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The investigations of the classical interacting particles systems far from equilibrium using the Zubarev nonequi-
librium statistical operator method are presented. The problem of the relaxation of a nonequilibrium state of a
system to the state of molecular hydrodynamics is considered. The nonequilibrium statistical operator and the
appropriate transport equations which describe such a relaxation process are obtained. Explicit expressions
for dynamic structure factor and momentum-momentum time correlation function are obtained by solving the
set of equations for time correlation functions and some numerical results are presented.
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1. Introduction

The investigations for nonequilibrium processes in classical and quantum systems far from
equilibrium, nonequilibrium states of which have their own relaxation times are urgent in modern
theory of nonequilibrium processes. In the investigations of such kind, the nonequilibrium statis-
tical operator (NSO) method by Zubarev with some modifications is successfully applied [1–4]. In
particular in [1,4] a new interpretation of the method of NSO is given, in which the operation of
taking an invariant part in NSO is treated as the averaging of quasiequilibrium statistical operator
on distribution of the past lifetime of a system

%(t) =

∫ t

−∞

pq(t − t′)%q(t
′)dt′, (1)

where pq(y) is the distribution of the past lifetime of a system. Since in the Zubarev NSO method
the effect of a history of a system on its present state is taken into account to describe the real
states in nonequilibrium systems such as kinetic, hydrodynamic etc., the gamma distribution

pq(y) =
ε(εy)k−1

Γ(k)
e−εy,

should be used; Γ(k) is gamma function. Gamma distribution is applied to the systems, whose
evolution has several stages (the number of these stages coincides with the gamma distribution
order). If k = 1 we obtain an exponential distribution of the past lifetime pq(y) = εe−εy, which
corresponds to the Zubarev interpretation and is correct for long lifetimes.

On the other hand, an important achievement of the nonequilibrium theory of fluids are the
results in the theory of molecular hydrodynamics, based on which the collective modes, time-
correlation functions, and generalized transport coefficients for the Lennard-Jones model of simple
fluids were investigated [5–7]. Since a definite nonequilibrium statistical operator corresponds to
the state of molecular hydrodynamics, the issue of a nonequilibrium state of a system of interacting
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particles relaxing to the state of molecular hydrodynamics presents definite interest. Choosing a
distribution of the past lifetime of a system in the form of gamma distribution of the order k = 2

pq(y) = ε2ye−εy (2)

we can consider the relaxation of a nonequilibrium state of the system to the equilibrium that
passes in two stages. Thus, the consideration of the earlier one, the relaxation to the state of
molecular hydrodynamics, is the aim of this paper.

2. Nonequilibrium statistical operator of molecular hydrodynamics

The molecular hydrodynamics of spatially homogeneous simple fluids is based on the transport

equations for the means 〈ã~k〉
t = {〈n̂~k〉

t, 〈~̂j~k〉
t, 〈ĥ~k〉

t},

n̂~k =
N

∑

j=1

e−i~k~rj , ~̂j~k =
N

∑

j=1

~pje
−i~k~rj , ĥ~k = Ê~k − 〈Ê~kn̂

−~k〉0〈n̂~kn̂
−~k〉

−1
0 n̂~k , (3)

where (3) are Fourier components of the number of particles, momentum density, and generalized
enthalpy density, respectively, and

Ê~k =

N
∑

j=1





p2
j

2m
+

1

2

N
∑

l6=j=1

Φ(rlj)



 e−i~k~rj

are the Fourier components of the total energy density. Here, Φ(rlj) is the pair interaction potential
for particles of mass m whose total number is N and whose phase-space coordinates are (~pj , ~rj),
where ~pj and ~rj are the respective momentum and spatial-coordinate radius vectors, rlj is the

interparticle distance, and ~k is the wave-vector. Such transport equations have the structure [8–10]

∂

∂t
〈âl,~k〉

t −
∑

m

iΩlm(~k)〈âm,~k〉
t +

∑

m

t
∫

−∞

eε(t′−t)ϕlm(~k, t, t′)〈âm,~k〉
t′dt′ = 0, (4)

where we introduce the notation l = 1, 2, 3, â1,~k = n̂~k, â2,~k = ~̂j~k, â3,~k = ĥ~k. In this equation

iΩml(~k) =
∑

l′〈
˙̂am,~kâl′,−~k〉0Φ̃

−1
l′l (~k) are the elements of the matrix

iΩ̃(~k) =





0 iΩnj 0
iΩjn 0 iΩjh

0 iΩhj 0





(~k)

