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We discuss the ground state, the low-lying excitations as well as high-field thermodynamics of the Heisenberg
antiferromagnet on the two-dimensional square-kagomé lattice. This magnetic system belongs to the class
of highly frustrated spin systems with an infinite non-trivial degeneracy of the classical ground state as it is
also known for the Heisenberg antiferromagnet on the kagomé and on the star lattice. The quantum ground
state of the spin-half system is a quantum paramagnet with a finite spin gap and with a large number of
non-magnetic excitations within this gap. We also discuss the magnetization versus field curve that shows a
plateaux as well as a macroscopic magnetization jump to saturation due to independent localized magnon
states. These localized states are highly degenerate and lead to interesting features in the low-temperature
thermodynamics at high magnetic fields such as an additional low-temperature peak in the specific heat and
an enhanced magnetocaloric effect.
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1. Introduction

The magnetic properties of low-dimensional antiferromagnetic quantum spin systems have been
a subject of many theoretical studies in recent years [1,2]. These studies are motivated by the recent
progress in synthesizing quasi-two-dimensional magnetic materials which exhibit exciting quantum
effects [3—10]. Even spin systems on more exotic frustrated lattices such as the star lattice [11,12],
the maple-leaf lattice [13,11] and the triangulated kagomé lattice [14] have been synthesized
recently [15-17].

A lot of activities in this area were focused on frustrated spin-half Heisenberg antiferromagnets
like the J;—J2 antiferromagnet on the square lattice (see, e. g. [18-28] and references therein) and
on three-dimensional cubic lattices [29-33], the Heisenberg antiferromagnet (HAFM) on the star
lattice [12,11,34] and last but not least the HAFM on the kagomé lattice (see the reviews [11,35—
37] and references therein). Due to the extreme frustration, the HAFM on the kagomé and on the
star lattices shows an infinite non-trivial degeneracy of the classical ground state. Furthermore,
both spin lattices exhibit a magnetization jump to saturation due to localized magnon states
[11,12,38,39]. Although there is most likely no magnetic ground state order for the quantum spin-
half HAFM on both lattices, the nature of both quantum ground states as well as the low-lying
spectrum are basically different. It was argued [12] that the origin for this difference lies in the
existence of nonequivalent nearest-neighbor (NN) bonds in the star lattice whereas all NN bonds
in the kagomé lattice are equivalent. Another striking difference that is relevant to magnetic
properties [40] lies in the number of spins in the unit cell which is odd for the kagomé lattice
but even for the star lattice. As a result of the interplay between quantum fluctuations and strong
frustration for the kagomé lattice, the ground state is most likely magnetically disordered with a
(small) spin gap to the triplet excitations and an exceptional density of low-lying singlets below
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the first magnetic excitation. Various possible ground state phases, such as valence bond solids,
gapped spin liquids of different kinds as well as stable critical phases are under discussion, see e. g.
[11,35,37,41-48]. On the other hand, for the star lattice one meets a so-called explicit valence-bond
crystal with a well-pronounced gap to all excitations which can be attributed to the nonequivalence
of the NN bonds and to the even number of s = 1/2 spins in the unit cell [11,12,34].

In this paper we consider the spin-half HAFM on the square-kagomé [49-51] lattice (see
figure 1). The square-kagomé lattice is built both by regular and non-regular polygons and it
has two nonequivalent sites. Therefore, it does not belong to the class of the so-called uniform
Archimedean tilings [11,52] (like, e. g. square, triangular, star or kagomé lattices). Nevertheless,
there exist some important geometrical similarities both to the kagomé and to the star lattices.
Similar to the kagomé lattice it has coordination number z = 4, the even regular polygons
(hexagons for the kagomé, squares for the square-kagomé lattice) are surrounded only by odd
regular polygons (triangles) and both lattices contain corner sharing triangles. As a result, the
HAFM on the square-kagomé lattice is also strongly frustrated and exhibits an infinite non-trivial
degeneracy of the classical ground state, see section 3. The similarity to the star lattice consists in
the existence of nonequivalent NN bonds and in the fact that both lattices have an even number
of spins in the unit cell. Moreover, the classical ground state of the HAFM on the star lattice
also exhibits an infinite non-trivial degeneracy. Due to these similarities we can expect that the
HAFM on the square-kagomé lattice is another candidate for a quantum paramagnetic ground
state. However, the question arises, whether the quantum ground state displays similar properties
as that for the kagomé lattice or as that for the star lattice or for none of them.

