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Phys. Lett. A, 2011, 375, 2479, is considered in brief. Using this algebra, the property of Fermi-Bose duality of the

Dirac equation with nonzero mass is proved. It means that Dirac equation can describe not only the fermionic

but also the bosonic states. The proof of our assertion based on the examples of bosonic symmetries, solutions
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1. Introduction

Some new statistical aspects of the Dirac equation are considered. The Fermi-Bose (FB) duality of the

spinor field has been originally mentioned by L. Foldy [1]. An extended consideration has been given

in [2]. P. Garbaczewski proved [2] that the Fock space H
F(H3,M) over the quantum mechanical space

L2(R3)⊗C⊗M of a particle, which is described by the field φ : M(1,N) → C⊗N, allows one to fulfill the

dual FB quantization of the field φ inH
F. Both the canonical commutation relations (CCR) and the anti-

commutation relations (CAR) were used to realize the above mentioned quantization. Moreover, for both

types of quantization, the uniqueness of the vacuum inH
F was proved. The dual FB quantization was

illustrated by various examples and in the spaces M(1,N) of arbitrary dimensions. The massless spinor

field was considered in detail [2].

In our publications, the consideration of the FB duality conception of the field was extended by apply-

ing the group-theoretical approach to the problem (we often referred to the FB duality as the relationship

between the fields of integer and half-integer spins, see e.g. [3–7]). As the first step, we have considered

in detail the case of massless Dirac equation. Both Fermi and Bose local representations of the universal

covering P ⊃ L = SL(2,C) of proper ortochronous Poincaré group P
↑
+ = T(4)×)L

↑
+ ⊃ L↑+ = SO(1,3), with

respect to which the Dirac equation is invariant, were found. The same was realized [6] for the slightly

generalized original Maxwell equations, in which the complex valued 4-object E (x) = E (x)−iH(x) of field

strengths is the tensor-scalar (s=1,0) P -covariant. In general, we have proved the existence of bosonic

symmetries, solutions and conservation laws for a massless Dirac equation [3–7]. Thus, a systematic in-

vestigation of the bosonic properties of a massless Dirac equation was carried out.

In our investigations, we followed the authors of a number of papers, in which they considered the

problem of the relationship between the Dirac and Maxwell equations starting from the very origin of

quantum mechanics [8–18]. However, the authors of these papers considered the simplest example of a

free, massless Dirac equation and its relation to the Maxwell equations. Interest to such problems has

grown after the investigations [19, 20] of a physically meaningful case (i.e., mass is nonzero and the

∗E-mail: vsimulik@gmail.com

© V.M. Simulik, I.Yu. Krivsky, I.L. Lamer, 2012 43101-1

http://dx.doi.org/10.5488/CMP.15.43101
http://www.icmp.lviv.ua/journal


V.M. Simulik, I.Yu. Krivsky, I.L. Lamer

interaction potential is nonzero too) and following our own research steps [21–23] in the same direction.

Unfortunately, only stationary Dirac and Maxwell equations were considered.

In another approach [24–30], the quadratic relations between the fermionic and bosonic amplitudes

were found and applied. In our papers [3–7, 21–23] and herein we discuss the linear relations between

fermionic and bosonic amplitudes.

Our results were further developed and employed by the authors of [31–38], where the references to

the above mentioned papers of ours were made. Nevertheless, the general case, where the mass in the

Dirac equation is not equal to zero, is still open for investigations and considerations.

Only recently [39–42] we were able to extend our consideration to a Dirac equation with a nonzero

mass. The important step was as follows. We started with the Foldy-Wouthuysen (FW) [43] representa-

tion of the Dirac equation, and the results for a standard Dirac equation were found as a consequence

of the FW transformation. In our papers [39–42], bosonic representations of universal covering L =

SL(2,C) of proper ortochronous Lorentz group L
↑
+ = SO(1,3) were found, with respect to which the Dirac

and FW equations with nonzero mass are invariant. The main results herein are the bosonic spin (1,0)

representations of Poincaré group P , with respect to which these equations are invariant. These results

were proved based on the 64 dimensional extended real Clifford-Dirac (ERCD) algebra and 29 dimen-

sional proper ERCD algebra, which were taken into consideration in [39–42] and essentially generalized

the standard 16 dimensional Clifford-Dirac (CD) algebra.

