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It is shown that the two-gap approximation is applicable for describing the dV/dI(V) spectra
of LuNi2B2C–Ag point contacts in a wide interval of temperatures. The values and the temperature
dependences of the large and the small gaps in the ab plane and in the c direction were estimated
using the generalized BTK model [A. Plecenik, M. Grajacar, S. Benacka P. Seidel, A. Pfuch,
Phys. Rev. B49, 10016 (1994)]] and the equations of [S.I. Beloborodko, Fiz. Nizk. Temp. 29, 868
(2003) [Low Temp. Phys. 29, 650 (2003)]. In the BCS extrapolation the critical temperature of
the small gap is 10 K in the ab plane and 14.5 K in the c direction. The absolute values of the gaps
are �0

ab = 2.16 meV and �0
c = 1.94 meV. For the large gaps the critical temperature Tc coincides

with the bulk, Tc
bulk = 16.8 K, and their absolute values are very close, being about 3 meV in both

orientations. In the c direction the contributions to the conductivity from the small and the large
gaps remain practically identical up to 10–11 K. In the ab plane the contribution from the small
gap is much smaller and decreases rapidly as a temperature rises.
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Introduction

Compounds RNi2B2C (R is a rare earth metal) have
a tetrahedral crystal structure (e.g., see [1], Fig. 6)
with the space group I4/mmm [1] and the character-
istic parameters: two lattice constants a and c (a =
= 3.46 �, c = 10.63 � for LuNi2B2C) and the distance
z between the B atom and the RC plane. The aniso-
tropy in these compounds is determined by the ratio
c/a and is rather high (c/a � 3) [1].

According to electron structure calculation, RNi2B2C
compounds are three-dimensional metals in which all at-
oms contribute to the density of states at the Fermi sur-
face [2–4]. In LuNi2B2C three energy bands crossing the
Fermi level subdivide the Fermi surface into three dis-

tinct regions: (1) two spheroidal sheets at � points that
are extend along the c axis; (2) two flat P-centered
square regions with the sides parallel to (100) and
(010), and finally (3) the largest basic X-centered part,
mostly cylindrical in shape (a practically two-dimen-
sional crystal structure), whose axis is parallel to the
c axis [2–4]. In this sheet there are flat regions at the
points 0.56 ± (2�/a), the nesting typical for the com-
pounds of this family [4]. It is precisely these features
that determine the Kohn anomaly near the wave vector
Qm � (0.5, 0, 0) [5,6] and the incommensurate ordering
with Qm � (0.5, 0, 0) in AFM compounds. The part of
the Fermi surface responsible for nesting makes up only
(4.4 ± 0.5)% and shows up a slightly increased resis-
tance for the current along [100] [4].

© N.L. Bobrov, S.I. Beloborod’ko, L.V. Tyutrina, V.N. Chernobay, I.K. Yanson, D.G. Naugle and K.D.D. Rathnayaka, 2006



As was shown for point contacts with a ballistic
transit of electrons in a many-band superconductor [7],
in any direction the contribution to the conductivity
from each band is proportional to the area of the Fermi
surface projection from the corresponding band onto
the interface. Since the fraction of the Fermi surface re-
sponsible for nesting is small, the nesting-related fea-
tures are not obvious in the point-contact spectra.

Thus, the Fermi surface of nickel borocarbides con-
sists of several bands: it is anisotropic, and the corre-
sponding Fermi velocity vF varies within wide limits.
In this case Tc is determined not by the total density of
states N(EF) but by the narrow peak of the density of
states at the Fermi level (see [1], Fig.12). The den-
sity-of-states peak is induced by the slow electrons
from the flat (nesting) regions of the Fermi surface
with the wave vectors (0.5–0.6,0,0) [1].

In the normal state the resistivity � is isotropic be-
cause it is connected with the groups of electrons that
have rather high velocities vF and do not belong to the
flat regions of the Fermi surface [1]. The temperature
dependence of the resistance � in YNi2B2C and
LuNi2B2C single crystals also exhibits this practically
isotropic metallic behavior (see [1], Fig. 11).