@ © @ ©
Figure 1. Two finite square-kagomé lattices with N = 30 (left) and N = 36 (right) sites. The

two topologically nonequivalent nearest-neighbor bonds are distinguished by solid (square bonds
Js) and dashed lines (triangular bonds Jr).
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2. The model

The geometric unit cell of the square-kagomé lattice contains six sites and the underlying
Bravais lattice is a square one (see figure 1). For this lattice we consider the spin-half HAFM in a
magnetic field A

H=7)"8;-8;—hS, (1)

(id)
where the sum runs over pairs of neighboring sites (ij) and S = Do Sf . As mentioned above the
square-kagomé lattice carries topologically nonequivalent NN bonds Js (square bonds, solid lines

in figure 1) and Jp (triangular bonds, dashed lines in figure 1, see also figure 2). For the uniform
lattice these bonds are of equal strength Jg = Jr = J and we set J = 1 in what follows.

et e

Figure 2. Two variants of the ground state of the classical HAFM on the square-kagomé lattice:
The state on the left side has a magnetic unit cell which is three times as large as the geometric
one and resembles the v/3x+/3 state of the kagomé and the star lattices. For the state on the
right side the magnetic unit cell is identical to the geometric one and corresponds to the ¢=0
state of the kagomé and the star lattices. The dotted ellipses show further degrees of freedom
of the highly degenerate classical ground state.

3. Semi-classical ground state

In the classical ground state for h = 0, the angle between neighboring spins is 27/3. Since the
triangles are ” corner sharing”, there is a non-trivial infinite degeneracy resulting from the possible
rotation of two spins on a triangle (see also figure 2). The classical ground state energy per bond
is €525 = —0.125 assuming classical spin vectors of length s = 1/2. Similar to the kagomé and the
star lattices there are two variants of the classical ground state, shown in figure 2, being candidates
for possible magnetic ground state ordering.

To discuss the effect of quantum fluctuations on a semiclassical level we perform a linear spin-
wave theory (LSWT) starting with the coplanar classical ground states. We have to consider six
types of magnons according to the six sites per unit cell. As for the kagomé [53-55] and the
star lattice [12] the spin-wave spectra are equivalent for all coplanar configurations satisfying
the classical ground state constraint. We obtain six spin-wave branches, three optical branches,
one acoustical and two dispersionless zero modes. Thus, flat zero modes appear as it is observed
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for the kagomé and star lattice case. Within the LSWT approximation there is no “order-by-
disorder” selection among the coplanar classical ground states due to the equivalence of the spin-
wave branches, exactly like for the kagomé lattice [54,36] and the star lattice [12,34].

The ground state energy per bond for s = 1/2 in the LSWT is ¢y = —0.236555. Due to the flat
zero modes, the integral for the sublattice magnetization diverges which might be understood as
some hint for the absence of the classical order, cf. also [55] for the kagomé lattice. Although on
the semiclassical LSWT level, the square-kagomé, the kagomé and the star lattices exhibit almost
identical properties, the situation will change taking into account the quantum fluctuations more

properly.

4. The quantum ground state and low-lying excitations at zero field

To take into account the quantum fluctuations going beyond the semiclassical LSWT we use
Lanczos exact diagonalization (ED) to calculate the ground state and the lowest excitations for the
s =1/2 HAFM at h = 0 on finite lattices of N = 12, 18,24, 30 and 36 sites with periodic boundary
conditions. The finite lattices with N = 30 and 36 are shown in figure 1. The ground states of
all those systems are singlets and the ground state energy per bond ey and the degeneracy of the
quantum ground state dgg are given in table 1. Furthermore, we give in table 1 the gap to the first
triplet excitation (spin gap) A. Note that e and A are significantly smaller than the corresponding
values for the star lattice but of comparable size as the values for the kagomé lattice.