Here we consider (i) the dual (fermionic and bosonic) symmetries [39–42] of the FW [43] and Dirac

equations with nonzero mass, (ii) continue the construction of bosonic solutions [44] of these equations

and (iii) demonstrate the existence of both Fermi and Bose conservation laws for a spinor field. Thus, we

present the third level proof of the FB duality of the Dirac equation. Moreover, the statistical analysis of

the Dirac model of the spin 1/2 particle doublet description is presented. We prove that such an analysis

can be successful only if one uses the standard quantum-mechanical probability amplitudes distribution

with respect to the eigenvalues of complete sets of experimental observable quantum-mechanical phys-

ical values. We presented in detail the corresponding quantum-mechanical stationary complete sets of

operators of FB physical quantities. This allows us to demonstrate the statistical aspect of the spinor field

FB duality.

For our purposes we use the mathematical formalism of the ERCD algebra and proper ERCD alge-

bra [39–42].

In section 2, the necessary notations and definitions are presented.

In section 3, the 29-dimensional proper extended real Clifford-Dirac algebra [40–42], which is the

mathematical basis of our consideration, is presented in brief.

In section 4, the bosonic spin s = (1,0) symmetry [40–42] of the FW and Dirac equations with nonzero

mass is briefly considered as the first step in our proof of the Dirac equation FB duality.

In section 5, we continue to construct the bosonic [44] spin s = (1,0)multiplet solutions of the FW and

Dirac equations with nonzero mass. This is the second step in our proof of the Dirac equation FB duality.

In section 6, the FB duality of the spinor field is demonstrated based on the example of the existence

of both Fermi and Bose series of conservation laws for this field (i.e., the third step of our proof).

In section 7, the statistical aspects of the spinor field FB duality are considered.

In section 8, brief general conclusions are formulated.

2. Notations and definitions

The system of units ħ = c = 1 and metric g = (gµν) = (+−−−), aµ = gµνaν, are taken. The Greek

indices are changed in the region 0,1,2,3 ≡ 0,3, Latin — 1,3, the summation over the twice repeated

index is implied. The Dirac γµ matrices in the standard Pauli-Dirac (PD) representation are used. Our

consideration is fulfilled in the rigged Hilbert space S3,4 ⊂ H3,4 ⊂ S3,4∗, where H3,4 is given by

H3,4 = L2(R3)⊗C⊗4 =
{
φ= (φµ) : R3 →C⊗4;

∫
d3x| f (t ,~x)|2 <∞

}
(1)

and symbol ‘∗’ in S3,4∗ means, that the space of Schwartz generalized functions S3,4∗ is conjugated to the
Schwartz test function space S3,4 by the corresponding topology. For more details see [41].
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We consider the ordinary CD algebra to be the algebra of 4× 4 Dirac matrices in the standard PD

representation in terms of the standard 2×2 Pauli matrices.

For the purposes dealing with physics it is useful to consider the corresponding groups an algebras

with real parameters (e.g., the parameters a = (aµ), ω = (ωµν) of the translations and rotations for the

group P
↑
+). Therefore, corresponding generators are anti-Hermitian. The mathematical correctness of

such a choice of generators is verified in [45, 46].

3. Proper extended real Clifford-Dirac algebra

We consider the standard 16-dimensional CD algebra of the matrices to be a real one and add the

imaginary unit i =
p
−1 together with the operator Ĉ of complex conjugation (the involution operator in

the space H3,4) into the set of the CD algebra possible generators. This enabled us to extend the standard

CD algebra up to the 64-dimensional extended real CD algebra (i.e., ERCD algebra of [40–42]). Here, the

subalgebras of the ERCD algebra are considered in brief. The most important are the representations in

C⊗4 ⊂ H3,4 of the 29-dimensional proper ERCD algebra SO(8) spanned on the orts

γ1, γ2, γ3, γ4 = γ0γ1γ2γ3, γ5 = γ1γ3Ĉ , γ6 = iγ1γ3Ĉ , γ7 = iγ0, (2)

where γ0 =
∣∣∣∣

1 0

0 −1

∣∣∣∣, γk =
∣∣∣∣

0 σk

−σk 0

∣∣∣∣ and σk are the standard Pauli matrices. The generators (2)

satisfy the anticommutation relations [1]

