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Within the framework of a modified proton ordering model of the KH2PO4 family ferroelectric crystals, taking

into account a linear over the strain ε6 contribution into the proton system energy, we obtain an expression

for longitudinal dynamic dielectric permittivity of a mechanically clamped crystal using the four-particle cluster

approximation and the dynamic Glauber approach. At a proper choice of the model parameters, we obtain a

good quantitative description of available experimental data for these crystals.
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1. Introduction

In the late 1960-ies, most theoretical and experimental studies of ferroelectrics concentrated on var-

ious dynamic phenomena. The dispersion of dielectric permittivity of ferroelectrics was explored at low

frequencies, which provided an important information on the mechanisms of phase transitions and re-

vealed the peculiarities of the low-frequency dynamics of a system. Ferroelectric dispersion is closely

related to the presence of a low-frequency excitation, i.e., a soft mode which can be either resonant or

relaxational. Ferroelectric compounds of the KH2PO4 family occupy an intermediate position. The region

of fundamental dispersion in these crystals is located in the submillimeter range ν≈ 50 GHz. At deuter-

ation, the ferroelectric dispersion in these crystals is shifted to the millimeter and microwave ranges.

Themajor task of dielectric spectra studies of ferroelectric crystals is to explore the peculiarities of the

soft mode behavior, especially in the phase transition region [1]. As a rule, the soft modes in the KH2PO4

family ferroelectrics are strongly damped. To explore their character is a complicated task. One has to

explore the dielectric spectra of these crystals in a wide frequency range that includes several regions re-

quiring specific and unique experimental methods of measurements. There is hardly any experimental

group fully equipped for such studies. This fact, along with the principal difficulties in experimental mea-

surements of dielectric spectra, and the dependence of ε̂∗(ω,T ) on sample quality and surface treatment,

causes the situation when the experimental data for dielectric spectra of the KH2PO4 family ferroelectrics

turn out to be disembodied and quite conflicting. This should be kept in mind while analysing the exper-

imental data and the theoretical results for dynamic characteristics of ferroelectrics including those of

the KH2PO4 family.

In the late 1970-ies, the obtained experimental results for the dynamic characteristics in the KH2PO4

family compounds were interpreted mostly within phenomenological models (see [1–3]). Phenomeno-

logical theories do not make it possible to reveal the microscopic nature of the dispersion of dielectric

permittivity or to appropriately describe the effect of various factors on the character of its temperature

and frequency dependencies. The attempts to solve this problem using the Green’s function method or

Bloch kinetic equations method failed [4, 5].
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A vast majority of studies on the theory of relaxation phenomena in the KH2PO4 family ferroelectrics

are based on the stochastic Glauber model [6]. For the first time, the relaxation dynamics of the KD2PO4

type ferroelectrics was studied using this method in [2], where, within the four-particle cluster approxi-

mation (FPCA), there was initiated a study of the main regularities of longitudinal relaxation in the case

of a paraelectric phase. However, long-range interactions were not taken into account therein, and the

corresponding experimental data for the KD2PO4 type ferroelectrics were not discussed. Later on [7–9],

a more consistent model of deuterated KD2PO4 type ferroelectrics and ND4D2PO4 type antiferroelectrics

was explored. Within the framework of this model, using the FPCA for short-range interactions and the

mean field approximation for long-range interactions, longitudinal dynamic characteristics of these crys-

tals were calculated. It was shown [10–12] that the theory proposed in [7–9] provides a satisfactory de-

scription of thermodynamic and longitudinal dynamic characteristics of the KH2PO4 type ferroelectrics.

In [13–15], the authors attempted to develop a more consistent theory of the KH2PO4 family ferroelectrics

in the FPCA which takes tunneling (Ω) into account. The results were not good enough to appropriately

describe the available experimental data for the dynamic characteristics of these crystals. However, the

fact of suppression of the dynamic characteristics of the KH2PO4 type ferroelectrics by short-range inter-

actions was established. An effective tunneling parameter Ω̃ (Ω̃≪ Ω) renormalized by the short-range

interactions was obtained. It should be noted that the established in [13–15] suppression of dynamic char-

acteristics of the KH2PO4 type ferroelectrics by short-range correlations is the most probable reason of

the Debye-type dispersion of dielectric permittivity observed in these crystals.