The scanning tunneling microscope measurements
on LuNi2B2C give a rather low value of the supercon-
ducting energy gap along the c axis (4.2 K), �2.2 meV
(2�/kTc = 3.2) [8,9]. In the ab plane (T � 0.3–0.5 K)
for YNi2B2C the gap data are greatly scattered, from
2.3 meV [10] to 3.5 meV [11] (2�/kTc = 3.44–5.24).
The high ratio in [11] can be attributed to the estima-
tion procedure: the gap was estimated from the posi-
tions of the maxima in the differential conductivity
curve. The shape of the curve, however, suggests a
considerable variation of the gap over the Fermi sur-
face, and the cited value of the gap is closer to its max-
imum rather than to its average magnitude. For a
number of nickel borocarbides the ratio obtained from
point contact measurements in the ab plane [12,13] is
2�/kTc = 3.7–3.8.

In the recently discovered superconductor MgB2
the Fermi surface is formed by two groups of energy
bands having different dimensions, which determines
a two-gap conductivity [14]. Similarly, we can expect
a many-gap conductivity in nickel borocarbide com-
pounds. Note that the dHvA data [15,16] also point to
the presence of at least two or even three groups of
Fermi velocities, evidencing in favor of a two or
three-band model. In [17] the behavior of Hc2(T) is
considered within a two-band model. One band has
low Fermi velocities and high values of Hc2(0), Tc,
and the electron–phonon interaction parameter �.
However, all these characteristics are suppressed in
the bound system by another band with high Fermi ve-

locities and smaller superconducting parameters. In this
case the two-gap approximation commonly used for
two-band superconductors [18] seems quite reasonable.

Here we report the results on energy gap anisotropy
that were obtained on the nickel borocarbide super-
conductor LuNi2B2C for the main crystallographic
orientations — in the ab plane and along the c axis.
This study is a logical extension of [19]. It was shown
that the one-gap approximation could not provide an
accurate description of the experimental curves in the
low-temperatures region and use of the two-gap ap-
proach was contemplated [19]. The largest and the
smallest gaps were estimated in the ab plane and along
c direction at T << Tc. Besides, using the generalized
BTK [20] and Beloborodko’s [21] models, the lowest
values of the largest gap were estimated in these direc-
tions as a function of temperature [19]. Owing to the
high quality of the experimental curves (no «humps»,
or broad maxima at |eV| > �), the estimation was pos-
sible in the «wings», i.e., in the regions of the experi-
mental curves where the biases are higher than that at
the differential resistance minima (|eV| � �).

Below we show the results of the two-band calcula-
tion for LuNi2B2C obtained within two models
[20,21] for experimental curves obtained previously
[19]. In our opinion, the calculation most closely cor-
responds to the many-band character of the Fermi sur-
face in these compounds. The anisotropy is estimated
qualitatively in each band using the parameter � in
the BTK model [20], or � in Beloborodko’s model
[21]. The calculation is compared with the results of
one-gap fitting [19].

Experimental technique

The point-contact measurement was performed on
single crystal LuNi2B2C (Tc � 16.9 K) grown by Can-
field and Budko using a flux method [22]. The crys-
tals were thin (0.1–0.2 mm) plates with the c axis per-
pendicular to the plane of the plate. The single-crystal
surface always has quite a thick layer on it in which
superconductivity is either absent or strongly sup-
pressed. Point contacts between natural crystal faces
therefore suffer from this disadvantage. For measure-
ment in the ab plane, the crystal is usually cleaved,
and the point contact is made between a metallic
counterelectrode and the cleaved surface. The cleav-
age perpendicular to the c direction is a technical chal-
lenge. To do this, the crystal surface was cleaned with
a 10–15% HNO3 solution in ethanol for several min-
utes. The properly etched crystal has metallic luster
and its surface is free from colored film. The crystal
was washed thoroughly in pure ethanol and then in-
stalled in contact-making device. As was found subse-
quently, the etching conditions are very important for
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producing high-quality point contacts [23]. In the ab
plane the measurement results seem to be indifferent
to cleavage or etching — they are practically similar
in both cases. But a deeper analysis (see below) re-
veals certain distinctions caused by defects in the
cleavage surface. The other electrode was made of
high-purity silver. The point contacts in the ab plane
were fabricated between the edge of the prism-shaped
Ag electrode and freshly cleaved (etched) face of the
single crystal (shear technique [24]). The deviation
from the direction perpendicular to the c axis varied
within 5–10°. To made a contact in the c direction, the
«needle–anvil» geometry was used. The needle radius
was 1–3 microns. The temperature was measured with
a special insert (similar to that in [25]).

