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The spin-1/2 Ising-Heisenberg model on diamond-like decorated Bethe lattices is exactly solved in the pres-
ence of the longitudinal magnetic field by combining the decoration-iteration mapping transformation with the
method of exact recursion relations. In particular, the ground state and low-temperaturemagnetization process
of the ferrimagnetic version of the considered model is investigated in detail. Three different magnetization
scenarios with up to two consecutive fractional magnetization plateaus were found, whereas the intermedi-
ate magnetization plateau may either correspond to the classical ferrimagnetic spin arrangement and/or the
field-induced quantum ferrimagnetic spin ordering without any classical counterpart.
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1. Introduction

Low-dimensional quantum spin systems have attracted much attention over the past few decades,

since they exhibit a lot of striking quantum phenomena including fractional magnetization plateaus,

spin-Peierls dimerization, unconventional spin-liquid ground states, or many other peculiar valence-

bond-solid ground states such as the Haldane phase [1, 2]. It is worth noting that the most remarkable

experimental findings reported for low-dimensional spin systems were mostly satisfactorily interpreted

with the help of quantum Heisenberg model and its various extensions. From the theoretical point of

view, an exact treatment of the quantum Heisenberg model remains an unresolved problem mainly due

to substantial mathematical difficulties, which arise from a noncommutability of spin operators involved

in the relevant Hamiltonian. However, this mathematical complexity can be avoided by considering sim-

pler Ising-Heisenberg models, which describe hybrid classical-quantum spin systems constituted both by

the ‘classical’ Ising as well as the quantum Heisenberg spins. The hybrid Ising-Heisenberg models can be

exactly treated bymaking use of generalizedmapping transformations, which were originally introduced

by Syozi [3, 4] and later on generalized by Fisher [5], Rojas et al. [6, 7] and one of the present authors [8].

In this work, the generalized decoration-iteration transformation is combined with the method of ex-

act recursion relations in order to obtain exact results for the spin- 1
2
Ising-Heisenbergmodel on diamond-

like decorated Bethe lattices in the presence of the longitudinal magnetic field. It should be noted that the

applied decoration-iteration transformation establishes a rigorous mapping equivalence between the in-

vestigated model system and the spin- 1
2
Ising model on a corresponding simple Bethe lattice with the

effective nearest-neighbour interaction and the effective magnetic field. Owing to this precise mapping

correspondence, exact results for the spin- 1
2
Ising-Heisenbergmodel on the diamond-like decorated Bethe

lattices can be subsequently extracted from the relevant exact solution of the spin- 1
2
Ising model on a sim-

ple Bethe lattice by means of the method of exact recursion relations [9–11].

The organization of this paper is as follows. In section 2, the detailed description of the investigated

model system is presented together with the basic steps of its exact solution. The most interesting re-
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sults are then presented and discussed in section 3. In particular, our attention is focused on the ground

state and low-temperature magnetization process of the ferrimagnetic version of the considered model.

Finally, some concluding remarks are drawn in section 4.

2. Ising-Heisenberg model on decorated Bethe lattices

Let us introduce the spin- 1
2 Ising-Heisenberg model on a diamond-like decorated Bethe lattice, which

is schematically illustrated on the left-hand-side of figure 1 on the particular example of the underlying

Bethe lattice with the coordination number q = 3. In this figure, the full circles label lattice positions of

the Ising spins µ = 1
2 , while the empty circles mark lattice positions of the Heisenberg spins S = 1

2 . One

may infer from figure 1 that the magnetic structure of the investigated model is formed by the Ising spins

placed at lattice sites of a deep interior of infinite Cayley tree (Bethe lattice), which are linked together

through the Heisenberg spin pairs placed in-between each couple of the Ising spins. The total Hamiltonian

of the spin- 1
2
Ising-Heisenberg model on diamond-like decorated Bethe lattices reads

H =−JH

N q/2
∑

(k ,l )

[

∆
(

Sx
k Sx

l +S
y

k
S

y

l

)