In [16–18], thermodynamic and dynamic characteristics of quasi-one-dimensional hydrogen bonded

CsH2PO4 ferroelectrics were found using a self-consistent approach to the calculation of thermodynamic

and dynamic characteristics of pseudospin systems with essential short-range and long-range interac-

tions, based on the calculation of the free energy functional with short-range interactions taken into

account in the reference approach. It was established that an essential suppression of the soft vibration

mode by short-range correlations takes place in a wide temperature range. This fact, just like in the case

of KH2PO4, is directly related to the Debye type of longitudinal dielectric permittivity dispersion observed

in CsH2PO4. It should be mentioned that similar studies of thermodynamic and dynamic characteristics

of KH2PO4 can be carried out using the technique developed in [19]. Such studies would make it possible

to explore the effect of suppression of the soft mode in the KH2PO4 type ferroelectrics more consistently

than in [13] and thereby to explain the Debye character of the dielectric permittivity dispersion in these

crystals.

It should be noted that the ferroelectric compounds of the KH2PO4 family are piezoelectric. Piezoelec-

tric coupling is observed in external electric fields and mechanical stresses of certain symmetries. Ferro-

electric phase transition in the KH2PO4 type crystals is accompanied by the appearance of spontaneous

strains, which changes their tetragonal symmetry. So far, the calculations of dielectric characteristics of

these crystals within the proton ordering model [1, 2, 7–12] were restricted to a static limit and high-

frequency relaxation. The attempts to explore the piezoelectric resonance phenomenon within a model

that does not take into account the piezoelectric coupling were vain. The conventional proton ordering

model does not permit one to describe the effects associated with the differences of the free and clamped

crystal regimes in the static limit or the phenomenon of crystal clamping by a high-frequency field. This

leads, in particular, to some quantitative deviations from experiment for the temperature behavior of

polarization relaxation time and dynamic dielectric permittivity of the KH2PO4 type ferroelectrics in the

phase transition region.

The studies of the piezoelectric coupling effect on the phase transition and on physical characteristics

of the KH2PO4 type ferroelectrics were initiated in[20], where the Slater theory [21] was modified by

taking into account the splitting of the lowest ferroelectric level due to the strain ε6.

The most fundamental results for the KH2PO4 family ferroelectrics were obtained in [22–30]. For the

deformed crystals of the KH2PO4 type, the Hamiltonian of the proton ordering model was modified for

the first time by including ε6 into in the shear strain [22, 23], taking into account the deformational mean

field and the splitting of the lateral proton configurations. Later on [24, 25], all possible splittings of pro-

ton configurational energies by the strain ε6 were included into the model. In [24], using this model, the

phase transition, thermodynamic and longitudinal dielectric, piezoelectric, and elastic characteristics of

K(H0.12D0.88)2PO4, as well as the effect of the σ6 on these quantities were explored. The same character-

istics for other K(H1−xDx )2PO4 type ferroelectrics were later on calculated in [26].
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The thermodynamic and longitudinal dielectric, piezoelectric, and elastic characteristics of the

KH2PO4 type were also calculated in [25, 27] within a model that takes into account the tunneling and

piezoelectric coupling. It should be mentioned, however, that taking into account the tunneling within

the cluster approximation yields a non-physical behavior of the calculated quantities at low tempera-

tures [31]. In [28–30], the effect of the electric field E3 on the phase transition and on the physical char-

acteristics of K(H0.12D0.88)2PO4 and KH2PO4 was explored, and a good agreement with experiment was

obtained.