Table 1. Ground state energy per bond eo, ground state degeneracy dgs, spin gap A and square
of the order parameter (m™)? of the spin-half HAFM on finite square-kagomé lattices.

N 12 18 24 30 36

eo (das) —0.226870 (1) —0.223767 (2) —0.224165 (1) —0.221527 (4) —0.222197 (3)
A 0.382668 0.290191 0.263906 0.188865 0.139550
(m™)? 0.184160 0.116455 0.086735 0.068618 0.060475

Now we compare the spin-spin correlations with those for the HAFM on the triangular, kagomé
and star lattices in figure 3. For the triangular, kagomé and star lattices we consider the strongest
correlations as a measure for magnetic order for the largest finite lattices accessible for ED and
present in figure 2 the maximal absolute correlations |(S;S;)|max for a certain separation R = |R,; —
R;| versus R. Contrary to those lattices the square-kagomé lattice contains two nonequivalent sites.
Hence, we present for the square-kagomé lattice all different correlations |(S;S;)| in figure 3. Note
further that we prefer to present the correlations for the finite square-kagomé lattice with N = 30
sites, since it has better geometrical properties than the largest square-kagomé lattice considered
(N = 36). As expected we have very rapidly decaying correlations for the disordered kagomé and
star case, whereas the correlations for the Néel ordered triangular lattice are much stronger for
larger distances and show a kind of saturation for larger R. The decay of the correlations for the
square-kagomé lattice is also very rapid thus indicating the lack of long-range order in the spin-
spin correlation function. The two nonequivalent NN bonds carry very similar spin correlations,
its difference for N = 30 is only about 10%, which is contrary to the star lattice where the two
nonequivalent NN bonds differ by a factor of 3.5 [12].

Let us now discuss the low-lying spectrum of the square-kagomé lattice (see figure 4), following
the lines of the discussion of the spectrum for the triangular [57], the kagomé lattice [41,42] and
the star lattice [12,34]. The lowest states Enin(S) shown in figure 4 are not well described by the
effective low-energy Hamiltonian Heg ~ Ep + S?/2Nxo of a semiclassically ordered system: One
can see rather clearly that the dependence Evin(S) vs. S(S + 1) is not a linear one and there are
no separated so-called quasi degenerate joint states [57] which in the thermodynamic limit could
collapse to a ground state breaking the rotational symmetry. Note further that the symmetries of
the lowest states in each sector of S cannot be attributed to the classical ordered ground states
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Figure 3. The absolute value of the spin-spin correlations [(S;S;)| versus R = |R; — R;| for the
HAFM on the square-kagomé (N = 30), the kagomé (N = 36), the star (N = 42) and the
triangular (N = 36) lattices. For the kagomé, star and triangular lattices we present only the
maximal values of |[(S;S;)| for a certain separation R (the lines are guides for the eyes), for the
square-kagomé lattice we present all different values for |(S;S;)| obtained by averaging over the
four degenerate ground states. Note that the data on for the kagomé lattice coincide with those
of [56] and the data for the triangular and the star lattice with those of [12].

shown in figure 2. These features are similar to the kagomé [41,42] and the star [12] lattices. But
there is one striking difference between the kagomé lattice and the star lattice. While the former
one has an exponentially increasing number of non-magnetic singlets filling the singlet-triplet gap
(spin gap) no such low-lying singlets were found for the star lattice [12,41,42]. This difference was
attributed to the nonequivalence of NN bonds in the star lattice and the resulting dimerization of
the ground state. Though the square-kagomé lattice has also nonequivalent NN bonds its spectrum
is different from that of the star lattice, rather it shows, similar to the kagomé lattice, a large
number N of non-magnetic excitations within the singlet-triplet gap. We find Ny = 6 (N = 12),
13 (N =18), 17 (N = 24), 47 (N = 30), 38 (N = 36). These numbers increase with growing size
(except for N = 36, which might be attributed to the lower symmetry of this finite lattice) but
are smaller than those for the kagomé lattice [42], where an exponential increase of Ny with N
was suggested. Our data for the square-kagomé lattice do not provide a secure conclusion about
a possible exponential increasing of Ny with N.