+Sz
k Sz

l

]

− JI

2N q
∑

(k ,i)

Sz
kµ

z
i −HA

N
∑

i=1

µz
i −HB

N q
∑

k=1

Sz
k . (1)

Here, Sα
k

(α = x, y, z) and µz
i
represent spatial components of the spin- 1

2
operator, the parameter JH de-

notes the XXZ interaction between the nearest-neighbour Heisenberg spins, the parameter ∆ controls a

spatial anisotropy in this interaction between the easy-axis (∆ < 1) and easy-plane (∆ > 1) regime, and

the parameter JI marks the Ising interaction between the nearest-neighbour Heisenberg and Ising spins,

respectively. Furthermore, two Zeeman’s terms HA and HB determine the magnetostatic energy of the

Ising and Heisenberg spins in a longitudinal magnetic field.

DIT

Sk1

Sk2

mk1

mk2

mk1

mk2

Jeff

q=3

JI

JH( )D

Figure 1. The spin- 1
2 Ising-Heisenberg model on the diamond-like decorated Bethe lattice (figure on the

left) and its exact mapping via the decoration-iteration transformation (DIT) onto the spin- 1
2 Ising model

on a simple Bethe lattice (figure on the right). The full (empty) circles denote lattice positions of the Ising

(Heisenberg) spins, the ellipse demarcates the elementary diamond-shaped spin cluster described by the

kth bond Hamiltonian (3).

It is quite evident from figure 1 that each pair of Heisenberg spins is surrounded by one couple of

the Ising spins located at lattice sites of a simple Bethe lattice and hence, the model under consideration

can alternatively be viewed as the Bethe lattice of Ising spins whose (fictitious) bonds are decorated in a

diamond-like fashion by two quantumHeisenberg spins. In view of furthermanipulations, it is, therefore,

of practical importance to rewrite the total Hamiltonian (1) as a sum of bond Hamiltonians

H =
N q/2
∑

k=1

Hk , (2)

whereas the bond Hamiltonian Hk involves all the interaction terms belonging to the kth diamond-
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shaped cluster specifically delimited in figure 1 by an ellipse

Hk = −JH

[

∆
(

Sx
k1Sx

k2 +S
y

k1
S

y

k2

)

+Sz
k1Sz

k2

]

− JI

(

Sz
k1 +Sz

k2

)(

µz
k1 +µz

k2

)

−HB

(

Sz
k1 +Sz

k2

)

−
HA

q

(

µz
k1 +µz

k2

)

. (3)

Owing to the validity of the commutation relationship between different bond Hamiltonians [H i ,H j ] =
0, the partition function can be partially factorized into a product of bond partition functions

ZIHM =
∑

{µi }

N q/2
∏

k=1

Trk exp(−βHk ) =
∑

{µi }

N q/2
∏

k=1

Zk , (4)

where β = 1/(kBT ), kB is the Boltzmann’s constant and T is the absolute temperature. The symbol Trk

denotes a trace over degrees of freedom of two Heisenberg spins from the kth diamond-shaped cluster

and the summation
∑

{µi } runs over all possible configurations of the Ising spins. The bond partition

function Zk can be evaluated in the most straightforward way by a direct diagonalization of the bond

Hamiltonian (3) within the particular subspace of the kth Heisenberg spin pair and employing a trace

invariance of the bond partition function with respect to a unitary transformation. After executing this

procedure one gains the resultant expression, which implies a possibility of applying the generalized

decoration-iteration transformation [5–8]

Zk

(

µz
k1,µz

k2

)

= 2exp

[

βHA

q

(

µz
k1 +µz

k2

)

]{

exp

(

βJH

4

)

cosh
[

βJI

(

µz
k1 +µz

k2

)

+βHB

]

+exp

(

−
βJH

4

)

cosh

(

βJH∆

2

)}

= A exp

[

βJeffµ
z
k1µ

z
k2 +

βHeff

q

(

µz
k1 +µz

k2

)

]

. (5)

