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Spin-torque effects in antiferromagnetic (AFM) materials are of great interest due to the possible applications as
high-speed spintronic devices. In the present paper we analyze the statistical properties of the current-driven
AFM nanooscillator that result from the white Gaussian noise of magnetic nature. According to the peculiarities
of deterministic dynamics, we derive the Langevin and Fokker-Planck equations in the energy representation
of two normal modes. We find the stationary distribution function in the subcritical and overcritical regimes
and calculate the current dependence of the average energy, energy fluctuation and their ratio (quality factor).
The noncritical mode shows the Boltzmann statistics with the current-dependent effective temperature in the
whole range of the current values. The effective temperature of the other, i.e., soft, mode critically depends on
the current in the subcritical region. Distribution function of the soft mode follows the Gaussian law above the
generation threshold. In the overcritical regime, the total average energy and the quality factor grow with the
currentvalue. This raises the AFM nanooscillators to the promising candidates for active spintronic components.

Key words: antiferromagnets, spintronics,thermal noise, Langevin equation, Fokker-Planck equation,
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1. Introduction

Nowadays the spin-polarized current is widely used for manipulation of nano-magnetic structures.
Corresponding physical mechanism is based on the spin-transfer-torque (STT) effect predicted by Slon-
czewski and Berger [1, 12]: a spin-polarized current may transfer an angular momentum to a free ferro-
magnetic (FM) layer and produce a macroscopic torque on the latter’s magnetization. In the small mag-
netically uniform FM particles, the spin transfer torque induces a steady rotation of magnetization (see,
e.g. [3-6]). Interesting applications of this effect include: spintronic diodes competing with electronic
ones, radio-frequency devices used for telecommunications, timing mechanisms.

Recently it was shown [7] (see also [8]) that the STT effect should also occur in antiferromagnetic
(AFM) materials and, by analogy with FMs, should induce steady rotation of the Néel (or AFM) vector.
Current-controlled AFM nanoparticles are the promising candidates for spintronic devices due to high
working frequencies that fall into 0.1 +1 THz range (for comparison, typical frequencies of FM nanooscil-
lators are 1+50 GHz [9,/10]). The practical applications, however, face the challenge to improve the quality
factor of nanooscillators and to reduce and control their linewidth. Thus, to handle and operate STT de-
vices, we need to understand the stochastic processes (such as thermal noise) that set conditions for a
linewidth.

In his seminal paper [11] W.F. Brown first has described the thermal noise in FM particles as a stochas-
tic magnetic field acting on the magnetization and has derived the corresponding Fokker-Planck equation
which was later generalized by Apalkov and Visscher [12] to the case of Slonczewski STT. Since then, the
noise properties of the FM-based nonlinear oscillator in the presence of spin-polarized current were stud-
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ied both experimentally and theoretically [13-416]. Some authors [17-20] used the Brown’s approach to
describe superparamagnetism and switching processes in AFM nanoparticles. Corresponding models,
however, considered the particles as weak ferromagnets and rested on the FM moment that inevitably
arises from the surface effects or Dzyaloshinskii-Moriya interactions.

Analysis of noise in AFM systems requires more complicated formalism as compared with FMs due
to: (i) a larger number degrees of freedom; (ii) Newtonian-like (vs precession-like in FMs) dynamics of the
Néel vector. Moreover, the peculiarities of AFM dynamics related to a strong exchange coupling between
the magnetic sublattices, — magnetoelastic effects [21], spin-wave spectra [22], STT phenomena [7], —
should be described in terms of the variables inherent to AFM ordering.

In the present paper we investigate the efficiency of the current-driven AFM nanooscillator in the
framework of the approach based on the Néel vector dynamics [23]. We assume that the thermal noise
in AFM particle arises from fluctuations of the random magnetic field. Following the method of slow
and fast variables [24] and energy representation for non-equilibrium steady state [25] we formulate the
Fokker-Planck equation for energy distribution and study the linewidth of spin-torque AFM nanooscilla-
tor depending on temperature and current.