γAγB +γBγA =−2δAB, A,B= 1,7, (3)

and the generators of the proper ERCD algebra αÃB̃ = 2sÃB̃ (together with the unit ort, 4×4 matrix I4, we

have 29 independent orts I4, αÃB̃ = 2sÃB̃)

sÃB̃ =
{

sAB = 1

4

[
γA,γB

]
, sA8 =−s8A = 1

2
γA

}
, Ã, B̃ = 1,8 (4)

satisfy the commutation relations of SO(8) algebra

[
sÃB̃, sC̃D̃

]
= δÃC̃sB̃D̃ +δC̃B̃sD̃Ã +δB̃D̃sÃC̃ +δD̃ÃsC̃B̃. (5)

In particular, the proper ERCD algebra SO(8), given by the 29 orts (4), is our [40–42] direct general-

ization of the standard 16-dimensional CD algebra. It is also the basis for our dual FB consideration of a

spinor field, which enabled us to prove the additional bosonic properties of this field. For physical appli-

cations, we consider the realizations of the proper ERCD algebra in the field space S∗(M(1,3))⊗C⊗4 ≡ S4,4∗

of the Schwartz generalized functions and in the quantum mechanical Hilbert space H3,4 (1). These real-

izations are found with the help of transformations V +SO(8)V −, vSO(8)v , where the operators of trans-

formations have the following form

V ± ≡
±i~γ ·~∇+ ω̂+m
p

2ω̂(ω̂+m)
, v =

∣∣∣∣
I2 0

0 Ĉ I2

∣∣∣∣ , ω̂≡
√
−∆+m2, ~∇≡ (∂ℓ), I2 =

∣∣∣∣
1 0

0 1

∣∣∣∣ . (6)

Furthermore, the realizations of the proper ERCD algebra for bosonic fields are presented.

We take into consideration the ERCD algebra (64 orts) and the proper ERCD algebra (29 orts) into

the FW representation of the spinor field [43] (the advantages in comparison with the standard Dirac

equation in definitions of coordinate, velocity and spin operators are well known from [43]). In this rep-

resentation, the equation for the spinor field (the FW equation) has the following form

(
∂0 + iγ0ω̂

)
φ(x) = 0, x ∈M(1,3), φ ∈ H3,4; (7)

and is linked with the Dirac equation

(∂0 + iH)ψ(x) = 0, H ≡~α ·~p +βm; ~α≡ γ0
~γ, β≡ γ0 (8)
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by the FW transformation V ±

φ(x) =V −ψ(x), ψ(x) =V +φ(x), V +γ0ω̂V − =~α ·~p +βm. (9)

Herein below, the ERCD algebra and the proper ERCD algebra (4) are essentially used in our proofs of

bosonic properties of the Dirac and FW equations. The proper ERCD algebra has 29 independent orts

presented in (4). In comparison with 16 independent orts of standard CD algebra, we can operate now

with additional elements. These additional generators of SO(8) algebra enabled us to prove the additional

bosonic symmetries of the FW and Dirac equations [39–42] and to construct additional bosonic solutions

of these equations ([44] and section 5 below). Moreover, the anticommutation relations (3) were used in

calculations.

4. Bosonic spin s = (1, 0) symmetry of the Foldy-Wouthuysen and Dirac

equations

An example of the construction of an important bosonic symmetry of the FW and Dirac equation is

under consideration. A fundamental assertion is that subalgebra SO(6) of the proper ERCD algebra (4),

which is determined by the operators

{
I, αĀB̄ = 2sĀB̄

}
, Ā, B̄= 1,6, (10)

{
sĀB̄

}
=

{
sĀB̄ ≡ 1

4

[
γĀ,γB̄

]}
(11)

is the algebra of invariance of the Dirac equation in the FW representation (7) (in (11) the six matri-

ces {γĀ} = {γ1,γ2,γ3,γ4,γ5,γ6, } are known from (2)). Algebra SO(6) contains two different realizations of

SU(2) algebra for the spin s=1/2 doublet. By taking the sum of the two independent sets of SU(2) generators

from (11), one can obtain the SU(2) generators of spin s = (1,0)multiplet, which generate the transforma-

tion of the invariance of the FW equation (7). These operators can be presented in the following form