Considering four available combinations of spin states of two Ising spins µz
k1

and µz
k2
, one gets from the

transformation formula (5) three independent equations that unambiguously determine the mapping

parameters A, Jeff and Heff

A = 2
(

V+V−V 2
0

)1/4
, βJeff = ln

(

V+V−

V 2
0

)

, βHeff =βHA +
q

2
ln

(

V+
V−

)

, (6)

which are for simplicity defined through the functions V± and V0

V± = exp

(

βJH

4

)

cosh
(

βJI ±βHB

)

+exp

(

−
βJH

4

)

cosh

(

βJH∆

2

)

,

V0 = exp

(

βJH

4

)

cosh
(

βHB

)

+exp

(

−
βJH

4

)

cosh

(

βJH∆

2

)

. (7)

At this stage, the direct substitution of the algebraic mapping transformation (5) into the factorized form

of the partition function (4) leads to a rigorous mapping relationship

ZIHM(β, JI, JH,∆, HA , HB, q) = A
N q

2 ZIM(β, Jeff, Heff, q), (8)

which connects the partition function ZIHM of the spin- 1
2 Ising-Heisenberg model on the diamond-like

decorated Bethe lattice with the partition function ZIM of the spin- 1
2
Ising model on a corresponding

simple (undecorated) Bethe lattice schematically illustrated on the right-hand-side of figure 1 and math-

ematically given by the Hamiltonian

HIM =−Jeff

N q/2
∑

(i , j )

µz
i µ

z
j −Heff

N
∑

i=1

µz
i . (9)

Apparently, the mapping parameters Jeff and Heff given by equations (6)–(7) determine the effective

nearest-neighbour interaction and the effective magnetic field of the corresponding spin- 1
2
Ising model
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on the simple Bethe lattice, while the mapping parameter A is just a simple multiplicative factor in the

established mapping relation (8) between both partition functions.

Now, other physical quantities of our particular interest follow quite straightforwardly. For instance,

with the help of equation (8), one easily finds a similar mapping relation between the free energy FIHM of

the spin- 1
2
Ising-Heisenberg model on the diamond-like decorated Bethe lattice and the free energy FIM

of the equivalent spin- 1
2
Ising model on a simple Bethe lattice

FIHM =−kBT lnZIHM = FIM −
N qkBT

2
ln A. (10)

Consequently, the single-site sublattice magnetization of the Ising spins can be calculated by differentiat-

ing the free energy (10) with respect to the relevant magnetic field HA

mA =−
1

N

∂FIHM

∂HA
=−

1

N

(

∂FIM

∂βHeff

)

∂βHeff

∂HA
= mIM(β, Jeff, Heff). (11)

According to equation (11), the sublattice magnetization of the Ising spins in the spin- 1
2
Ising-Heisenberg

model on the diamond-like decorated Bethe lattice is equal to the magnetization of the corresponding

spin- 1
2
Ising model on the simple Bethe lattice with the effective nearest-neighbour interaction Jeff and

the effective magnetic field Heff given by (6)–(7). A similar calculation procedure can also be performed

for obtaining the single-site sublattice magnetization of the Heisenberg spins, which can be for conve-

nience expressed in terms of the magnetization mIM and the nearest-neighbour pair correlation εIM of

the equivalent spin- 1
2 Ising model on the simple Bethe lattice

mB = −
1

N q

∂FIHM

∂HB
=

1

2

∂ ln A

∂βHB
−

(

1

N q

∂FIM

∂βJeff

)

∂βJeff

∂HB
−

(

1

N q

∂FIM

∂βHeff

)

∂βHeff

∂HB

=
1

8

(

W+
V+

−
W−
V−

+2
W0

V0

)

+
εIM

2

(

W+
V+

−
W−
V−

−2
W0

V0

)

+
mIM

2

(

W+
V+

+
W−
V−

)

. (12)

The newly defined functions W± and W0 are given by

W± = exp

(

βJH

4

)

sinh
(

βJI ±βHB

)

