore, it is easy to illustrate and
to use farther fundamental aspects of statements of problems and its solutions for other variants of

nonlinearities. This case corresponds to the situation of even symmetry of the G <|a fn|2) function, or
2
absence of its symmetry, and representation: Gy <|afn|2) =—(G/2) <|afn|2) =—(Gy/2) |afn|47 takes

place. The multiplier 1/2 is entered for comfort of subsequent consideration. In typical cases Gy > 0. The
functional (3) in such representation acquires a kind:

O & 4
Er({a)) = EQ + (/2038 3" M{ - (afnarmir + @ n1am) — (Gr/2) apm]
n 1(5£0)

Using this functional in procedure of dynamic Hamilton minimization [4,13]:

h(Gapn/0t) = 0Ey ({a})/da},,

it is possible to get equation:

ih(Oapm/0t) + Gylapml am +(1/2) Y ‘M ‘ (afn41+ agn) =0. (4)
1(£0)
Here it was also taken into account that in typical crystals: M] = —‘le‘ [13].

Since equation (4) is complex, it is necessary first of all to represent the function ayy, in the general
form:

afn (t) = @pa(t) - expli-Tpm (1)) (5)

After substituting (5) into (4) and separating the real and imaginary parts, the system (3) is divided
in two subsystems to determine the amplitude ¢, and phase I' 4.

0pm\ 1 . .
h( 81{ >+§lg;)‘le‘{¢f,n+lsm Lfn1=Lpn) —dpmasin(Upa—Lpn1)}=0; (6)

Ol tn
h¢fn< 81{ >Gf¢3n Z ‘M ‘{¢f,n+1COS(an+1 L) topn_a1cos(Upn—Tpa 1)} (7)
1(7&0

We will continue to work in a generalized approximation of a plane wave in phase:

() =k(t) - mn—vp (1) (8)

The difference of this generalized representation from that of [12] in the fact that the wave vector & (¢)
and the energy factor ¢ (¢) (instead of the product wyt) are arbitrary functions of time. Their explicit
form is determined by the features of the dynamics of the examined excitations.
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In applications usually works in, so-called, continuum approximation [12], in which is limited to
representation:

Prns1 = @) £ 1 Va) oy () +(1/2) (- Va) o (). (9)

From point of approximations considered in [12] it will be the fourth approrimation.

Before discussing system (6), (7) farther, we will simplify it by means of previous three approximations
which were discussed in detail in [12]. The first of it is approximation of flat wave in a phase (it is already
used in representation (8)). The second of it — is the approximation of the nearest neighbors. And, finally,
the third approximation — is the approximation of a cubic lattice.

For comfort of the further use of continuum approximation, was entered also the identical notations:
n = bx,e,. Variables x, have the sense of dimensionless spatial coordinates and are the components of
vector r. Hence: n = br. Denotations of work [12] are used also for constants Cy and my, the first of
which make sense of the maximum speed of quasiparticle: C'; = (b/h) |My|, and second make sense of
scalar mass:

my = 12/ (7). (10)

There was re-designated also: ‘be‘ = |My|. In analogy to [12], equations (6), (7) can be reduced to

dimensionless form. This can be done by an additional (with respect to the space variables) definition of
the dimensionless time 7 = (|My|/#A)t and the dimensionless wave momentum p = bk  (po = kab). Also
were used the notation of [12] for the dimensionless velocity 8, = sin (p,) and dimensionless dynamic
mass fio = 1/cos (ps). Then, finally, equations (6) (7) take the form:

Ot /OT 4 B - (0py/0x,) =0; (11)

(1/2p0) (8% [ D22) + grF + (Zl/ua + (% -p r)) ¢r=0. (12)

[e3

In equation (12) used also a denotation:

gr = G/ Myl (13)

Denotations ¢ and P now mean derivatives on dimensionless time 7.
The general solution of equation (11) for the function ¢ = @y (r,x) = s (7,{z}) is an arbitrary
function of such structure:

o1 (rr)=¢r(r =t (M) = s ({2a =25 (M }) =0r (&) = 01 (&) (14)
A vector rg (7) is determined here by dynamic equation:
or in components:
2§ = B (pa) = sin (pa), (16)

and actually makes sense of equation of trajectory of point rg in the crystalline system of co-ordinates, if
the vector of wave momentum p is defined, as function of time 7. Equation (12) then takes the form of
the nonlinear Schrédinger equation:

(1/2410) (8% [O€2) + gy — D €+ (Z 1/ po + <'.Yf ~p ~r0)> wr =0, (17)

[e3
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already formulated in own coordinate system associated with the point ro(7). In the examined
approximation of a plane wave in phase, in spite of its generality, there are no grounds for the use

of dynamic conditions on the momentum p, different from those of I.) = 0. Other conditions in the
absence of external influences (fields) may occur, if to give up the approximation of plane waves in phase.
In simplest case in sense of continuum approximation of kind of (9) not only in relation to amplitude
¢ but also in relation to a phase I'y [16,17], in equation (12) and, as a result, in equation (17) there
will be the elements of type of the integrated non-linearity. Such nonlinearity in certain approximations
can be considered as the dissipalive [orces of interaction ol excitation with the lattice. It will determine
the condition P # 0 and the corresponding to this condition irregular dynamics of type of braking (or
acccleration if exist a mechanism of energy sclection by cxcitation from the environment of the crystal).

A condition P = 0 brings equation (17) over to the kind:

(1/200) (801 JOE2) + 956} + 505 =0, (18)

where it is marked:
EfEQf‘FZl/Mou Qr=7y. (19)

In this case £; plays the tole of the eigenvalue of the equation (18), and €2y has the meaning of
the dimensionless frequency factor (corresponding to the dimensional notation usually is: wy). It is the

eigenvalue of the excited state of whole crystal. Furthermore, this condition (f) = O) leads to the fact
that the momentum p is constant in time. Consequently, dynamic conditions (15), (16) it is possible to
(g) = BT =T sin (py).

.
With the permanent momentum (P = 0) equation (18) becomes fully stationary due to constancy of

result to a concrete type: ro = 37. Or in components: x

vector of speed: 5, = sin (p, ), and constancy of the component of tensor of mass:

to = 1/cos (py) = 1/\/1 — 2. (20)

Also it becomes automatically compatible with equation (11) and its solution in the form (14).

Analysis of solutions of the stationary equation (18) is the subject of many investigations (for example,
[1,3,4,13-18]). Therefore here we will stop only on the main aspects of this problem and on one is relative
a new solution. This new solution logically follows from the previous investigations and is useful for other
types of nonlinearity.

As now the parameters of equation (18) are constants, this equation can be brought to the form:

(1/2) Ay (p) + g5} + 505 =0, (21)

by simple replacement of variables:

Po = fav/La7 (22>
where p,, are components of vector p, and A = 3 5? / dp?, — the Laplas operator. Applying the methods of

(o7
theory of differential equations, it is possible to show that it is impossible to build the analytical solutions
of equation (21) in centrally symmetric case, when: A = 82 /9p? + (2/p) (9/8p), where:

p=1/D_ P (23)

Known only the numerical and asymptotic its solutions [19,20].
But analytical solutions of this equation in one-dimensional case [18] are well known, where, for
example: A = 9% /9p2. Such solutions are called solitons and they have the form:

¢f(p=) = By/ch(Appz). (24)
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Parameters By, As is determined by direct substitution of this solution in equation (21) with a taking
into account the identity: A = 82/8p2. As a result of this substitution can be found: X} = —2z;
B]% = —2¢4/gy. Immediately visible that the eigenvalue c¢ can only be negative: €5 = —|gy|, and

is determined by the normalization condition: Ny = 3 |afn|2. In the one-dimensional case it takes a
n

particular form:

/ ‘P? (p=)dp. = N (25)

Usually considered Ny = 1, and this condition gives: |e¢| = (g?/S) iz For By and Ay can be,
respectively, obtained finally: By = (1/2) \/g¢fz; Ar = (9¢/2) /1tz-

These solutions are so physically attractive that there is always a temptation to use it in the case of
not one-dimensional spaces, which are defined by the general equation (21). In particular, this equation
is satisfied by the following solutions: ¢ (p) = Bf/ch ()\gf”pz + )\?py + )\‘;pz). These solutions do not
have a spatial structure (are constants) in planes: Afps + )\?py + A}pz = const, which are perpendicular
to direction of distribution of soliton. On the other hand they have spatial configuration of soliton in the
direction of distribution, which is perpendicular to the planes A%p, + )\?Ji py + Ajp. = const. Despite the
fact that these solutions satisfy the equation (21), they however can not be acknowledged physical (at
least in the quantum sense) because it does not have a finite norm.