For the discussion of magnetic long-range order we use the following finite-system order param-
eter [11,12]

mt = (%;Msism)%, )

which is independent on any assumption of eventual classical order. The value m;ﬁass for the two

ordered classical ground states shown in figure 2 is m:rlass = % 2/3, which is the same as for the
classical v/3xv/3 and ¢=0 states on the kagomé and on the star lattices.

The numerical values for (m™)? are collected in table 1. The values of (m™)? for the square-
kagomé lattice are comparable to those for the kagomé lattice but are slightly smaller than the
corresponding values for the star lattice [12].

To estimate the values of eg, A and m™ for the infinite square-kagomé lattice we have extrapo-
lated the data from table 1 to the thermodynamic limit according to the standard formulas for the
two-dimensional spin-half HAFM (see, e. g. [11,58,59]), namely eg(N) = eg(c0)+ A3 N~ 2 +O(N ~2)
for the ground state energy per bond, m*(N) = m™*(c0) + BiN~2 + O(N™1) for the order pa-
rameter, and A(N) = A(co) + GoN~! + O(N~2) for the spin gap. In table 2 the results of
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Figure 4. Low-energy spectrum for the HAFM on the square-kagomé lattice (N = 30) (the
inset shows the k points in the Brillouin zone).

these extrapolations are presented and compared to those obtained for spin-half HAFM on the
kagomé and on the star lattices. Our data suggest a small but finite spin gap and a vanishing order
parameter.

The values of the extrapolated quantities of the square-kagomé lattice are very close to those
of the kagomé lattice. Therefore, these data clearly yield evidence for a magnetically disordered
quantum paramagnetic ground state of the spin-half HAFM on the square-kagomé lattice which
is most likely similar to that of the kagomé lattice.

Table 2. Results of the finite-size extrapolation of the ground state energy per bond eq, the
order parameter m™ and the spin gap A of the spin-half HAFM on the square-kagomé lattice.
For comparison we also show results for the kagomé and star lattices taken from [11,12]. To
see the effect of quantum fluctuations we present m™ scaled by its classical value m:rlass for
the two ordered states shown in figure 2. (The negative, but very small, extrapolated values
for the square-kagomé and the kagomé lattices are an artifact of the limited accuracy of the

extrapolation. We interpret these negative values as vanishing order parameters.)

lattice square-kagomé  kagomé star
€o —0.2209 —0.2172  —0.3091
A 0.052 0.040 0.380
mt/m3. —0.032 —0.036  0.122

5. Magnetization process

In this section we briefly discuss the magnetization versus field curve for some finite square-
kagomé lattices. The magnetization m is defined as m = 2(S.)/N. We focus on those finite lattices
having optimal lattice symmetries, i. e. N = 24,30. In the high field sector we are able to present
also data for N =48 and N = 54.

The results are shown in figure 5. Due to the spin gap (see tables 1 and 2) one observes a small
zero-field plateau. Clear evidence for a further plateau is found at m = 1/3 which can be attributed
to the presence of triangles [60]. Note that a m = 1/3 plateau is also observed for the triangular
[11,60-64], the kagomé [11,38,60,65-67] and the star [11,12] lattices.

At the saturation field hs = 3 a jump in the magnetization curve appears. The presence of
this jump was discussed already in [51,68] and is related to the existence of independent localized
magnon states found for a class of strongly frustrated spin lattices [11,38,39,69,71] among them
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Figure 5. Magnetization curves of some finite spin-half HAFM systems on square-kagomé lattice
in a magnetic field (IV = 24, 30, 48, 54).

the kagomé and the star lattices. In the case of the square-kagomé lattice these localized magnons
live on the squares [71]. The height of the jump dm is related to the maximum number 7y Of
independent localized magnons which can occupy the lattice. For the square-kagomé lattice we
have nyax = N/6 and consequently ém = 1/3. We mention that these localized magnon states are
highly degenerate [11,69-71]. Just below the jump, i. e. at m = 2/3 there is evidence for another
plateau. Its width was estimated in [51] by finite size extrapolation to Ah & 0.33J for the infinite
system.