, W0 = exp

(

βJH

4

)

sinh
(

βHB

)

. (13)

To complete our exact calculation of both sublattice magnetizations, it is now sufficient to substi-

tute into the derived formulas (11)–(12) the relevant exact results for the magnetization and nearest-

neighbour spin-spin correlation of the corresponding spin- 1
2
Ising model on the simple Bethe lattice with

the effective nearest-neighbour interaction Jeff and the effective magnetic field Heff given by (6)–(7). The

sublattice magnetization and spin-spin correlation function of the spin-1/2 Ising model on the undeco-

rated Bethe lattice can be rigorously found within the framework of exact recursion relations [9–13]. If

the simple Bethe lattice (see figure 1, figure on the right) is ‘cut’ at a central site with the spin µk1, it will

disintegrate into q identical branches and the partition function of the system will take the form

Z =
∑

µk1

exp(βHeffµk1)
[

gn(µk1)
]q

, (14)

where gn(µk1) is the partition function of a separate branch

gn(µk1) =
∑

µk2

exp(βJeffµk1µk2 +βHeffµk2)
[

gn−1(µk2)
]q−1

. (15)

By using of (15), one can easily obtain a recursion relationship for the variable xn = gn (−1/2)

gn (+1/2)

xn =
exp

(

−βJeff

4 + βHeff

2

)

+exp
(

βJeff

4 − βHeff

2

)

x
q−1

n−1

exp
(

βJeff

4
+ βHeff

2

)

+exp
(

−βJeff

4
− βHeff

2

)

x
q−1

n−1

. (16)
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Even though the parameter xn does not have a direct physical sense, it plays a crucial role in determining

the canonical ensemble averages of all physical quantities in the limit n → ∞. For instance, one eas-

ily obtains the following expressions for the magnetization and nearest-neighbour spin-spin correlation

function of the spin-1/2 Ising model on the Bethe lattice

mIM =
1

2

exp
(

βHeff

)

− xq

exp
(

βHeff

)

+ xq
,

εIM =
1

4

exp
(

βJeff

4
+βHeff

)

−2exp
(

−βJeff

4

)

xq−1 +exp
(

βJeff

4
−βHeff

)

x2q−2

exp
(

βJeff

4
+βHeff

)

+2exp
(

−βJeff

4

)

xq−1 +exp
(

βJeff

4
−βHeff

)

x2q−2
. (17)

which can be both expressed through a stable fixed point x = lim
n→∞

xn of the recurrence relation (16).

3. Results and discussion

c2c1

SPP

CFP                            QFP

H = J H
( -1)/2

 + |J I|

H = q[
J H

 (
-1)

/2 
- |J

I|]
/(q

-2)

H = q|JI|
 

H
 

Figure 2. The general ground-state phase diagram in

the ∆−H plane.

In this part, let us proceed to a discussion of

the most interesting results obtained for the fer-

rimagnetic version of the spin- 1
2 Ising-Heisenberg

model on the diamond-like decorated Bethe lat-

tice with the ferromagnetic Heisenberg interac-

tion JH > 0 and the antiferromagnetic Ising in-

teraction JI < 0, which, at sufficiently low fields,

will favour the antiparallel alignment between

the nearest-neighbouring Ising and Heisenberg

spins, respectively. It is worthwhile to remark that

the critical behaviour of the considered model in

the absence of the external magnetic field has

been investigated in some detail in our previous

work [14] and hence, the effect of a non-zero mag-

netic field will be at themain focus of our research

interest. To reduce the total number of free pa-

rameters, the most notable features of the magnetization process will be illustrated for a specific choice

H ≡ HA = HB, which coincides with setting Landé g-factors of the Ising and Heisenberg spins equal to

each other.