2. Magnetic dynamics of antiferromagnetic particle in the presence of
spin-polarized current

We study an AFM nanoparticle [see figure[Tl (a)] large enough to ensure the AFM ordering and small
enough to neglect the space variation of the magnetic properties (macrospin approximation). The an-
cillary elements, hard FM (polarizer) and thin nonmagnetic layers deliver the spin-polarized current to
AFM. We assume that the temperature T is constant and neglect the thermal (Joule) heating of the system.

We consider a collinear AFM with two equivalent magnetic sublattices M; and M, and disregard
a weak FM moment that can arise either from the intrinsic properties of material or from the surface

a)
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Figure 1. (Color online) The dynamics of AFM vector in the presence of spin-polarized current. a) AFM
particle is placed between two electrodes, the top electrode being FM (polarizer). The spacer between FM
and AFM is nonmagnetic to avoid the direct exchange coupling between the magnetic layers. b) Typical
trajectories of L vector for circularly polarized modes. Different areas correspond to different equilib-
rium orientations (4 of 6 possible are shown). ¢) Projection of trajectories in L space to the xy plane.
Three inner circles correspond to the normal modes with different amplitudes in the vicinity of equi-
librium state L||z. The last but one circle corresponds to separatrix and the outer circle is a steady state
trajectory. d) Trajectory in the overcritical regime (J = 1.2J¢r). In the initial state L||pcurrll 2.
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effects. The coupling between the sublattices (characterized with a spin-flip field Hg) is much stronger

than the external fields and the magnetic anisotropy. To this end, the AFM vector, L = M — M; of a fixed

length |L| = 2Mj unanimously describes the magnetic state of AFM nanoparticle. Corresponding dynamic

equations for L are obtained within the standard Lagrange technique with the Lagrange function [26]

yimy
2

my, . .
LArM = 7L2+ymL [L-(LxH)] - wan (@) + (L xH)?, 2.1
where H is an external magnetic field and way (L) is the energy of magnetic anisotropy that forms a po-
tential well for AFM vector, y is the gyromagnetic ratio, my is an effective mass related with the magnetic
susceptibility.
The AFM layer has a cubic symmetry and magnetic anisotropy is modeled as follows:

Han

4 4 4
“0f (4+ L8 +12), 2.2)

Wan =

where the orthogonal axes x, y and z coincide with the easy directions for the Néel vector, Hy, < HE is
anisotropy field.
The Rayleigh dissipation function in the presence of spin-polarized current J takes the form [7]:

gl

2yMy [Peurr - (LxL)]. 2.3)

Y
Rarm = YapmmpL” —

Here, the first term models the internal damping with the coefficient 2yarm equal to AFMR linewidth,
the constant o = fiye/(2eMpvapm) is proportional to the efficiency ¢ of the spin transfer processes, varm
is the volume of AFM nanoparticle, 7 is the Plank constant, e is the electron charge. Unit vector pcyr is
parallel to the spin current polarization.

Deterministic current-induced dynamics of AFM was analyzed in detail in reference [7]. Here we
reproduce some characteristic features of this behaviour assuming that polarization of the spin current
is parallel to an easy axis, pcurrll z-

First, the critical current Jo: = 2yarpmQarmr/ (Yo Hg) that separates the equilibrium and stationary
regimes depends upon the AFMR frequency Qarmr =Y vV Hg Han.

Second, in the subcritical regime, |J| < J¢r, the AFM vector has three equilibrium orientations slightly
deflected (due to STT) from x, y and z axes that define six (corresponding to L and —L) basins of finite
motion in the phase space. Typical phase trajectories in the vicinity of equilibrium points in nondis-
sipative approximation correspond to the clockwise/counterclockwise rotations of AFM vector [circles
in figure [ (b)] and could be associated with the circular polarized normal modes with the frequencies
+QarMr. Spin-polarized current acts as a negative damping for one of the modes (“soft” mode) and as a
positive damping for the other. The internal losses, however, suppress the negative damping and the real
phase trajectories are the twisted spirals.

Third, in the overcritical regime (| J| > J;), the stable non-equilibrium state occurs when the current-
induced energy pumping exactly compensates the internal losses. AFM vector rotates in xy plane (per-
pendicular to pcyurr) With the current-dependent frequency w = (J/Jo)QarMr [the outer circle in figu-
re [T (c)]. The rotation direction coincides with that of the soft mode. This regime can be associated with
the power generation.