To demonstrate this without loss of generality it is possible to do some simplification of the problem.
Namely, we consider the motion only in z direction. Then: p, = p, =0, p, # 0; 8, = 5, =0, 8, = sin (p.);

P = oy = 1, i, = 1/cos (p,) = 1/\/1 — 2. Equation (18) then takes the form:

(1/2) (820 /0E2) + (1/2) (8% /OE2) + (1/2p.) (0%0y [OE2) + g} +ep0r =0, (26)

As can be seen, equation (26) is axially symmetrical relative to the axis z. If now to suppose that the

unknown function ¢ (§) does not depend on the components &, &, of the vector & (i.e., does not have

the structure in a direction transverse to the directions of motion), the solution takes the form (24). A

difference is only that now the solution depends on a variable &,, instead of p,. But the normalization
condition (25) acquires another form now:

[ @ eieag,ae. ~ w, (27)
(c0)

It can be seen that left part of this equality is divergent. To ensure its convergence is necessary to
limit integration along the directions &,, £,. Thus, such limitation must be executed, so that it did not
conflict with equation (26) at least approximately. In general, it is impossible to represent the solution
of nonlinear equations as multipliers. For example, to represent it in a form: ¢; (§) = Hy (£1) Dy (&),

where £ = /&2 + 55. But it turns out there is a physically consistent case when this can be done exactly
in terms of generalized functions. This case corresponds to the special choice of multiplier Hf (£1) as
the generalized function of Heaviside H; (¢,) = 6_ (1 —ARE L). Or: Hy(¢1) = 1if AF¢L < 1 and

Hi (&) =0if )\fél > 1. A parameter )\} is the reverse radius of a region in which a function
Hy(€1) is different from a zero, and outside of this region it equal to the zero. The problem of
concrete value of parameter )\? was discussed, for example, in [13]. Such choice of multiplier Hf (£1)

oH
associated with two important properties, namely: H ? (1) = Hy (&) and 8—f = 0. These properties
il

give formal possibility to consider the representation ¢y (&) = Hp (1) ®r (&) as exact solution of
equation (26) which has a finite norm. A multiplier ®;(§.), in this case, is determined by equation:

0_ (1 - )\f@) {(1/2;%) P (&) + gfq)? + Efq)f} = 0. This equation satisfied identically outside of

region £ = 1/)# (i.e.at Ay&1 > 1) due to properties of §—function. Inside of this region (at A;€1 < 1)
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it is satisfied due to differential equation: (1/2p.) 7 (£,)+ gfiﬁ +e4®; = 0, and creates the solutions in

a form (24): & (€,) = By/ch (A\s&.). The full solution: ¢y (€) = 6_ (1 - A;@) ®, (€.), with the taking

into account the normalization conditions (27), but in a form: [ff @? (&) d§,d&ydE, =1, becomes such:
(o0)

4 _ 2
e ©) = ((A) g fam) 0 (1=onp) - en 2 ()01 /2v7) me&e).
The square of solution is resulted here, because exactly it has the physical meaning and is called
soliton.
Two circumstances attract the attention at once. First of all, product i, &, in the argument of function
ch=2(...), at the account of explicit form of multipliers (u, = 1/\/1 — B2, 6, = 2 — zo (1), where

zo (1) = B.7), acquires such explicit form: pu, ¢, = (2 — ﬁﬁ)/«/l — 2. Le., has a Lorentz-invariant

form in dynamic direction. Secondly, all factor @% (&) is proportional to the parameter g¢. In accordance
with the definition (13), this parameter is inversely proportional to the matrix element |AM|. In turn,
the matrix element |M¢|, as defined in (10), is inversely proportional to the "rest mass"of a quasiparticle
my. Le., the function @? (&) ultimately is proportional to mass m;. This would be not so important,
but function @? (£), in accordance with (2), results in emergence of curvature in space of crystalline
grate (around the point zo (1) = 8.7 of localization of excitation). Le., formally it looks so, as if mass
of quasiparticle generates curvature of space of crystal. It is possible also to take into account, that a
function lp? (&) is proportional to a component of dimensionless dynamic mass .. In this case a function
@? (&) will be proportional to the component of complete dynamical mass which is determined by the
product g my.
Eigenvalue €, appearing in equations (18), (21), (26) and similar, takes the form:

gp = — (uzg? ()\f)4/87r) .