The point-contact resistance varied typically from
several Ohms to tens of Ohms. To attain more-de-
tailed data, we selected point contacts with the great-
est possible tunneling, which was judged from the
presence of a differential resistance maximum at zero
bias and the highest nonlinearity of the I–V curves at
biases �� typical for a nonperturbed superconducting
surface in the contact neighborhood. Unfortunately,
we were able to take a complete set of curves in the
whole range Tmin � 1.5 K 	 Tc only on a few contacts.
Because of high resistance and long-term (over 10–12
hours) measurements of temperature, many of con-
tacts were broken down. The measurements were
made with the nearly equal temperature steps. There
were taken 47 curves in the c direction and 41 curves
in the ab plane.

Data processing

Some curves of the temperature series for the first de-
rivatives dV/dI of the LuNi2B2C–Ag point contacts in
the c direction and in the ab plane are shown in Fig. 1.
The contact diameters were calculated by Sharvin’s
equation using Rab

0 = 22.5 
, Rc
0 = 45 
, �l =

= 11.25�10–16 
�m2 of [17] and allowing for the pres-
ence of a potential barrier in the constriction region:
Zab = 0.7, Zc = 0.55. The obtained diameters dab =
= 13.7 nm and dc = 8.5 nm are very close in the order
of magnitude to the coherence length in this
compound (� = 6.5 nm [17]). The measured curves
were symmetrized dV/dISym = 1/2[dV/dI(V) +
+ dV/dI(–V)] and normalized to the normal state
at T > Tc.

Two approaches were used to compare the theoreti-
cal and experimental results obtained in the one- and
two-gap approximation. First, a model was applied,
which describes the electrical conductivity of pure
S–c–N point contacts in the presence of an arbitrarily
transparent potential barrier at the boundary between
the metals. The model allows for the finite lifetime of

Cooper pairs [21]. The equations describing the I–V
characteristics of the point contact within this model
are given in [19,21]. The model, however, interprets
the superconducting order parameter and the energy
gap as distinct quantities. The BCS order parameter �
was found from
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The energy gap �0 and the order parameter � are re-
lated as

� �0
2 3 3 21
 �( )� / / . (3)

Here � = 1/(�s�) is the pair breaking parameter,
and �s is the mean free time during spin-flip scattering
at impurities. When magnetic impurities are absent, �s
tends to infinity and the equations describing the I–V
characteristics in [21] and in [26] coincide.

The other approach was based on the generalized
Blonder–Tinkham–Klapwijk (BTK) model commonly
used to describe S–c–N point contacts. The model al-
lows for finite lifetime of quasiparticles � = �/� deter-
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Fig. 1. Differential resistances of LuNi2B2C-Ag point con-
tact at different temperatures. To avoid crowding, only
several curves are shown.



mined by inelastic scattering, which leads to the
broadening of the density of states in the superconduc-
tor [20]. Formally, according to the previous theory,
the BTK-based results are obtained under condition of
strong pair breaking (|u| >> 1) [21]. Therefore, in the
strict sense, the generalized BTK model contains no
gap. For any infinitesimal broadening parameter �, at
T = 0 the density of states near Fermi surface is non-
zero. In theory [21], the order parameter is qualita-
tively analogous to the pseudogap in the generalized
BTK model.