First, let us comment on possible spin arrangements emerging at zero temperature. Owing to the

validity of the commutation relationship between the different cluster Hamiltonians, the ground-state

spin arrangements can easily be obtained by searching for the lowest-energy eigenstate of the cluster

Hamiltonian (3). The ground-state phase diagram displayed in figure 2 implies the existence of three

different ground states, which can be thoroughly characterized by the following eigenvectors

|CFP〉 =
N
∏

k=1

∣

∣

∣

∣

µz
k =−

1

2

〉N q/2
∏

k=1

∣

∣

∣

∣

Sz
k1 =

1

2

〉∣

∣

∣

∣

Sz
k2 =

1

2

〉

,

|QFP〉 =
N
∏

k=1

∣

∣

∣

∣

µz
k = sgn(H)

1

2

〉N q/2
∏

k=1

1
p

2

(∣

∣

∣

∣

Sz
k1 =

1

2

〉∣

∣

∣

∣

Sz
k2 =−

1

2

〉

+
∣

∣

∣

∣

Sz
k1 =−

1

2

〉∣

∣

∣

∣

Sz
k2 =

1

2

〉)

,

|SPP〉 =
N
∏

k=1

∣

∣

∣

∣

µz
k =

1

2

〉 N q/2
∏

k=1

∣

∣

∣

∣

Sz
k1 =

1

2

〉
∣

∣

∣

∣

Sz
k2 =

1

2

〉

. (18)

As could be expected, two ground states correspond to classical spin arrangements with a perfect paral-

lel and antiparallel alignments between the nearest-neighbour Ising and Heisenberg spins to be further

referred to as the classical ferrimagnetic phase (CFP) and the saturated paramagnetic phase (SPP), respec-

tively. Apart from those rather trivial phases, one may also detect a more spectacular quantum frustrated

phase (QFP) with a peculiar spin frustration of the Ising spins stemming from a quantum entanglement
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of the Heisenberg spin pairs. As a matter of fact, the emergent quantum superposition of two possible

antiferromagnetic states of the Heisenberg spin pairs is responsible in QFP for a complete randomness

of the Ising spins at a zero magnetic field as convincingly evidenced in our previous study [14]. Due to

the spin frustration, all the Ising spins tend to align into the external-field direction for arbitrary but

non-zero magnetic field and, consequently, a striking quantum ferrimagnetic phase develops from QFP

with a full polarization of the Ising spins and the non-magnetic nature of the Heisenberg spin pairs. The

existence of QFP alone seems to be a quite general feature of the Ising-Heisenberg models, where a mu-

tual competition between the easy-axis Ising interaction and the easy-plane Heisenberg interaction takes

place [15, 16]. Furthermore, all phase transitions between three available ground states are of the first

order and their explicit form is given in figure 2 along the depicted phase boundaries.
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Figure 3. (Color online) The total and sublattice magnetizations as a function of the external magnetic

field for the spin- 1
2 Ising-Heisenberg model with the coordination number q = 3, the interaction ratio

JH/|JI| = 1.0, the exchange anisotropy ∆= 1.0 and four different temperatures.

Now, let us illustrate typical magnetization scenarios as displayed in figures 3–5 for the spin- 1
2
Ising-

Heisenberg model on the diamond-like decorated Bethe lattice with the coordination number q = 3, the

specific value of the interaction ratio JH/|JI| = 1.0, three different values of the exchange anisotropy

∆ and several temperatures. It is worthwhile to remark that the total single-site magnetization mT ≡
(

mA +qmB

)

/(1+ q) is also plotted in figures 3–5 in addition to both sublattice magnetizations mA and

mB of the Ising and Heisenberg spins, respectively. If the exchange anisotropy is selected below its first

critical value ∆<∆c1 ≡ 1+2|JI|/JH, then, one encounters a rather typical magnetization curve reflecting

the field-induced transition from CFP to SPP as shown in figure 3. It is quite clear that the intermedi-

ate magnetization plateau observed at a half of the saturation magnetization indeed corresponds to the

classical ferrimagnetic spin arrangement inherent to CFP and the magnetization plateau gradually di-

minishes upon increasing the temperature. The most significant changes in the displayed magnetization

curve evidently occur if the temperature is selected slightly above the critical temperature of CFP (note

that kBTc/|JI| ≈ 0.5 for ∆= 1). Even though both sublattice magnetizations already start from zero in this

particular case, they obviously tend towards typical magnetization values for CFP still bearing evidence

of an intermediate magnetization plateau at moderate fields and temperatures [see figure 3 (c)].
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Figure 4. (Color online) The total and sublattice magnetizations as a function of the external magnetic

field for the spin- 1
2 Ising-Heisenberg model with the coordination number q = 3, the interaction ratio