4
If now introduce the notation: oy = (g? ()\f) / 87r>, the common eigenvalue, which is defined by

the identities (19), can be represented in a more compact form:

Qp(pz) = =2~ 1/p; —opp. = =2 —cos(p,) — a5/cos (p.).
By means of this relation it is possible already to determine dynamic properties [12] of quasiparticle.

It is possible to show [13], that in approximation oy << 1 the complete wave function (5) with account
(8) of the examined excitation will have the form of modulated by amplitude plane wave:

Ufn (t) = ay (7—7 I‘) = ¥y (£L7£z) - €Xp [Z (pzz - Qf (pz)T)] =

_ (A?)Qm o (1 —@A#) P Ope (2= BeT)) o i8) expi2r) .

2y Y1- 52 fogs . 2B

Ch 20'f . \/1—7—53
Here, the variable &, is written in an explicit form: £, = z — 5,7, and the action S is defined as
the product: S = [ 7, since free motion is examined. The Lagrangian [, with account of a factor oy, is
determined by known [13] expression: [ (8,) = B, arcsin (8,) + /1 — 32, and if to take into account a
factor o becomes more complete: [(53,) = 3, arcsin (3,) (1 ~ 7 ifﬁ2> + /1 — 52 (1 + 1 ifﬁ2>. This
Lagrangian describes the dynamics of the classical type with respect fo the canonically conjuga‘ge pair of
variables: with respect to the wave momentum p, and with respect to the localization point of excitation:

z0 (1) = B,7. The quantum part of the solution, which is determined by the multiplier:

exp (ips (= — B.7)) / ch (\/—%f ~ %)
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formulated as seen from the last expression in own frame of reference with respect to point 2o (7) = 8,7. It
appears, that the solution (28) has another interesting property. We are talking about the wave-particle
duality, which is clearly present in the solution (28). Indeed, a wave function (28) is the plane wave
modulated on amplitude. The nature of the modulation has a particle-like form which is called a soliton.
More exactly square of this factor is called soliton. It is visible that this soliton moves uniformly in space
without attenuation and independently of "behavior"of the phase, and also satisfy the Lorentz invariance.
Depending on the relationship between the parameters g; and Af this excitation can have a continuous
set of spatial forms [13]: from oblate spheroid (along the direction of the dynamic z) up to elongate.
Clearly, that it is possible to find the conditions under which excitation will have nearly spherical form.
But despite all of the attractive features of the proposed axial-symmetric solution, it has one
disadvantage. This disadvantage is the absence of the actual solution depends on the variable £, =
&+ 55 in the direction that is transverse to the dynamic direction. This is due to the use of theta
functions. Using theta functions as part of the wave function, by itself, does not raise any objections. But
it can not provide an adequate description of the curvature of space of crystal in all directions.
That is why further will discussed a possibility of constructing centrally symmetric solutions in more
general types of nonlinearity than cubic. Thus, the theta function is used only as a factor that provides
only finite norm rather than the properties of the wave function.

4. Solitonic excitations in solids. Total non-linearity of the fifth degree

Now we consider the situation when series expansion of the function G <|len|2) takes into

2
consideration following after (|afn|2) = |afn|4 summand, if this function itself does not have any
symmetry. Then there must be real a representation: Gy <|afn|2) (G(l /2) lay ol (G(2 /3) |afn|6.

The choice of signs in this representation provides physical correctness of function G'; (|a fnl ) for typical

crystals and for the examined approximation. Doing further sequence of transformations similar to that
which was performed between the formulas (3) — (21), we can obtain the equation:

2 1
(1/2) Agy (p) + 955 + 9} + 507 = 0.
Parameters g(]})7 g(fg) are defined analogously to the parameter g;, which, in turn, defined in (13). The

components of the vector p, according to (22), defined by the sequence of equations:

Po = ga\/ﬂ_ = (xoz - ﬁoﬂ—) \/M_ow

In a centrally symmetric case, this equation becomes:

(1/2) (0%p1 /00%) + (1/0) (D1 /0p) + 9§65 + 9\ 6% + e g0y = 0. (29)

Accordant to (23) p = /), p2. Some aspects of this type of nonlinearity analyzed in [15]. There, in
particular, shown that in spatially one-dimensional case the equation (29) also has solutions which are
inversely proportional to the hyperbolic cosine. But at the same time one can also find solutions that are
expressed in the terms of degree functions. Exactly these solutions will be considered here, but in more
detail.