6. Low-temperature thermodynamics

In this section we briefly summarize some specific features in the low-temperature thermody-
namics which are related to the existence of the localized-magnon states. Let us first mention that in
[50] an extra low-temperature maximum in the specific heat at zero magnetic field was discussed.
Now we focus on the discussion of the high-field thermodynamics where the localized-magnon
states become relevant. These localized-magnon states are not only responsible for the magnetiza-
tion jump, see figure 5 in section 5. They also may lead to a high-field spin-Peierls lattice instability
[51], and they imply a residual ground-state entropy at the saturation field ks [71]. Moreover, due to
their huge degeneracy these states dominate the low-temperature thermodynamics in the vicinity
of the saturation field [71].

From the experimental point of view the localized-magnon states manifest themselves most
interestingly in a drastic change of the low-temperature specific heat, when the magnetic field
passes the saturation field, and in the maximum of the isothermal entropy at saturation field
leading to an enhanced magnetocaloric effect (for a general discussion of the magnetocaloric effect
for quantum spin systems, see [70,72]). We illustrate this in figures 6 and 7. In figure 6 we present the
temperature dependence of the specific heat at three values of the external magnetic field, namely
h = 0.95hg, hg, 1.05hs. Obviously, the specific heat at the saturation field shows a conventional
behavior with one broad maximum around kT =~ J. However, at fields slightly above/below the
saturation field, the specific heat exhibits a well-pronounced extra low-temperature peak at about
kT =~ 0.05J.

In the context of magnetocalorics a residual entropy gives rise to large adiabatic cooling rates
(g_z;)s = f% (%)T in the vicinity of the saturation field [70,71]. In figure 7 we consider the
adiabatic cooling processes, i. e. we show curves of constant entropy as a function of magnetic field
and temperature. It is obvious that lowering the field from h > hs up to the saturation field hg
leads to an enhanced cooling of the magnet.
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Figure 6. Specific heat per site C'/N versus temperature T for N = 18 (solid lines) and N = 24
(symbols) sites and three values of the magnetic field h = 0.95hs, h = hs, h = 1.05hs. Note that
for N = 24 data only at low temperatures T'/hs < 0.15 are shown.
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Figure 7. Constant entropy curves as a function of magnetic field A and temperature T,
S(T,h,N)/kN = const, for the square-kagomé lattice with N = 18 (solid lines) and N = 24
(symbols) sites. Note that for N = 24 data only at high fields h/hs > 0.8 are shown.

7. Summary and conclusions

In this paper we have discussed the ground-state properties and the low-temperature thermo-
dynamics near saturation field of the spin-half Heisenberg antiferromagnet on the square-kagomé
lattice. This lattice has similarities with the kagomé as well as with the star lattice. The kagomé
and the square-kagomé lattices have coordination number z = 4 and are built by corner sharing
triangles. The star lattice (z = 3) shares with the square-kagomé lattice the property of having
two nonequivalent nearest-neighbor bonds and of having an even number (namely six) of sites per
unit cell (note that the kagomé lattice has three sites per unit cell and all nearest-neighbor bonds
are equivalent). On the classical and on the semiclassical level of linear spin wave theory the ground
state of the Heisenberg antiferromagnet on all three lattices exhibits very similar properties. How-
ever, it was argued [12] that in the extreme quantum limit s = 1/2 just these geometrical properties
of the star lattice in common with the square-kagomé lattice but different to the kagomé lattice
lead to different quantum ground states for the star and the kagomé lattices. Interestingly, our
results for the square-kagomé lattice lead to the conclusion that the quantum ground state of the
Heisenberg antiferromagnet on the square-kagomé lattice is similar to that of the kagomé lattice.
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We find evidence for a spin-liquid like ground state with a small gap of about J/20 and a consi-
derable number of low-lying singlets within this spin gap. Contrary to the star lattice case we do
not see here a tendency towards forming a valence bond crystal ground state. The magnetization
curve of the s = 1/2 HAFM on the square-kagomé lattice shows a jump just below saturation and
three plateaux at m = 0, 1/3 and 2/3. The jump is related to the existence of localized eigenstates
that built a highly degenerate ground-state manifold at the saturation field. The localized states
give rise to an extra low-temperature maximum in the specific heat and a large magnetocaloric
effect near the saturation field.
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The Heisenberg antiferromagnet on the square-kagomé lattice