JH/|JI| = 1.0, the exchange anisotropy ∆= 4.0 and four different temperatures.
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Figure 5. (Color online) The total and sublattice magnetizations as a function of the external magnetic

field for the spin- 1
2 Ising-Heisenberg model with the coordination number q = 3, the interaction ratio

JH/|JI| = 1.0, the exchange anisotropy ∆= 6.0 and four different temperatures.
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However, the most interesting magnetization process can be found if the exchange anisotropy is se-

lected from the interval ∆ ∈ (∆c1,∆c2) with ∆c2 ≡ 1+2(q −1)|JI|/JH. Under this condition, at low enough

temperatures, the total magnetization exhibits two successive fractional magnetization plateaus at one

quarter and one half of the saturation magnetization [see figures 4 (a)–(b)], which end up at two different

field-induced transitions from QFP to CFP and, respectively, from CFP to SPP. The lower magnetization

plateau at one quarter of the saturation magnetization gives a clear evidence of QFP, because the total

magnetization starts from zero and it becomes non-zero mainly due to the field-induced alignment of

the frustrated Ising spins. Moreover, it is quite interesting to observe from figure 4 that the former field-

induced transition between QFP and CFP is much sharper at a given temperature than the latter field-

induced transition between CFP and SPP. Of course, the relevant magnetization curve becomes smoother

upon increasing temperature until both magnetization plateaus completely disappear from the magneti-

zation process above a certain temperature (kBT /|JI| ≈ 0.5 for ∆= 4.0).

Last but not least, the magnetization curve without the higher intermediate magnetization plateau

at a half of the saturation magnetization can be detected whenever the exchange anisotropy exceeds its

second critical value ∆ > ∆c2. In agreement with the ground-state phase diagram shown in figure 2, the

low-temperature magnetization curve displays a direct field-induced transition from QFP towards SPP

without passing through another magnetization plateau CFP. For illustration, the magnetization scenario

of this type is depicted in figure 5. It is worth noting that the field-induced polarization of the Heisen-

berg spins, which appears in the vicinity of the saturation field, may cause, at moderate temperatures,

a transient lowering of the sublattice magnetization of the Ising spins as it can be clearly seen in fig-

ures 5 (b)–(c). The partial lowering of the sublattice magnetization of the Ising spins can be attributed

to a spin reorientation of the Heisenberg spins towards the external-field direction and a tendency of

the nearest-neighbour Ising and Heisenberg spins to align antiparallel with respect to each other due to

the antiferromagnetic interaction in-between them. Furthermore, figure 5 (d) shows an interesting cross-

ing of both sublattice magnetizations, which occurs at sufficiently high temperatures on account of the

antiferromagnetic correlations between the nearest-neighbour Ising and Heisenberg spins.

Figure 6. (Color online) A color map of the total magnetization as a function of the dimensionless temper-

ature and external magnetic field for the spin- 1
2 Ising-Heisenberg model on the diamond-like decorated

Bethe lattice with the coordination number q = 3, the interaction ratio JH/|JI| = 1.0 and three different

values of the exchange anisotropy: (a) ∆= 1.0; (b) ∆= 4.0; (c) ∆= 6.0.