Thus, we seek the solution of equation (29) as follows:

vr (p) = Bf/\/ 1+ App?. (30)

Substituting (30) into (29), one can find the condition under which (29) is satisfied identically:
oV =0 e =00 Bi= (30 /27). (31)

76 Functional materials, 21, 1, 2014



A.D.Suprun, LV.Shmeleva / The centrally-symmetric ...

The first of these conditions states the fact that the solution (30) satisfies the equation (29) only
when cubic nonlinearity is absent in the equation (29). According to the theory of differential equations,
the requirement on the parameters of the equation means that the corresponding substitution is not the

solution. But in this case it may also mean that the decomposition of function G <|a fn|2) into a power
series on factors |afn|2 begins with a term: — (G(fg)/i%) |len|6. In turn, this means that the function

Gy <|a fn|2) must have odd symmetry. Further we will work within this assumption.

The second condition in (31) (¢; = 0) means that the eigenvalue of the excited state of the crystal
Q, according to (19), (20), has the form: Q; = =>"1/u, = =3 cos (p,). It corresponds exactly to the

eigenvalue for the free movement of the object of the classical type [12-14], i.e. quasiparticle.
Finally, the third condition in (31): B‘; = (3)\f/29(f2)), binds unknown parameters By and Ay, leaving
free only one of them. The solution (30) now becomes:

er(p) = (32 /269) . / VAR (32)

The presence of the free parameter A allows not only raise the question about the finiteness of the
norm for this solution, but also on its equality to a unit. The use of this solution in the normalization

condition (25), which takes the form: [ &% (p) p?dp = Ny \/Hinfiyfiz /47, immediately demonstrates the

problem. It consists in that the integral%n the left side of the last equality is divergent at the upper limit.
To get rid of this problem we may, as in Section 3, extend the solution by means of the theta multiplier.
Le., to build a solution in the form: ¢ ¢ (p) = 0_ (pns — p) ©¢ (p). Substitution of this extension for ¢ (p)
in equation (29) leads to the fact that this equation is transformed to the form:

0 (pns = ) |(1/2) (0% (p)/00%) + (1/0) (90 (0)/0p) + 9705 + 4@ +,0) = 0.

In the area p > p, the left side of this equality identically equal to zero due to the theta multiplier. In
the area p < pys the last equation reduces to (29) with respect to the function ® (p). The parameter pp.,

in contrast to a similar parameter 1 / )\f of section 3, can be unambiguously determined. For example, it

may be determined by the condition of exceeding of a signal (which is usually proportional to the function
@? (p)) over a noise level 8. In this consideration it can be a condition of exceeding the lattice constant
changes above the level of the amplitude of its thermal or zero oscillation (this change, determined by
the definitions (2), is the result of excitation). I.e., such condition reduces to: @? (p) > 6, and the value

of pns is determined by the equation: Lp? (prs) = 0. From determination (32) is obvious, that a condition:
(3)\f/29(f2)) v >> ¢, must be executed.

Thus, analyzed in this section the situation has the following features. First, find a spherically
symmetric solution of the nonlinear Schrodinger equation with a general nonlinearity of the fifth degree
(NSE 3+5). This solution has the asymptotic form: ¢ (p) = 1/p, at p — oo, where p is defined in (23).
Second, the dynamic properties of the considered excitation, which are determined by the eigenvalue Q¢,
identical to the free relativistic particle [12]. Third, these solutions can make sense of the amplitude of
the quantum mechanical wave function because it has a finite norm.

At the same time, the asymptotic behavior of ¢ (p) = 1/p is not completely satisfactory, since
the physical meaning has the function @? (p). In addition, it was shown that "the NSE 3+5"in the
spherically symmetric case always comes down to "NSE 5+ ... excluding all the symmetries of the function
Gy <|a fn|2)7 except for the odd. This gives reason to consider more general non-linearity of the ninth
degree (NSE 5+9), which is the next after just considered (if we take into account the odd function

&y (lasml*)).
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5. Solitonic excitations in solids. Total non-linearity of the ninth degree

Taking into account the oddness of function G/ <|a fn|2)7 one can obtain a representation:

Gy <|afn|2) = - (GE«D/Q) |asal” - (chg)/i%) Jasal '’

Signs in this expansion also selected due to the negativity of factor G'¢ <|a fn|2). Further, may be got

an equation similar to equation (29): (1/2) (8¢ /0p?) + (1/p) (Dps/0p) + g(fg)apg} + g(fl)apﬁ +eppp =0.