, (5)

which describe nondissipative processes and are the normalized equilibrium correlation functions.
Furthermore, Φ̃−1

ll′ (~k) are the elements of the inverse of the matrix Φ̃(~k):

Φ̃(~k) =







〈n̂~kn̂
−~k〉0 0 0

0 〈~̂j~k · ~̂j
−~k〉0 0

0 0 〈ĥ~kĥ
−~k〉0






, (6)

whose structure indicates the orthogonality of the variables n̂~k, ~̂j~k, and ĥ~k in the sense that

〈n̂~k
~̂j
−~k〉0 = 0, 〈n̂~kĥ

−~k〉0 = 0, and 〈~̂j~kĥ
−~k〉0 = 0. Here, 〈n̂~kn̂

−~k〉0 = S2(~k) is the structure factor for

the simple-fluid atoms, where the average 〈...〉0 =
∫

dΓN ...%0(x
N ) is taken using the static equi-

librium operators %0(x
N ) = Z−1 exp(−β(H − µN)), Z =

∫

dΓN exp(−β(H − µN)) is the grand
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partition function, β = 1/kBT , kB is the Boltzmann constant, T is the equilibrium temperature
value, µ is the chemical potential, and

H =
N

∑

j=1





p2
j

2m
+

1

2

N
∑

l6=j=1

Φ(rlj)



 (7)

is the Hamiltonian for the simple-fluid atoms.
The dissipative processes in molecular hydrodynamics equations (4) are described by the trans-

port kernels

ϕlm(~k; t, t′) =
∑

l′

〈Il(~k)TH
0 (t, t′)Il′ (−~k)〉0Φ̃

−1
l′m(~k), (8)

which determine the generalized viscosity and heat-conduction coefficients and the transport cross-
coefficient, where Il(~k) = (1 − PH)iLN âl,~k are the generalized flows,

iLN =

N
∑

j=1

~pj

m

∂

∂~rj
−

1

2

N
∑

l6=j=1

∂

∂~rj
Φ(rlj)

(

∂

∂~pj
−

∂

∂~pl

)

, (9)

is the Liouville operator corresponding to the Hamiltonian H of the system, PH is the Mori

projection operator constructed on the hydrodynamic orthogonal variables n̂~k, ~̂j~k, and ĥ~k, and
TH

0 (t, t′) = exp((t′ − t)(1 − PH)iLN ) is the evolution operator with regard to the Mori projection

on the space of orthogonal dynamic variables n̂~k, ~̂j~k, and ĥ~k.
In the framework of the Zubarev nonequilibrium statistical operator method [11,12], the molec-

ular hydrodynamics equations (4) are derived using the nonequilibrium statistical operator [9]

%H(xN ; t) =



1 +
∑

l,m

∑

~k

(

âl,−~kΦ̃−1
lm(~k)〈âm,~k〉

t

−

t
∫

−∞

eε(t′−t)TH
0 (t, t′)Il(−~k)Φ̃−1

lm (~k)〈âm,~k〉
t′dt′

)



 %0(x
N ), (10)

i. e., nonequilibrium statistical operator (10) corresponds to the state of molecular hydrodynamics

of a simple fluid. The operator (10) is a function of the extended set of dynamical variables n̂~k, ~̂j~k,

and ĥ~k and generalized flows In(~k) = 0, Ij(~k), and Ih(~k), which determine generalized transport
coefficients by means of (8).

3. Relaxation to the state of molecular hydrodynamics

Based on the results described above, we can now consider the problem of relaxation of the
nonequilibrium state of the system to the state of molecular hydrodynamics. And since further we
will use the Markovian approximation for transport kernels, the nonequilibruim statistical operator
of molecular hydrodynamics (10) can be written in the form

%H(xN ; t) = %0(x
N )

{

1 +
∑

~k

∑

lm

〈âl,~k〉
tΦ−1

lm(~k)
(

âm,−~k − ÎH
m(−~k)

)

}

, (11)

ÎH
m(~k) =

∫ ∞

0

e−εt′TH
0 (t′)Îm(~k)dt′. (12)

Following the usual scheme [12] we will find the desired NSO from the modified Liouville
equation with an infinitesimal source, which breaks the time-reversal symmetry and selects the
retarded solutions of equation

(

∂

∂t
+ iLN

)

%(xN ; t) = −ε̃
(

%(xN ; t) − %H(xN ; t)
)

, (13)
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but now ε̃ does not go to zero and, according to [4], can be treated as an inverse average lifetime
of a system.