Let us conclude our analysis of themagnetization process by few comments on a color map of the total

magnetization depicted in figure 6 as a function of temperature and external magnetic field. According to

a unique color map labelling used in figure 6, two fractional values of the total magnetization mT = 0.125

and 0.25 that correspond to the intermediate magnetization plateaus associated with the appearance of

QFP and CFP are displayed by cyan and green color, respectively. As could be expected, the quite extensive

green region in figure 6 (a) indicates a rather wide magnetization plateau at a half of the saturation

magnetization emerging for relatively weak exchange anisotropies ∆ < ∆c1, while the wide cyan region

in figure 6 (c) implies the existence of a relatively robust magnetization plateau at one quarter of the

saturation magnetization for strong enough exchange anisotropies ∆ > ∆c2. Hence, if follows that the

most striking magnetization profile with two successive intermediate magnetization plateaus might be

indeed expected for the intermediate exchange anisotropies ∆ ∈ (∆c1,∆c2). In fact, figure 6 (b) serves

43003-8



Spin-1/2 Ising-Heisenberg model in the external magnetic field

in evidence of the presence of both intermediate magnetization plateaus, which are gradually smudged

by thermal fluctuations as temperature increases. Interestingly, it turns out that the lower fractional

magnetization plateau pertinent to QFP diminishes much more steadily with an increasing temperature

in comparisonwith the higher fractional magnetization plateau pertinent to CFP, which seems to bemuch

more resistant against thermal fluctuations.

4. Conclusion

The present work deals with the spin- 1
2
Ising-Heisenberg model on diamond-like decorated Bethe lat-

tices in the presence of the longitudinal magnetic field. Exact solution for the investigated model has

been obtained by combining the decoration-iteration mapping transformation with the method of exact

recursion relations. The former transformationmethod makes it possible to establish a rigorous mapping

relationship with the equivalent spin- 1
2 Ising model on a simple Bethe lattice, which is subsequently ex-

actly treated within the framework of the latter method based on exact recursion relations. Exact results

for the partition function, Gibbs free energy, total and both sublattice magnetizations were derived by

making use of this rigorous approach.

Our particular attention was focused on exploring the ground state and low-temperature magnetiza-

tion process of the ferrimagnetic version of the model considered. Themost interesting finding stemming

from our present study is an exact evidence of a rather diverse magnetization process. As a matter of fact,

we have demonstrated three differentmagnetization scenarios with up to two different fractional magne-

tization plateaus, whereas the intermediate magnetization plateau may either correspond to the classical

ferrimagnetic spin arrangement and/or the quantum ferrimagnetic spin ordering without any classical

counterpart. The origin of the striking quantum ferrimagnetic phase lies in a peculiar spin frustration of

the Ising spins, which comes from the nonmagnetic nature of the Heisenberg spin pairs governed by the

symmetric quantum superposition of their two intrinsically antiferromagnetic spin states.
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Процес намагнiченостi в точно розв’язнiй спiн-1/2 моделi

Iзинга-Гайзенберга на декорованих гратках Бете

Й. Стречка1, С. Екiз2

1 Природничий факультет, Унiверситет iм. П.Й. Шафарика, Кошiце, Словацька республiка
2 Природничий факультет, Унiверситет iм. Аднана Мендереса, Айдин 090 10, Туреччина

Спiн-1/2 модель Iзинга-Гайзенберга на ромбоподiбнiй декорованiй гратцi Бете розв’язано точно у при-
сутностi поздовжнього магнiтного поля, поєднуючи декорацiйно-iтерацiйне перетворення з методом то-
чних рекурсивних спiввiдношень. Зокрема, детально дослiджено основний стан i низькотемпературне
намагнiчення феримагнiтної версiї розглянутої моделi. Знайдено три рiзнi сценарiї намагнiченостi з що-
найбiльше двома послiдовними дробовими плато, де промiжне плато намагнiченостi може вiдповiдати
класичному феримагнiтному спiновому впорядкуванню та/або iндукованому полем квантовому ферима-
гнiтному спiновому впорядкуванню, яке не має жодного класичного аналога.

Ключовi слова: модель Iзинга-Гайзенберга, гратка Бете, точнi результати, плато намагнiченостi
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