In the two-gap approximation, the general conduc-
tivity of the point contact is taken as a superposition
of the conductivities from two regions of the Fermi
surface having their own gaps. In this case the experi-
mental curves were fitted using the expression

dV
dI

S
dI
dV

K
dI
dV

K



� �( , , ) ( , , )( )� �1 1 2 2 1� �Z Z

(4)

K is a coefficient characterizing the contribution from
the part of the Fermi surface with the gap �1, and S is
a scaling factor describing the intensity of the experi-
mental curve. It is used to make the amplitudes of the
theoretical and experimental curves equal. The best
agreement between the shapes of the theoretical and
experimental curves, corresponding to the minimum
rms deviation in the curve F(�), was taken as the
main criterion of fitting in both the models at low
and moderate temperatures. When the temperature
increases, the curves F(�) become flatter, which en-
tails much uncertainly in estimation of �. In this case
the scale factor S is of primary importance. It is, as a
rule, independent of temperature, and at low temper-
atures it can be calculated quite accurately through
averaging. The details of the calculation in the
one-gap and two-gap approximations are offered in
the Appendix.

Calculation

One-gap approximation

Although LuNi2B2C exhibits a two-band kind of
superconductivity, its experimental curves can be de-
scribed in the zero approximation with an averaged
gap possessing the broadening parameter � or the
pair-breaking parameter �. The temperature depen-
dences of the order parameters (the model of [21]) and
the gaps (BTK calculation [20]) in the ab plane and in
the c direction are shown in Fig. 2 along with the BCS
curves. In both cases we observe a deviation from the
BCS curve. In the c direction the deviation is towards
higher values when the calculation is based on [21]

and towards lower values in the BTK approximation.
As for the ab plane, it should be noted that in the low
temperature region the resistance of the contact varied
during the measurement and became stable only at
4 K. This may be the reason why in both models the
deviations from the BCS dependence in the low tem-
perature region descend to lower values. The results of
the both approximations start to coincide near 8 K in
the ab plane and near 11 K in the c direction. Precisely
at these temperatures (see Fig. 3), the parameters �
(pair breaking) or � (broadening) turn to zero in these
orientations. The ratio �/� or the � magnitude can be
used for semiquantitative estimation of the contribu-
tion of the two-band structure to the point contact
conductivity. Since in the c direction the ratio �/� is
1.5–2 times higher, we can expect a stronger two-band
effect in it. Besides, we can conclude that the experi-
mental curves demonstrate one-gap superconductivity
above 8 K in the ab plane and above 12 K in the c di-
rection. True, the more accurate two-band calculation
(see below) gives somewhat different results; never-
theless, this technique is quite good for semi-
quantative calculation. Note that in the strict sense,
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neither � nor � are meant for describing distribution of
gaps over the Fermi surface. They allow for the finite
lifetime of carriers, which only simulates the energy
gap anisotropy. Their use in this particular case is,
however, quite justified as it enables an approximate
modeling of the I–V characteristic in the N–c–S point
contact.

In the ab and c orientations the gap is anisotropic,
though observed anisotropy is rather low (see Figs. 1,
2). Statistically (several tens of contacts were exam-
ined for each direction), the positions of the dV/dI
minima characterizing the gap value are shifted
15–20% towards higher energies in the ab plane.

In addition to the deviation from the BCS �(T)
curve, the one-gap model also fails to provide a good
fitting of the shapes of theoretical and experimental
dV/dI(V) curves. The one-gap fitting (BTK model
[20]) of the experimental curves is shown in Fig. 4,
and Fig. 5 illustrates the temperature dependences of
the rms deviations between the shapes of the theoreti-
cal and experimental curves. The best agreement is ob-
served above 7–8 K. We attribute this rather high
value to the two-band character of the superconduc-
tivity. This indicates that the experimental curves
must be fitted in the two-gap approximation, as in the
case of MgB2 and [19].

Two-gap approximation

The two-gap fitting of experimental curves in the
low temperature region is illustrated in Fig. 6. The
agreement is seen to be much better than that with the
one-gap approximation (compare with Fig. 4).