Fourth, the motion of AFM vector shows two well separated time scales: fast rotation around z axis
with the frequency ox QapMmr and slow, with the characteristic time o< 1/yapm variation of the polar angle
from 0 (L z) to /2 (L L z). Figure[l(d) shows an example of a typical trajectory with different time scales
for the current-induced transition from the equilibrium state L| z to the steady precession in xy plane.
Deviation from this scenario takes place only in the close vicinity of the separatrix [see figure [Tl (c), next
to the last circle] where the rotation frequency substantially diminishes.

Thus, in the vicinity of equilibrium and stationary steady states, the current-induced dynamics of
AFM is characterized with a set of slow and fast variables and this can help to simplify the description of
the stochastic behaviour.
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3. Langevin dynamics and Fokker-Planck equations in energy represen-
tation

While only two variables in configuration space are enough to describe the dynamics of FM nanopar-
ticle, the phase space of AFM nanoparticle includes at least four variables: generalized coordinates L and
corresponding generalized momenta Py, (with account of normalization condition |M;| = |[M2| = M far
below the Néel temperature). This results in rather complicated Langevin equations [23]:

L = Py/my—yLxh,
P, = Fr+Fgiss—y(PL—2yapmmiL) xh, (3.1

where Fy = —0wa,n (L)/0L is the potential (gradient) force, and the dissipative force Fgjss is expressed as
follows:

ORAFM o]
- =-2 P ——— x L. 3.2
oL i, YAEME L 2y Mo Pcurr (3.2)

The random magnetic field h(#) in equation (3.I) models the white Gaussian noise with

Faiss = —

h(0)y=0,  (hj(r)hi(t2)) =2D6 jx6(h — 12), (3.3)

where 2D represents the intensity of thermal fluctuations.

The above mentioned peculiarities of the current-induced dynamics make it possible to reduce the
number of the effective phase variables in Langevin, (3.1), and corresponding Fokker-Planck equations.
First, in the vicinity of equilibrium and stationary states, the motion of AFM vector is finite and can be
decomposed to a linear combination of two independent (normal) modes shown in figure 21 Thus, one
can use a set of canonically conjugated variables “action-angle”, I.,¢. (+ correspond to the clock/coun-
terclockwise rotations in configuration space), instead of coordinates and momenta. Second, in a low-
temperature approximation, when the temperature T is much less than the energy barrier between the
different equilibrium/stationary states, all the essential phase trajectories for each mode are degenerated
(have the same rotation/oscillation frequency, w.). Thus, instead of action, one can use the energy of the
mode, E. = I, w4, as a canonical variable. Third, two time scales allow one to exclude the angle variables
@+ by averaging over the period of rotation.

a) L, b) L

(an
Pcurr

N

Figure 2. (Color online) Normal circularly polarized modes in the presence of spin-polarized current in a)
subcritical and b) overcritical regimes. Typical trajectories lie over the sphere |L| = 2Mj in configuration
space.

As a result, Langevin equations take the form:

dE. 0wan) ]
2 P;— -Lxh|, 3.4
ar ( YAarMPL oL x (3.4)

where the overline means average over the period of rotation and the summands in r.h.s. of equa-
tion should be expressed in terms of the average energies

=P -Fyjss + Y

2m/ +
E.= ’;’—; f [P2/@2my) + wan(L)] dt. 3.5)
0
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An explicit closed form of the equation will be obtained in next subsections in the limiting subcritical
and overcritical regimes.

3.1. Subcritical regime J < J;

Let us consider the basin of states in the vicinity of equilibrium point L|[pcurrllz and choose Ly, L, <
2Mj as generalized coordinates, L, =~ 2Mj. Time dependence of the dynamic variables for the normal
modes is given by the expressions

Ly+iLy =2Mpcse !, P +iPry =2iMymiwscsie®*’,  wi=+Qapvr. (3.6)

The average energy is related with the amplitude cy as follows: E; = ZE()Ci, where the value Ey =
ZMSQiFMRmL = My Hap, defines the characteristic energy scale for AFM nanoparticle.