Presenting the statistical operator as a sum %(t) = %H(t) + ∆%(t) and substituting it into (13)
results in equation for ∆%(t):

(

∂

∂t
+ iLN + ε̃

)

∆%(t) = −

(

∂

∂t
+ iLN

)

%H(t). (14)

To solve (14) we have to exclude the derivative ∂%H(t)/∂t from the equation, and this can be done
even in the case of explicit dependence of %H(t) on time [13]

∂%H(t)

∂t
= −PR(t)iLN%(t) +

(

∂%H(t)

∂t

)

expl

, (15)

where

PR(t)%′(t) =
∑

l

∂%H(t)

∂〈âl,~k〉
t
Tr

{

âl,~k%′(t)
}

is the Robertson projection operator. Neglecting infinitesimal terms one obtains the simple repre-
sentation for the explicit time derivative of %H(t)

(

∂%H(t)

∂t

)

expl

= −(1 − PH)iLN%H(t). (16)

Since the PR(t) acts on distribution functions, it is more convenient to pass to another projection
operator which acts on dynamic variables. Thus, an action of the Robertson projection operator
on iLN%H(t) can be represented in the form

PR(t)iLN%H(t) = P̄HiLN%H(t), (17)

where P̄H is a new “projection” operator, which consists of two parts

P̄H . . . =
∑

lm

〈. . . âl,~k〉0Φ
−1
lm(~k)

(

âm,−~k − ÎH
m(−~k)

)

, (18)

P̄H = PH − P ′, (19)

and the time-dependent part has the following structure

P ′ . . . =
∑

lm

〈. . . âl,~k〉0Φ
−1
lm ÎH

m(−~k).

Now combining (14)-(19) we can obtain the final form of the equation for ∆%(t)

(

∂

∂t
+ [1 − PR(t)]iLN + ε̃

)

∆%(t) = −P ′iLN%H(t). (20)

Its formal solution can be presented as

∆%(t) = −

∫ t

−∞

eε̃(t′−t)TR(t, t′)P ′iLN%H(t′)dt′, (21)

where the evolution operator with regard to projection PR(t) is specified by the relation

TR(t, t′) = exp+

(

−

∫ t

t′
dτ [1 − PR(τ)]iLN

)

. (22)
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Thus we obtain the NSO as a functional of means of dynamic variables, and we can use it to
construct transport equations describing relaxation of the system to the state of molecular hydro-
dynamics. For this purpose let us use the relation

d〈âm,~k〉
t

dt
= Tr

{dâm,~k

dt
%(t)

}

(23)

or
d〈âm,~k〉

t

dt
=

〈

dâm,~k

dt

〉t

H

+ Tr{Îm(~k)∆%(t)
}

. (24)

Using (11) and (20) we obtain the transport equations in general form

∂

∂t
〈âl,~k〉

t =
∑

m

(

iΩlm(~k) − ϕlm(~k)
)

〈âm,~k〉
t (25)

+
∑

m,n

∫ t

−∞

eε̃(t′−t)ϕR
lm(~k; t, t′)

(

iΩmn(−~k) − ϕmn(−~k)
)

〈ân,~k〉
t′dt′

with new memory functions

ϕR
ln(~k; t, t′) =

∑

m

〈Îl(~k)TR(t, t′)ÎH
m(−~k)〉0Φ

−1
mn(~k). (26)

The first term in the right-hand side describes the contribution of molecular hydrodynamics, and
collective excitations are thoroughly studied to this end. Memory functions (26) have a complicated
structure. It is interesting that the evolution of the reduced description parameters besides others
is determined by the contributions of molecular hydrodynamics both in the present moment of
time and in the previous moments of a history of the system.

Based on the transport equations (25) we can write down the set of equations for time correlation
functions, which in Laplace representation have a form

izΦ(z,~k)+
(

iΩlm(~k) − ϕlm(~k)
)

Φ(z,~k)+ϕR(z,~k)
(

iΩlm(−~k) − ϕlm(−~k)
)

Φ(z,~k)=−Φ(~k), (27)

z = ω + iε̃.

Since direct calculations of the transport kernels (26) are difficult we use the simple approximation

ϕR
lm(z,~k) '

ϕlm(~k)

iz
=

ϕlm(~k)

iω − ε̃
(28)

(ε̃ = τ−1 is inverse lifetime of a system in the nonequilibrium state that relaxes and passes to the
state of molecular hydrodynamics). To simplify our calculations we will work in the visco-elastic
approximation, when the only variables are the means of number of particles and momentum
densities.