~̆s ≡
(
s̆ j

)
= (s̆mn) =

1

2

(
γ̆2γ̆3 − γ̆0γ̆2C̆ , γ̆3γ̆1 + ĭ γ̆0γ̆2C̆ , γ̆1γ̆2 − ĭ

)
, (12)

where the corresponding orts of the ERCD algebra in bosonic representation are given by

γ̆0 =
∣∣∣∣
σ3 0

0 σ1

∣∣∣∣ , γ̆1 =
1
p

2

∣∣∣∣∣∣∣∣

0 0 1 −1

0 0 i i

−1 i 0 0

1 i 0 0

∣∣∣∣∣∣∣∣
, γ̆2 =

1
p

2

∣∣∣∣∣∣∣∣

0 0 −i i

0 0 −1 −1

−i 1 0 0

i 1 0 0

∣∣∣∣∣∣∣∣
,

γ̆3 =−
∣∣∣∣
σ2 0

0 iσ2

∣∣∣∣Ĉ , γ̆4 =
∣∣∣∣

iσ2 0

0 −σ2

∣∣∣∣Ĉ , γ̆5 = 1
p

2

∣∣∣∣∣∣∣∣

0 0 −1 −1

0 0 i −i

1 i 0 0

1 −i 0 0

∣∣∣∣∣∣∣∣
,

γ̆6 = 1
p

2

∣∣∣∣∣∣∣∣

0 0 −i −i

0 0 1 −1

−i −1 0 0

−i 1 0 0

∣∣∣∣∣∣∣∣
, γ̆7 = γ7 = iγ0, ĭ =

∣∣∣∣
iσ3 0

0 −iσ1

∣∣∣∣ , C̆ =
∣∣∣∣
σ3 0

0 I2

∣∣∣∣Ĉ . (13)

The spin operators (12) of SU(2) algebra, which commute with the operator ∂0 + iγ0ω̂ of the FW equa-

tion (7), can also be presented in an explicit form

s̆1 = 1
p

2

∣∣∣∣∣∣∣∣

0 0 iĈ 0

0 0 −Ĉ 0

−iĈ Ĉ 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, s̆2 = 1

p
2

∣∣∣∣∣∣∣∣

0 0 Ĉ 0

0 0 −iĈ 0

−Ĉ iĈ 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, s̆3 =

∣∣∣∣∣∣∣∣

−i 0 0 0

0 i 0 0

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
. (14)
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The calculation of the Casimir operator for the SU(2) generators (14) gives the following result

~̆s2 =−1(1+1)×
∣∣∣∣

I3 0

0 0

∣∣∣∣ .

Transition from the fundamental representation A of the ERCD algebra to the bosonic representation

B is fulfilled B =W AW −1 using the operatorW :

W =
1
p

2

∣∣∣∣∣∣∣∣∣

p
2 0 0 0

0 0 i
p

2Ĉ 0

0 −Ĉ 0 1

0 −Ĉ 0 −1

∣∣∣∣∣∣∣∣∣
, W −1 =

∣∣∣∣∣∣∣∣

p
2 0 0 0

0 0 −Ĉ −Ĉ

0 i
p

2Ĉ 0 0

0 0 1 −1

∣∣∣∣∣∣∣∣
, W W −1 =W −1W = I4 .

(15)

Based on the spin operators (12), (14), the bosonic spin (1,0) representation of the Poincaré group P

is constructed. It is easy to show (after our consideration in [43] and above) that generators

p0 =−iγ0ω̂, pn = ∂n , jln = xl∂n − xn∂l + s̆ln , j0k = x0∂k + iγ0

{
xk ω̂+

∂k

2ω̂
+

(~̆s ×~∂)k

ω̂+m

}
(16)

of group P commute with the operator of the FW equation (7) and satisfy the commutation relations

of the Lie algebra of the group P in a manifestly covariant form. In the space H3,4, the operators (16)

generate a unitaryP representation differing from the fermionic P
F-generators according to equations

(D-64)–(D-67) in [1], i.e., the bosonic P
B representation of the group P , with respect to which the FW

equation (7) is invariant. For the generators (16), the Casimir operators have the following form:

pµpµ = m2, W B = wµwµ = m2~̆s2 =−1(1+1)m2

∣∣∣∣
I3 0

0 0

∣∣∣∣ . (17)

Hence, according to the Bargman-Wigner classification, here we consider the spin s = (1,0) representa-

tion of the groupP .