The temperature dependences of the order parame-
ters calculated from [21] (open symbols) and the gaps
calculated within the generalized BTK model [20]
(solid symbols) in the ab plane and along the c axis
are shown in Fig. 7 along with the corresponding BCS
dependences (solid lines). In addition to the small �1
(squares) and large �2 (triangles) gaps, Fig. 7 illus-
trates for a comparison an averaged gap �M (circles)
which allows for the partial contributions to the con-
ductivity of the contact made by the Fermi surface
areas with different gaps (see formula in Fig. 7).

It is interesting to compare the BCS approximation
of the critical temperatures of the small gap in the ab
plane and in the c direction: Tc

ab(�1) = 10 K and
Tc

c(�2) = 14.6 K. The absolute values of the small
gaps are close (� 0

ab = 2.16 mV, � 0
c = 1.94 mV), the

difference being no more than 10%. The critical tem-
peratures of the large gaps are similar and coincide
with the bulk Tc = 16.8 K. The values of the large gaps
are about �2 = 3 mV. Note that both the models give
practically identical results for the large and the small
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gaps (open and closed triangles and squares). As for
the average gaps (circles), their values in the low tem-
perature region are dependent on the model applied.
This is because of different correlations between the
partial contributions from the large and the small gaps
(see Fig. 8).

It thus turns out that the higher � (or �) in the c di-
rection (where the two-band character is more pro-
nounced) obtained in the one-gap approximation is
determined not by the difference between the values
of the large and the small gaps but by the difference
between the partial contributions from these gaps. In
the ab plane the contribution of the small gap (open
squares, Fig. 8 upper panel) is smaller than in the c di-
rection and it decreases rapidly as the temperature
rises. In the c direction the contributions from the two
gaps are very close (on average, between the two mod-
els [20,21], it is about 50% for each) up to 10–11 K.
(Note that in the BTK calculation [20] the contribu-
tion from �1 is over 50%; in the calculation by the
model of [21] the �1 contribution is below 50%, and
on average the contribution from �1 is close to that
from �2 at low temperatures.)

The temperature dependence of � (pair breaking) or
� (broadening of quasiparticle levels) obtained in the
two-gap approximation are shown in Fig. 9. Note that

the parameters � and � are considerably higher for the
small gap both in the ab plane and in the c direction.
Their ratios to the corresponding gaps are larger, too:
(�1/�1) = 0.185 > (�2/�2) = 0.021 in the ab plane
and (�1/�1) = 0.333 > (�2/�2) = 0.1 in the c direc-
tion. As stated above, we consider that these ratios
simulate qualitatively the extent to which the gap is
distributed over the corresponding sheet of the Fermi
surface. We can thus assume that at low temperatures
the value of the gap changes very little for the part of
the Fermi surface with the larger gap (�2). In the
small-gap region (�1), the gap is spread over a consid-
erably broader range of energies at low temperatures.
Thus the two-gap approximation, even being more ac-
curate, cannot describe the experimental curves in the
whole T interval. This is evident (see Fig. 10) in the
temperature dependences of the rms deviations F be-
tween the shapes of the fitted and experimental curves
(even for two-gap calculation). Although the errors
observed (the F magnitude) are much lower (about
half as high at the lowest temperature) than in the
one-gap case (Fig. 5), they increase appreciably below
T = 4.5–5 K. This may occur because the three-band
conductivity comes into play, which must not be ruled
out completely for this compound. Proceeding from
the significantly higher ratio �1/�1 at low tempera-
tures, we can treat the small gap in turn as a superpo-
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sition of two different gaps with different Tc. These
gaps are close to each other and their energies overlap.
The temperature dependence of the error (F) suggests
that we can expect Tc � 5 K for the smallest gap in the
BCS approximation. This is the lowest estimate. How-
ever, because �2 becomes zero at 6 K (ab plane) and
8 K (c direction) (Fig. 9), it is possible that precisely
these temperatures are closest to Tc of the gap in the
third band.