Substituting expressions 3.6) into and (3.4) we arrive at the system of two independent Langevin
equations:

dé‘i

E = —ZYAFM(li]L)Si +2Y\/a(ihxsinQAFMRt—hyCOS.QAFMRt) 3.7

Ccr

)fzyﬂ [2 \/a(hx coSQArMRE + hy sin QAFMR I) FeEs hz] ,
QAFMR
where €, = E./Ey is a dimensionless energy.

As it is seen from equation @3.7), the clock/counterclockwise modes [figure 2l (a)] interact with the
current in different ways. If J > 0, the effective damping of the first mode (with the energy E.) increases
and that of the second (with the energy E_) decreases, due to the action of spin-polarized current.

Equations are typical Langevin equations in energy representation considered in detail in [25].
The first summand in the r.h.s. describes the rate of direct energy exchange which depends upon the
current value J. All but first summands in the r.h.s. of 37) account for system-environment interaction
induced by the field fluctuations. The diffusion functions (coefficients before %;) depend on energy and
thus correspond to multiplicative noise. The last two terms (in square brackets) are multiplied by a small
factor yapm/QarMr < 1 and thus can be neglected.

In the accepted approximation of noninteracting modes, the distribution function in phase space,
f(@L,Pyr; 1), can be factorized as follows: f(L,Pr;t) = fi (E+;t) f-(E-; t). The Fokker-Planck equations for
f+ are deduced in a standard manner from (3.7) in Stratonovich convention and take the form:

0
y*DE, \/Eia? VEx +2YArM (1 + i) E.
+

f(Es) 0 {
Jer

ot  OE.

fe(ED) } (3.8)

From the stationary solution of (3.8) one gets the AFM probability distribution function f(E.,E-) =
f+(EL) f-(E-) vE4E_ (with due account of Jacobian):

J J
1+ —|E 1-—|E_|¢, 3.9
(+Jcr) ++( Jcr) ” 3.9

2YAFM
Y*DEy

fEw,E) = foeXp{—

where fj is a normalization constant and the diffusion coefficient is related with the temperature T
through the fluctuation-dissipation theorem as follows:

2
p=TaM . (3.10)
Y“Eo

3.2. Overcritical regime J > ],

In the overcritical regime, the motion can be decomposed (like it was done in the reference [27] for
FM) into steady rotation of AFM vector in xy plane with the frequency w_- and small meridian oscillations
of L vector with the frequency w [see figure[2(b)].
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The “+”-mode is parametrized as follows:

L, =ce“+! P, =2iMymiwsce®*!, (3.11)

3 J? 3 J?
w1+ =QarMR [ 7+ 75 Ey=2Ep|~+
4 Ccr 4 ]Cr

The corresponding Langevin and Fokker-Planck equations are analogous to (3.7) and (B.8).

Parametrization of “—”-mode coincides with that in equation (3.6) with c_ = 1. In this particular case,
the proper dynamic variable is action I_ = 87TM§ mrw-. The corresponding Langevin equation takes the
form

.

dI_

dr
where 0© = —(J/ Jer)Qarmr is the frequency of steady rotation. Substituting I- = 4m My v2mpE_ into
(3.12) we get Langevin equation in energy representation:

= —2yarm (I- — 87 MEmyw®) —yI_h;, (3.12)

dE-

—— = —4YArM (E_ - L VvV E()E_) —2YyE_h;. (3.13)
dr Jor

The corresponding Fokker-Planck equation is deduced as follows:

B0
ot  OE-

0
4y’DE_ 55 B+ 4ram (E_ - ]i \/EOE_)] f (E_)}. (3.14)
- Ccr

Ultimately, the stationary AFM distribution function in the overcritial regime takes the form:

4. (E- - EoJ?112)° } (3.15)

E:,E-) = - -
JEE foexp{ B+4UJ®| T 2TEJ* I

where we have taken into account the relation and assumed that T < Ej.

4. Discussion

In the previous section we derived the stochastic equations for the current-controlled AFM nanopar-
ticle in the low temperature approximation, T << Ey. So, the magnetic anisotropy energy Ej sets the
energy scale of the system and limits the validity of equations (3.15). AFMs with high Néel tempera-
ture show a characteristic density of magnetic anisotropy 103 + 104 J/m? (see, e.g. [28] for Mng,Niig). So,
Epox 1072%+ 10719 J for the nanoparticles with the typical size 50 x 50 x 5 nm3. Thus, the proposed model
can be applied up to the room temperature, Ty = 4-10721 J.