The corresponding bosonic spin s = (1,0) symmetries of the Dirac equation (8) can be found from the

generators (16) using the FW operator (6) in bosonic representation, i.e.,W V ±W −1.

More complete and detailed consideration of the bosonic symmetries of the FW and Dirac equation

was given in [40–42].

5. Bosonic spin s = (1, 0) multiplet solution of the Foldy-Wouthuysen

and Dirac equations

Here, as the next step in FB duality investigation, we consider the bosonic solution of the Dirac (FW)

equation. A bosonic solution of the FW equation (7) is found completely similarly to the procedure of

construction of standard fermionic solution. Thus, the bosonic solution is determined by some stationary

diagonal complete set of operators of bosonic physical quantities for the spin s = (1,0)-multiplet in the

FW representation, e.g., by the set “momentum-spin projection s̆3
”:

(
~p =−~∇, s̆3

)
, (18)

where the spin operators ~̆s and s̆3 for the spin s = (1,0)-multiplet are given in (12), (14). The fundamental

solutions of equation (7), which are the common eigensolutions of the bosonic complete set (18), have the

following form

ϕ−
~kr

(t ,~x) = 1

(2π)3/2
e−ikx dr , ϕ+

~k ŕ
(t ,~x) = 1

(2π)3/2
eikxdŕ , kx =ωt −~k ·~x , (19)

where dα = (δ
β
α) are the Cartesian orts in the space C⊗4 ⊂ H3,4, numbers r = (1,2), ŕ = (3,4) mark the

eigenvalues (+1,−1,0,0) of the operator s̆3 from (12), (14).
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The bosonic solutions of equation (7) are the generalized states belonging to the space S3,4∗; they form
a complete orthonormalized system of bosonic states. Therefore, any bosonic physical state of the FW

field φ from the dense inH3,4 manifold S3,4 (the general bosonic solution of the equation (7)) is uniquely

presented in the following form

φ(1,0)(x) = 1

(2π)3/2

∫
d3k

[
ξr(~k)dre−ikx +ξ∗ŕ(~k)dŕeikx

]
, (20)

where ξ(~k) are the coefficients of the expansion of bosonic solution of the FW equation (7) with respect

to the Cartesian basis (19). The relationships of amplitudes ξ(~k) with quantum-mechanical bosonic am-

plitudes b(~k) of probability distribution according to the eigenvalues of the stationary diagonal complete

set of operators of quantum-mechanical bosonic s = (1,0)-multiplet are presented by

ξ1 = b1, ξ2 =− 1
p

2

(
b3 +b4

)
, ξ3 =−ib2, ξ4 = 1

p
2

(
b3 −b4

)
; b1,2,3,4(~k) ≡ b+,−,0,0(~k), (21)

where the 4 amplitudes b1,2,3,4(~k) are the quantum-mechanical momentum-spin amplitudes with the

eigenvalues (+1,−1,0,0) of the projection s̆3 on the axe 3 of the quantum mechanical spin s = (1,0) mul-

tiplet operator ~̆s, respectively (the last eigenvalue 0 is related to the proper zero spin). Thus, if φ(1,0)(x) ∈
S3,4, then the bosonic amplitudes ξ(~k) belong to the Schwartz complex-valued test function space too.

Moreover, the set {φ(1,0)(x)} of solutions (20) is invariant, in particular, with respect to the unitary

bosonic representation of the group P , which is determined by the generators (16) and Casimir opera-

tors (17). Therefore, the Bargman-Wigner analysis of the Poincaré symmetry of the set {φ(1,0)(x)} of solu-

tions (20) manifestly demonstrates that this is the set of Bose-states φ(1,0) of the field φ, i.e., the s = (1,0)-

multiplet states. Hence, the existence of bosonic solutions of the FW equation is proved.