Discussion

In our experiments we have not succeeded in de-
tecting noticeable anisotropy of the energy gap in the
ab plane and in the c direction. It was no more than
20% in the average-gap approximation. The reason
may be a rough cleavage surface, which made it diffi-
cult to fix the contact axis precisely along the a direc-
tion, where the gap minimum is predicted. Therefore,
following the common practice in point contact spec-
troscopy, we tried to select point contacts with the

highest superconducting parameters (gaps, I–V
nonlinearities). Since in the ab plane the maximum
gap is predicted in the [110] direction, our contacts
probably were made to correspond most closely to this
orientation. Besides, the angular selectivity of point
contact measurements is not high enough. Since the
tunneling component in the point contacts is rather
weak (the Z coefficient is not high) and their diame-
ters are close to the coherence length, it is quite likely
that the conversion of the electrons into pairs in the
vicinity of the contact occurs within a spherical geom-
etry. According to Maki’s model [27] the angle be-
tween the largest and the smallest gaps in the ab plane
is 45°. As a result, the spectra taken in these directions
can hardly have big distinctions. The most obvious
features discovered by us are the different critical tem-
peratures of the small gap in the ab plane and in the c
direction obtained in the BCS extrapolation (Fig. 7).

With the evidence available, it is hardly possible to
conclude unambiguously whether this phenomenon is
related to the gap anisotropy or any other (e.g., tech-
nological) factor. In the ab plane the point contact
was formed on a freshly cleaved surface. In the c direc-
tion the surface was cleaned chemically and experi-
enced no mechanical stress. It is known that elastic
scatterers first cause gap isotropization, then reduce
the gap and suppress the critical temperature.
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Fig. 8. Temperature dependences of the partial contribu-
tion to the contact conductivity from the small gap (cal-
culation by the formula of [21] and within the BTK model
[20]). Also, see Eq. (4) in the text.
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Fig. 7. Temperature dependences of the order parameter
(energy gap) � calculated in the two-gap approximation
using the equation of [21] (open circles) and the BTK
model [20] (solid circles) for LuNi2B2C–Ag point contacts
in the ab plane and c direction. Solid lines — BCS extrap-
olation. In addition to the large �2 (triangles) and small
�1 (squares) gaps, the figure includes medium gaps �M
(circles) that were obtained taking into account the par-
tial contribution to the contact conductivity from the
Fermi surface regions with the large and small gaps (see
the formula in the figure and Eq.(4) in the text).



Although in our experiments the critical temperatures
of the pointcontacts coincide with Tc of the bulk, the
partial Tc of the small gap (�10 K Fig. 7) and its rela-
tive contribution (coefficient K1, Fig. 8) to the over-
all conductivity decreases in the ab plane, which indi-
cates isotropization of the overall gap in this plane. To
clear up possible reasons for this phenomenon, further
measurements on chemically cleaned natural growth
faces of single crystals in the a direction are needed.

According to Pokrovsky’s theorem [28,29], in the
case of anisotropic one-gap superconductivity the tem-
perature dependence of the gap is independent of crys-
tallographic directions. In our case the temperature
dependences of the large and the small gaps and the
BCS extrapolation of the critical temperatures are
quite different. This suggests that this behavior can
not be caused by the contributions to conductivity
made by a single anisotropic superconducting gap in
different crystallographic directions. On the contrary,
we observe the indications of two different supercon-
ducting gaps from different energy bands.

Noteworthy also is another point, namely, the lim-
its of applicability of the two-gap approach to describ-
ing experimental data. In the strict sense, the method
requires that the broadening (pair breaking) parame-
ters should be zero for both gaps. This condition is met
at T > 6 K for the ab plane and T > 8 K in the c direc-

tion (see Fig. 9). At lower temperatures the gaps do
not have strictly specified values as they are distrib-
uted over a certain range of energies simulated by non-
zero � or �. In the ab plane the largest gap stands out
as an individual line above 2 K, while in the c direc-
tion both the gaps start broadening at nearly the same
temperature. As the temperature lowers, the distribu-
tion extends up to overlapping of energies. This brings
more uncertainly into the description of curves in the
two-band approximation (Fig. 10) and sends us in
search of a new method. A possible technique of a
more adequate description of our experimental results
near T = 1.5 K is illustrated in [1] (Figs. 12–14).