This equation is satisfied by the solution, similar to (30):p; (p) = 0_ (pns — p) Bf/(l + )\fp2>1/4. But at

the same time here was taken into account the expansion by the theta multiplier. As a result in a region
of p < pps we will get the correlations similar to (31):

om0 B (5o faP)s - (0 (o) [, (53)

These correlations differ from (31). Now parameters By and A; are determinate. Therefore, in
P

4
normalization condition, which takes the form: N fziﬂ- / qb? (p) p*dp, can not be set Ny = 1.
Moo oy Moz
G

N

The parameter Ny now defined by this condition. The effective radius of the excitation p,, as in the
previous section, defined by the condition @? (pns) = 0. It has a deterministic value also.

The physical features of this solution are such. First, it also is spherically symmetric. But it has
another, than in the previous case, asymptotic: @? (p) = 1/p, at p — co. This result deserves attention. In
the applications a function @? (p) usually determines the spatial distribution of the physical characteristics
of the excited crystal. In particular, it determines potential of injected in the crystal of charge. As is known,
all potentials interesting in physical sense have just the same asymptotic. In such interpretation of the

function @? (p) the radial component of the gradient operator: &p? / dp, determines the radial component

of strength of the corresponding field. A detailed analysis shows that the derivative &p? / Jp is inversely
proportional to the matrix element |M;|. Consequently, according to (10), it is proportional to a mass
my. In a section 3, we will remind, mass was proportional to the square of wave function, instead of
derivative. The dynamic properties, which are determined by the eigenvalue (1, are also identical to the
free relativistic particle. The got solutions have also the quantum sense, as have a finite (but not equal
1) norm.

The complete solution similar (28) is determined by correlation:

0 (pns—p) exp (1papa/tio)
(1+App2)

am (t) = ap (1,1) =5 (p) expli (paza—Qy7)] = By exp (i5) .

The parameters By and Ay are determined in (33), and the action S is determined by equality:
S =1(8)7, in which: [(8) =) (ﬁa arcsin (8,) + /1 — 53) The Lagrangian [ (3) can be obtained as in

work [12]. Namely, at transition from “global” variables z,, to the “local” variables: po, = (o — BaT) v/Ha,
it is necessary to take into account next circumstances. First, to take into account common relationship
between the Lagrangian and Hamiltonian, which is defined by equality: { (8) = Bapa — h (p). Secondly, it
is necessary to take into account that the relationship between velocity and momentum of a quasiparticle

has a "standard"form: p, = S, / /1 — B2. And thirdly, to use the fact that for quasiparticles performed
"chain"of equalities:

Q= =31 /pta = =05 (pa) = h (D) = b (B) = =>_ V1 - 3.
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6. Conclusions

The excited states of materials with the structure of crystals were analyzed. However, unlike [12], the
reaction of crystalline lattice on excitation was substantially taken into account. Since the account of the
interaction of the excitation with the lattice leads to nonlinear Schrodinger equations, was considerec
several possible nonlinearities, which differs from cubic. The possibility of constructing of analytica
spherically-symmetric solutions with finite norm analyzed. The corresponding solutions were found. Al
of these solutions were considered so that the quantum description of the excitation was formulated in the
own frame of reference relative to the point of conditional localization of excitement. Dynamic properties
of excitations (of quasiparticles) are practically identical to the dynamics of the free relativistic particle
in detail analyzed in [12]. Obtained solutions demonstrate expressed corpuscular-wave duality. Indeed
these solutions are the amplitude modulated plane wave. Herewith character of amplitude modulatior
has a form similar to the particle. The square of this amplitude is called a soliton. This soliton uniformly
moves in space regardless of "behavior"of phase part of solution and without attenuation. An important
feature of these solutions is that their amplitudes (or squares of the amplitudes) have an asymptotic
behavior of the type of 1/p, with p — oco.
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