Thus solving the set of equations (27) one can calculate the time correlation functions of interest.
For instance, the dynamic structure factor is given by

S(k, ω) =
2ϕjj(k)Ω2

{

1 − (τϕjj (k))2
}

{(ω2 − Ω2)(1 − τϕjj (k))}2 + {ω[(ω2 − Ω2)τ + ϕjj(k)(1 − τϕjj (k))]}2 , (29)

where

Ω2 =
k2

mβS(k)
.

For momentum-momentum transverse correlation function we obtained

ΦT
jj(k, ω) =

ϕjj(k)(1 + τϕjj (k)) + ω2τ2ϕjj(k)

{ω2τ + ϕjj(k)(1 + τϕjj(k))}2 + {ω(1 − τϕjj (k))}2
. (30)
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Figure 1. Dynamic structure factor of a LJ fluid as a function of frequency. The red curve is
obtained using (29), and the black one represents molecular hydrodynamic calculations [8,9].

Figure 2. Momentum-momentum transverse correlation function of a LJ fluid as a function of
frequency. The red curve is obtained using (30), and the black one is as in figure 1.
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Frequency dependence of these functions is shown in figure 1 and figure 2. The central peak of the
dynamic structure factor is not present due to the absence of the heat mode in such a two variable
formalism. All the numerical data are taken from [6]. Time correlation functions are calculated at
reduced density n∗ = 0.845 and temperature T ∗ = 1.706 for four values of wave-vector k, namely
kσLJ = 0.936 = kminσLJ, 1.404, 1.872, and 4.678. τσ = (σ2

LJm/εLJ)
1/2 is constructed of parameters

of the problem for argon. The behaviors of these functions are generally similar to those of linear
hydrodynamics [8,9] and the difference is only in numerical data. Analyzing the behavior of time
correlation functions one can determine that the time of such a kind of relaxation process is very
short (∼ 10−14 sec). With the increase of k we observe some kind of renormalization and the
theory does not work at large k. It is natural that turning τ (i. e. the lifetime of the state under
consideration) to zero we will reproduce the results of molecular hydrodynamics.

4. Conclusions

The characteristics of the state of molecular hydrodynamics for fluids (such as collective ex-
citations, time-correlation functions, and transport coefficients) have now been widely studied,
which can serve as a basis for considerations beyond the framework of molecular hydrodynamics.
Considering the relaxation of a nonequilibrium state of the system to the state of molecular hy-
drodynamics with transport kernels in the Markovian approximation, which is thoroughly studied
for the Lennard-Jones simple fluid, we tried to realize this approach concisely using the Zubarev
nonequilibrium statistical operator method. It is determined that time of such kind of relaxation
is very short (∼ 10−14 sec). Since the problem is considered in the Markovian approximation for
transport kernels, the presented theory is not valid for large values of wave vector. The increase of
k results in nonphysical behavior of dynamic structure factor while decreasing it and turning τ to
zero we obtain the well known results of linear hydrodynamics.

Evidently, the results depend on an approximation to be done for transport kernel ϕR
lm(~k; t, t′).

The assumption (28) we used is proper on the short times of the system evolution (large frequen-
cies). It is very interesting to investigate such a relaxation process when transport kernel can be
approximated by Gaussian dependence on time

ϕR
jj(

~k; t) ∼ ϕjj(~k)e−α(ϕjj (~k),ϕππ(~k))t2 ,

where α(ϕjj(~k), ϕππ(~k)) is some functional of ϕππ(~k) = 〈iLN Îj(~k)iLN Îj(−~k)〉0Φ
−1
jj (~k), and ϕjj(~k)

of molecular hydrodynamics. These investigations will be done in due time.
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Нерiвноважний статистичний оператор в узагальненiй
гiдродинамiцi рiдин

Б.Б. Маркiв, I.П. Омелян, М.В. Токарчук

Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького, 1, 79011 Львiв, Україна

Отримано 7 липня 2009 р., в остаточному виглядi – 1 вересня 2009 р.

На основi методу нерiвноважного статистичного оператора Д.Зубарєва проведено дослiдження

систем класичних взаємодiючих частинок далеко вiд рiвноваги. Розглядається задача релаксацiї
нерiвноважного стану системи до стану молекулярної гiдродинамiки. Отримано нерiвноважний ста-
тистичний оператор та вiдповiднi рiвняння переносу, якi описують такий релаксацiйний процес.
Розв’язуючи систему рiвнянь для часових кореляцiйних функцiй, отримано явнi вирази для дина-
мiчного структурного фактора та часової кореляцiйної функцiї “iмпульс-iмпульс”, а також приведено

деякi числовi результати.

Ключовi слова: нерiвноважний статистичний оператор, часовi кореляцiйнi функцiї, коефiцiєнти

переносу, оператор Лiувiлля
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