Conclusions

This study demonstrates that the two-gap approxi-
mation is more appropriate for describing the super-
conductivity of LuNi2B2C in a wide interval of tem-
peratures. The values and the temperature dependences
of the large and the small gaps have been estimated for
the ab plane and the c direction. It is found that in the
BCS extrapolation of the critical temperature for the
small gap is Tc = 10 K in the ab plane and Tc = 14.5 K
in the c direction. The absolute values of the gaps are
� 0

ab = 2.16 mV, � 0
c = 1.94 mV. For the large gaps Tc
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characterizing shape discrepancies between experimental
and theoretical curves (calculation by the equations of
[21] (open circles) and in the BTK model [20] (solid cir-
cles)) for LuNi2B2C–Ag point contacts in the ab plane
and in the c direction in the two-gap approximation.
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coincides with Tc
bulk : Tc(�2) = 16.8 K and their abso-

lute values are very close in both orientations, being
about 3 meV. It is found that in the c direction the
contributions to the conductivity from the small and
the large gaps are nearly equal up to 10–11 K. In the
ab plane the contribution of the small gap is consider-
ably weaker and decreases rapidly as the temperature
is growing.
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Appendix

The iteration method commonly used to fit theoret-
ical and experimental curves is quite good when the
broadening is small. However, as the broadening � be-
comes comparable with the gap (or � > 0.3), this in-
troduces an appreciable uncertainly into the results.
The iteration method implies that during fitting the
parameters change cyclically as the step is gradually
decreased. It is expected that the error reduces with
each step. Our experiment shows that with high � (or
�) this procedure brings us finally to a local minimum
point which is dependent on starting �, � (�), and Z
values and cannot correspond to the global minimum.
Moreover, this method is not valid for the two-gap
calculation. In our fitting procedure we therefore used
the technique of coordinate descent with a postponed
solution [19]. First, we specified an interval in which �
is searched for at a given temperature. The interval was
then subdivided into equidistant parts �1, �2, ..., � n.
Then �(�) and Z were fitted for each �i. The method
used in [19] does not imply that the error should de-
crease immediately after each � (or �) step. The errors
are compared after each � (or �) step only when the Z
fitting is completed (this accounts for the term «post-
poned solution»). In the programming language, the
calculation by this method reduces to embedded cy-
cles. In the one-gap model, the Z fitting is an inner cy-

cle and the � (or �) fitting is an outer cycle. In the
two-band calculation, the Z fitting is the innermost
cycle, the fittings in �1 and �2 become outer and, fi-
nally, the �2 fitting is the outermost cycle. This
method provides an unambiguous solution independ-
ent of the starting parameters. In the process of calcu-
lation the intensities of the theoretical and experimen-
tal curves were equalized and aligned over the
ordinate before each step of calculation of the average
rms deviation F(�i). To do this, the y-coordinates of
the points in the theoretical curve were multiplied by
the scale factor S (the procedure of making the ampli-
tudes of the theoretical and experimental curves
equal). The curve was then shifted along the y axis by
an amount B. The values of S and B were found from
the condition of the minimum F(�i). The standard al-
gorithm for determination of these coefficients, known
as the least-squares method, is considered, for in-
stance, in [30]. As a result, for each �i we could obtain
�i (�i) and Zi at which the difference between the
shapes of the theoretical and experimental curves
characterized by the rms deviation F(�i) was the
smallest one. The kind of calculation for different
temperatures is illustrated in [19] (Fig. 3). In the
two-gap case, the F(�i) curves are more flattened, and
the curve has no minimum at a temperature lower than
in the one-gap case. However, before this happens, we
are able, as a rule, to find quite accurately the scale
factor S, which is independent of temperature but is
strongly dependent on � ([19], Fig.4). The value of S
can vary from contact to contact but it is invariant for
a particular contact. To put it more accurately, at val-
ues of � � 0, S is practically invariable for the minima
in the curves F(�) (see Fig. 9 in [19]). By choosing �
values which correspond to the values determined for
S, we can plot quite accurately the �(T) curve in the
high-temperature region.
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