In terms of quantum-mechanical momentum-spin amplitudes bα(~k) from (21), the bosonic spin (1,0)-

multiplet solution ψ=V +φ of the Dirac equation (8) is presented by

ψ(1,0)(x) =
1

(2π)3/2

∫
d3k

{
e−ikx

[
b1v−

1 (~k)−
1
p

2

(
b3 +b4

)
v−

2 (~k)

]

+eikx

[
i b∗2v+

1 (~k)+ 1
p

2

(
b∗3 −b∗4

)
v+

2 (~k)

]}
, (22)

where the 4-component spinors are the same as in the Dirac theory of the fermionic doublet

v−
r (~k) = N

∣∣∣∣
(ω̂+m)dr

(~σ ·~k)dr

∣∣∣∣ , v+
r (~k) = N

∣∣∣∣
(~σ ·~k)dr

(ω̂+m)dr

∣∣∣∣ , N ≡ 1
p

2ω̂(ω̂+m)
, d1 =

∣∣∣∣
1

0

∣∣∣∣ , d2 =
∣∣∣∣

0

1

∣∣∣∣ .

(23)

The well known (i.e., standard) Fermi solution of the Dirac equation for the spin s = 1/2 doublet has

the following form

ψ(x) = 1

(2π)3/2

∫
d3k

[
e−ikx a−

r (~k)v−
r (~k)+eikx a+

r (~k)v+
r (~k)

]
, (24)

where the physical sense of the amplitudes a−
r (~k), a+

r (~k) is explained in [47].

All the above assertions concerning the FB duality of the spinor field are valid both in FW and PD

representation, i.e., for both FW (7) and Dirac (8) equations. The transition between FW and PD represen-

tations is fulfilled by the FW transformation (6).

6. The Fermi-Bose conservation laws for the spinor field

Let us briefly note the FB conservation laws (CL) for the spinor field. It is preferable to calculate

them in the FW (nonlocal PD) representation too. In FW representation, the Fermi spin~s = (s23, s31, s12)

from (11) (together with the “boost spin”) is the independent symmetry operator for the FW equation.

The orbital angular momentum and pure Lorentz angular momentum (the carriers of external statistical

degrees of freedom) are independent symmetry operators in this representation too (one can also find
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the corresponding independent spin and angularmomentum symmetries in the PD representation for the

Dirac equation, but the corresponding operators are essentially nonlocal). Hence, one obtains 10 Poincaré

and 12 additional (3 spin, 3 pure Lorentz spin, 3 angular momentum, 3 pure angular momentum) CL.

Therefore, in the FW representation, one can easily find 22 fermionic and 22 bosonic CL. The di-

vision into bosonic and fermionic set is caused by the existence of FB symmetries and solutions. In-

deed, if substitution of bosonic P generators q (16) and bosonic solutions (20) into the Noether formula

Q =
∫

d3xφ†(x)qφ(x) is made, then automatically the bosonic CL for s = (1,0)-multiplet are obtained.

The standard substitution of the corresponding well known fermionic generators and solutions presents

fermionic CL.

We briefly illustrate the difference in fermionic and bosonic CL based on the example of the corre-

sponding spin conservation. For a fermionic spin

~s = (s23, s31, s12) ≡ (sℓ) = 1

2

∣∣∣∣
~σ 0

0 ~σ

∣∣∣∣→ sz ≡ s3 = 1

2

∣∣∣∣∣∣∣∣

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

∣∣∣∣∣∣∣∣
(25)

and for a bosonic spin (12), (14), the CL are given by

SF
mn =

∫
d3xφ†(x)smnφ(x) =

∫
d3k A†(~k)smn A(~k), (26)

SB
mn =

∫
d3xφ†(x)s̆mnφ(x) =

∫
d3kB†(~k)s̆mnB(~k), (27)

where

A(~k) = column
(
a−
+ , a−

− , a∗+
− , a∗+

+
)

, B(~k) = column
(
b1, b2, b∗3, b∗4

)
. (28)

We present these CL in terms of quantum-mechanical Fermi and Bose amplitudes. All integral con-

served quantities have an explicit quantum-statistical form.