Neglecting the swap processes between different basins, we found two stationary solutions of Fokker-
Planck equations: in the vicinity of equilibrium, (3.9), and nonequilibrium steady states.

For the noncritical (“+”) mode, the probability function f(E;) [see (3.9) and (3.15)] follows the Boltz-
mann law with the current-dependent effective temperature

76 { A+t J <Jer, @

eff — 0.75+ J21J2,, J>Jer.

In the subcritical regime (J < J;), the “soft” (“—”) mode shows the Boltzmann-like distribution which
changes to the Gauissian-like with the current-dependent average, E® = Eyj?/ ]gr, and current-depen-
dent dispersion, TEy J?/ ]srit at J > Jor. In the subcritical region, the effective temperature Te(f_f) =T/1-
J1Jor) diverges as J — Jor —0. This singularity can be avoided with due account of the swap processes [see
the trajectory in figure[l(d)] that are important in the vicinity of critical current J = J.;. This problem is,
however, out of scope of this paper.

The statistical properties of the “soft” mode in AFM and FM nanoparticles in the presence of spin-
polarized current are similar: Boltzmann-like distribution and critical behaviour of the effective temper-
ature in subcritical region, and Gaussian-like distribution in overcritical regime [13]. The current depen-

dencies of average energy and dispersion are, however, different, as will be discussed below.
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Figure 3. (Color online) Energy distribution function for different current values J/ J¢r (shown with num-
bers near the curves) in the subcritical (J < J¢r) and overcritical (J > J¢r) regimes. Energy is measured in
the dimensionless units, E/T. Vertical dashed line shows the energy Ep = 10T in the overcritical regime.

Figure[3]shows the distribution function, f(E), that depends on the total magnetic energy E = E, + E_
of AFM nanoparticle. Dependencies f(E) for different current values are calculated from and
as conventional probabilities.

In the subcritical regime (J/ /. = 0.1,0.5,0.9), the distribution function is asymmetric with maximum
at

=T. (4.2)

Average magnetic energy of nanoparticle, E;y = (E) = Te(;rf) + Téf_f), consists of the noisy component
only and diverges as J — J¢;. Energy fluctuation,

_ 1
AE= \J(E-En® = (T3 + T3) 1[5

diverges in the same way [see figure [ (a)]. Thus, the quality factor, Qapm = Eav/AE diminishes down to
1 as J — Jor — 0. This tendency is quite obvious if one takes into account the noisy source of the energy in
a system. The singularity in AE emphasizes the role of thermal noise in the transition from equilibrium
to nonequilibrium steady state in the vicinity of critical current.

In the overcritical regime (J/J = 1.01, 1.1, 1.2), the distribution function f(E) has a Gaussian-like
shape with the maximum close to the average energy E,y. Both E,y and AE grow with current [see fig-
ure[] (b)]. However, the main contribution into E,y arises from the deterministic (low entropy) current-
induced rotation of AFM vector, while AE originates from the noise slightly intensified by the current.
Thus, the quality factor Qapy is finite at J = J; and increases with current almost linearly [inset in
figure @ (b)]. By contrast, the quality factor for FM nanoparticle, Qry < /11— Ji/J, vanishes in the
close vicinity of J¢ in the supercritical regime. This opens up the way for potential applications of AFM
nanoparticles as active elements of spintronic devices and as a possible alternative to FM nanooscillators.
The model, however, should be further developed to account for the Joule heating, current fluctuations,
etc.

In summary, we considered the current-induced dynamics of AFM nanoparticle in the presence of
white Gaussian noise which originates from the random magnetic fields. We found the stationary energy
distribution functions in two regimes: subcritical, when the spin-polarized current is too small to reorient
AFM vector from the initial equilibrium state, and overcritical, when the spin-polarized current keeps
steady rotation of AFM vector. Average energy and energy fluctuations in the subcritical regime show
the critical behaviour as J — J¢;. This can be used to facilitate the current-induced reorientation of AFM
vector. In the overcritical regime, the quality factor of AFM particle as nanooscillator can be increased
by adjusting the current value.