AntTndepomarHeTuk NinseHOepra Ha rpartui KBagpaTHe Karome

N. Pixtep', . LynenBypr?, N. Tomuyax®, . Lmanbdyc!

1 IHCTUTYT TeopeTuyHoi ¢i3nku, YHiBepcuteT Margebypra, nowtoBa ckpuHbka 4120, D-39016 Maraebypr,
HimeuyunHa

2 YHiBEpCUTETCbKIMI 064MCioBasbHUN LLEHTP, YHiBepcuTeT Margebypra, nowwtoBa ckpuHbka 4120,
D-39016 Marne6bypr, HimeuunHa

3 Bipnin ¢isuku, YHiBepcuteT Agama Miukesunya, YMynbtoBcbka 85, 61-614 MNo3HaHb, MonbLia

OTtpumaHo 8 4yepsHs 2009 p.

My 06roBopIOEMO OCHOBHUIA CTaH, HU3bKosexadi 30y0)KeHHs, @ TakoX TepMOANHAMIKY Y CUbHOMY Mo-
ni aHTudepomarHeTuka lariseHbepra Ha ABOBMMIPHIN r'paTui kBagpaTHe karome. Lis marHiTHa cuctema
HanexmTb A0 Kacy CUIbHO GPYCTPOBAHMNX CMIHOBUX CUCTEM 3 BE3MEXHUM HETPUBIANIBHUM BUPOOXKEH-
HSIM KJTACMYHOIO OCHOBHOIMO CTaHy, Tak camo, §IK i aHTudepomMarHeTuk lanseHbepra Ha rpatui karome i
Ha rpaTtui 3ipka. KBaHTOBUI OCHOBHWIN CTaH CMiH-MOMOBMHA CUCTEMW € KBAHTOBMM MapamarHeTUKOM i3
CKiHY€HOI0 CMiHOBOIO LLiSIMHOIO Ta BEIMKUM YMCSIOM HEMArHITHUX 30yAKeHb BCepeayvHi LWinnH1. Mu Takox
0B6roBOPIOEMO KPMBY HaMarHi4eHicTb-nosne, y ki € naaTo Ta MakpocKoniyHMiA CTPUOOK HaMarHi4eHoCTi
[0 3HAYEHHS HACUYEHHS Yepes3 CTaHu, WO HAa3UBaOTLCS HE3aNeXHUMU flokani3oBaHUMN MarHoHamu. L
JI0Kani3oBaHi CTaHW € CUJIbHO BUPOOKEHNUMUN Ta 3YMOBIIOIOTb LiiKaBi PUCU HU3bKOTEMMNEPATYPHOI TEPMO-
OVNHaMIKM Yy CUNIbHOMY MarHiTHOMy NoJii, Taki Kk 40AaTKOBUIA HU3bKOTEMMEPATYPHUIA NiK Y TENIOEMHOCTI i
NMOCUJIEHUI MarHiTOKaNopU4HNn edexT.

KnouoBi cnoBa: ¢pycrpalis, kBaHTOBUIA aHTugdepomarHeTuk farizeHbepra, kKBaHTOBWI 6e351a4, CUJIbHEe
MarHiTHe rnose

PACS: 75.10.Jm, 75.45.+j, 75.60.Ej, 75.50.Ee
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