7. The Fermi-Bose duality and the Fermi-Bose statistics

An adequate statistical quantum-mechanical sense of the coefficients a−
r (~k), a+

r (~k) in the expansion (24)

over the basis solutions (23) of the Dirac equation is found in the same way but with the help of transition

φ(x) = V −ψ(x) (9), (6) to the FW representation [43]. Indeed, the statistical sense of the FW field φ(x) is

evidently related to the statistical sense of the particle-antiparticle doublet in relativistic canonical quan-

tum mechanics [43, 48] of this doublet. It is shown in [43] that

φ=
∣∣∣∣
φ−

0

∣∣∣∣+
∣∣∣∣

0

φ∗+

∣∣∣∣ , (29)

where φ∓(x) are the relativistic quantum-mechanical wave functions of the particle-antiparticle doublet.

The solution of the FW equation (7) expanded over the eigenvectors of quantum-mechanical fermi-

onic stationary diagonal complete set of operators (momentum ~p , projection s3 of the spin~squant.−mech.

and sign of the charge g =−γ0) has the following form

φ(x) =
1

(2π)3/2

∫
d3k

{
e−ikx

[
a−
+(~k)d1 +a−

−(~k)d2

]
+eikx

[
a∗+
− (~k)d3 +a∗+

+ (~k)d4

]}
, (30)

where the coefficients of expansion a−
+(~k), a−

−(~k), a+
−(~k), a+

+(~k) denote the statistical quantum-mechanical

amplitudes of probability distribution over the eigenvalues of the above mentioned fermionic stationary

complete set of operators. The 4-columns dα = (δ
β
α) are the Cartesian orts in the space C⊗4 ⊂ H3,4. In order

to obtain themost adequate and obvious statistical quantum-mechanical interpretation of the amplitudes
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and solutions, the spin projection operator in a complete set (momentum ~p , projection s3 of the spin

~squant.−mech. and sign of the charge g =−γ0) is taken in the quantum-mechanical form [48]

~squant.−mech. = 1

2

∣∣∣∣
~σ 0

0−C~σC

∣∣∣∣→ s
quant.−mech.
z ≡ s3 = 1

2

∣∣∣∣∣∣∣∣

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

∣∣∣∣∣∣∣∣
(31)

rather than in the canonical field theory form (25). The statistical sense of the amplitudes is conserved in

the solution [ψ(x) =V +φ(x) (9), (6)]

ψ(x) = 1

(2π)3/2

∫
d3k

{
e−ikx

[
a−
+(~k)v−

1 (~k)+a−
−(~k)v−

2 (~k)
]

+eikx
[

a∗+
− (~k)v+

1 (~k)+a∗+
+ (~k)v+

2 (~k)
]}

(32)

of the Dirac equation (8) in its standard local representation. The amplitudes a−
+(~k), a−

−(~k), a+
−(~k), a+

+(~k)

in the fermionic solutions (30) and (32) of the FW and Dirac equations are one and the same. Thus, a−
+(~k),

a−
−(~k) are the quantum-mechanical momentum-spin amplitudes of the particle with charge−e and eigen-

values of spin projection +1/2 and −1/2; a+
−(~k), a+

+(~k) are the quantum-mechanical momentum-spin

amplitudes of the antiparticle with charge +e and eigenvalues of spin projection −1/2 and +1/2, respec-

tively.

Statistical quantum mechanical sense of the bosonic amplitudes bα(~k) of bosonic solution (22) of the

Dirac equation (8) is found in the same way and is explained in section 5 in the process of constructing

this solution.

The relationship between the fermionic a−
+(~k), a−

−(~k), a+
−(~k), a+

+(~k) and bosonic b1,2,3,4(~k) ≡ b+,−,0,0(~k)

amplitudes in one and the same (arbitrarily fixed) physical state of FB dual field ψ is presented by the

unitary operatorU in the following form:

∣∣∣∣∣∣∣∣

a−
+

a−
−

a+
−

a+
+

∣∣∣∣∣∣∣∣
= 1

p
2

∣∣∣∣∣∣∣∣

p
2 0 0 0

0 0 −1 −1

0 −i
p

2 0 0

0 0 1 −1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

b+

b−

b0

b0

∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣

b+

b−

b0

b0

∣∣∣∣∣∣∣∣
= 1

p
2

∣∣∣∣∣∣∣∣

p
2 0 0 0

0 0 i
p

2 0

0 −1 0 1

0 −1 0 −1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

a−
+

a−
−

a+
−

a+
+

∣∣∣∣∣∣∣∣
. (33)

Relationships (33) follow directly from the comparison of the solutions (22) and (32).