2
1+ ]—) 4.3)
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Figure 4. (Color online) Current dependence of the average energy, E,y, and energy fluctuation, AE in
a) subcritical (J < J¢r) and b) overcritical (J > J¢r) regimes. Insets show the current dependence of the
quality factor, Qapm = Eav/AE. The energy Eg = 10T Dashed line shows the current-dependence of the
“soft” mode energy EO = Eo]?‘/]gIr .
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AHTNepoMarHiTHUM HAHOOCLUNATOP 3i CNiIHOBUM
KPYTUJIbHUM MOMEHTOM B MPUCYTHOCTi MarHiTHUX WyMmiB

0.B. FomoHai™2 B.M. Nlokted?

T HawioHanbHWii TexHiuHWiA yHiBepcuTeT YKpainum “KMNI”, np. Nepemoru, 37, 03056 Kunis, YkpaiHa
2 IHCTUTYT TeopeTuyHoi ¢isukm iM. M.M. boronto6osa HAH YkpaiHn,
By/N. MeTponoriyHa, 14-6, 03680 Kuis, YkpaiHa

Mpouecn nNepesadi KPYTUNBHOIO CMiHOBOTO MOMEHTY aHTUdepoMarHiTHUM (A®M) mMaTepianam LjikaBi 3 TOUKM
30py MOX/IMBMX 3aCTOCYBaHb B LUBUAKICHUX CMIHTPOHHUX Mpunajax. B aariin poboTi BMBYaOTbCS 06yMOB-
NIeHi MarHiTHUM LYMOM CTaTUCTWMYHI BnactnsocTi AOM HaHoOCUMAATOPaA, AKWI 3HAaXOAUTLCA Nij Ai€r0 CMiH-
NoNsip30BaHOro CTpymy. Buxoasaum 3 ocobnvBocTeli feTepMiHOBAHOI ANHAMIKK, BUBeAEHO PiBHAHHSA JlaHxe-
BeHa Ta Pokkepa-lnaHKa Ana ABOX HOPManbHWX MO/, B eHepreTyHOMy npejctasneHi. MarHiTHui wym moge-
NIOETBLCA NPU LbOMY AK BUMaAKOBWI AenbTa-KopenboBaHuii Maycie npouec. OTpMMaHo BUpasmn Ans ctauioHap-
HOT GYHKLT po3noginy B AOKPUTUYHOMY i HAAKPUTUUYHOMY pexrmax. Po3paxoBaHO 3a1exXHiCTb Big CTpyMy cepe-
AHbOT eHeprii, payKTyauii eHeprii Ta ix BigHOWeHHS (pakTopa AKOCTi). MoKa3aHo, Wo GYHKLiA po3noAiny oAHI€el
3 MOJ, (HeKPUTNYHOI) BignosiAae bonbLMaHiBCbKOMY PO3MOAITY B YCbOMY Aiana3oHi BENNYMHN CTPYMY, Npu-
YoMy edpekTMBHa TemnepaTypa 3anexuTb Big cTpyMy. EdekTiBHa TemnepaTypa iHLLIOI (M'AKOT) MOAW 3anexmnTb
Bif CTPYMY KPUTUYHMM YMHOM. B HaAKpUTUUHIA obnacTi GyHKLIA po3moginy Liei MogM BignoBigae posnoginy
layca, a cepefiHa eHepria i paKToOp AKOCTi 3pOCTalOTh 3 BEIMUYMHOK CTPYMY, L0 pobuts AOM HaHooCUMAATOpU
nepcnekTUBHYMMN CUCTEMAMU A1t BUKOPUCTAHHSA B POJIi aKTVBHUX €/1eMEHTIB B CMIHTPOHHUX Npunajax.

KntouoBi cnoBa: aHTgepomarHeTvky, CiHTPOHIKa, TENA0BUI LLYM, PIBHAHHSA JlaHXeBeHa, pPiBHAHHS
dokkepa-lnaHka, CriHOBWIA KPYTUALHUA MOMEHT
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