Note that the set of fermionic solutions {ψF} (32) of the Dirac equation is invariant with respect to

the well known induced fermionic P
F representation of the Poincaré group P [49], see also formula

(19) in the paper [41]). The set of bosonic solutions {ψB} (22) of the Dirac equation is invariant with

respect to the induced bosonic P
B representation of the Poincaré group P (formula (21) in the pa-

per [42]). However, the relationships (33) between the fermionic a−
+(~k), a−

−(~k), a+
−(~k), a+

+(~k) and bosonic

b1,2,3,4(~k) ≡ b+,−,0,0(~k) amplitudes do not change in any inertial frame of references.

8. Conclusions

The 64 dimensional ERCD and 29 dimensional proper ERCD algebras, which have been put into con-

sideration in [40–42], are useful generalizations of the standard 16 dimensional CD algebra. Application

thereof enabled us to prove the existence of additional bosonic symmetries, solutions and conservation

laws for the spinor field, the Foldy-Wouthuysen and the Dirac equations. The investigation of the spinor

field in the Foldy-Wouthuysen representation has the sense and purpose of its own. This representa-

tion is of great interest in itself, especially in connection with the recent result [50] by V. Neznamov,

who developed the formalism of quantum electrodynamics in the Foldy-Wouthuysen representation, see

also the results in [51]. The property of the Fermi-Bose duality of the Dirac equation (both in the Foldy-

Wouthuysen and the Pauli-Dirac representations), which proof was started in [39–42], where the bosonic

symmetries of this equation were found, is demonstrated herein on the next level, i.e., on the level of

the existence of the spin (1,0) bosonic solutions of the equation under consideration and corresponding
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bosonic conservation laws. Similarly, the fermionic spin s = 1/2 properties for the Maxwell equations

both with nonzero and zero mass can be proved (see e.g., the procedure given in [6]).

In any case, we do not change the main well known postulates and theory of the Fermi-Bose statis-

tics. Our results have another, principally new meaning. In our approach, the Fermi-Bose duality of the

spinor field found in [2] is proved based on the examples of the existence of bosonic symmetries (sec-

tion 4) and solutions (section 5) of the Dirac equation with nonzero mass together with the confirmation

of the bosonic conservation laws (section 6) for the spinor field. This opens up new possibilities for apply-

ing the Dirac equation to the description of bosonic states. Thus, the property of the Fermi-Bose duality of

the Dirac equation that was proved in our publications [39–42] and in the present paper does not break

the Fermi statistics for fermions (with the Pauli principle) and Bose statistics for bosons (with Bose con-

densation). We have never mixed up the Fermi and Bose statistics as well. Our assertion is as follows. One

can apply with equal success both Fermi and Bose statistics for one and the same Dirac equation and for

one and the same spinor field, i.e., the Dirac equation can describe both fermionic and bosonic states.
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Деякi статистичнi аспекти Фермi-Бозе дуалiзму

спiнорного поля

В.М. Симулик, I.Ю. Кривський, I.Л. Ламер

Iнститут електронної фiзики, Нацiональна академiя наук України,

вул. Унiверситетська, 21, 88000 Ужгород, Україна

Коротко розглядається структура 29-вимiрної розширеної дiйсної алгебри Клiффорда-Дiрака, яка була вве-

дена в розгляд у нашiй публiкацiї Phys. Lett. A, 2011, 375, 2479. На основi цiєї алгебри доводиться власти-

вiсть Фермi-Бозе дуалiзму рiвняння Дiрака з ненульовою масою. Це означає, що рiвняння Дiрака може

описувати не лише фермiоннi, але й бозоннi стани. Доведення дається на прикладах наявностi бозонних

симетрiй, розв’язкiв та законiв збереження. Розглянуто деякi статистичнi аспекти Фермi-Бозе дуалiзму

спiнорного поля

Ключовi слова: спiнорне поле, симетрiя, теоретико-груповий аналiз, суперсиметрiя, представлення

Фолдi-Ваутхайзена, алгебра Клiффорда-Дiрака, Фермi-Бозе дуалiзм
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