In [24–28], where there was used a model with tunneling, the dynamic characteristics of the KH2PO4

family ferroelectrics were not considered. In [32], using a modified proton ordering model proposed

in [24], the dynamic dielectric permittivity of a free KH2PO4 type crystals was calculated taking into

account the dynamics of ε6 strain. The experimentally observed effects of crystal clamping by a high-

frequency electric field and piezoelectric resonance in KH2PO4 and KD2PO4 crystals were theoretically

described for the first time. Peculiarities of the ultrasound attenuation coefficients near the phase tran-

sition temperature in these crystals were also described. In [33], we presented a detailed review of the

obtained results for longitudinal and transverse static dielectric permittivities, for piezoelectric coeffi-

cients, and for elastic constants of several ferroelectric crystals of the KH2PO4 family. Moreover, the

typical behavior of longitudinal and transverse characteristics of mechanically free KH2PO4, Rb2PO4,

KH2AsO4 crystals was shown and the results for temperature and frequency dependencies of longitu-

dinal and transverse dielectric permittivities of KH2PO4 were presented, along with the corresponding

experimental data.

In the present paper, using the model proposed in [24] we calculate the longitudinal dynamic dielec-

tric permittivity of clamped ferroelectrics of the KH2PO4 type and explore its behavior in wide temper-

ature and frequency ranges. Using the obtained results, we perform a detailed analysis of the available

experimental data for these crystals.

2. Systems of equations for the time-dependent deuteron distribution

functions

We shall consider a system of deuterons moving on the O–D. . .O bonds in deuterated KD2PO4 type fer-

roelectrics. A primitive cell of the Bravais lattice of these crystals consists of two neighboring tetrahedra

PO4 along with four hydrogen bonds attached to one of them (the “A” type tetrahedron). The hydrogen

bonds attached to the other tetrahedron (“B” type) belong to the four structural elements surrounding

this tetrahedron (figure 1).

Figure 1. A primitive cell of the KD2PO4 type crystal. One of the numerous possible ferroelectric deuteron

configurations is shown.

The dynamic characteristics of these compounds will be calculated within the four-particle cluster

approximation that proved to be successful in describing their thermodynamic properties [12, 24–27].
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The Hamiltonian of the deuteron subsystem, taking into account short-range and long-range inter-

actions in the presence of an external electric field E3 along the crystallographic c axis and mechanical

stress σ6 = σx y , which independently contribute to polarization P3 and strain ε6, consists of the “seed”

and pseudospin parts [24, 26]:

Ĥ = N H (0)
+ Ĥs , (2.1)

where N is the total number of primitive cells. The “seed” energy of a primitive cell corresponds to

the sublattice of heavy ions and does not explicitly depend on the deuteron subsystem configuration.

It is expressed in terms of the strain ε6 and electric field E3 and includes the elastic, piezoelectric, and

dielectric contributions

H (0)
= v

(

1

2
cE0

66 ε
2
6 −e0

36E3ε6 −
1

2
χε0

33E 2
3

)

, (2.2)

where v is the primitive cell volume; cE0
66 , e0

36, χ
ε0
33 are the “seed” elastic constant, piezoelectric coefficient,

and dielectric susceptibility, respectively. They determine the temperature behavior of the corresponding

observable quantities at temperatures far from the phase transition Tc.

The pseudospin part of the Hamiltonian reads

Ĥs =
1

2

∑

q f

q′ f ′

J f f ′ (qq ′)
σq f

2

σq ′ f ′

2
+ Ĥsh.s(6)+

∑

q f

2ψ6ε6

σq f

2
−

∑

q f

µ f 3E3

σq f

2
. (2.3)

The first term describes effective long-range interactions between deuterons; σq f is the z-th component

of the pseudospin operator that describes the state of a deuteron in the q-th cell on the f -th bond. ( f =

1,2,3,4). Two eigenvalues of the operator σq f =±1 correspond to two possible positions of the deuteron

on the bond denoted by “1”, “2” in figure 1. In (2.3) Ĥsh.s(6) is a linear over the strain ε6 Hamiltonian of

the short-range interactions between deuterons [26]:

Ĥsh.s(6) =
∑

q

[(

δs6

8
ε6 −

δ16

4
ε6

)

(

σq1 +σq2 +σq3 +σq4

)

−

(

δs6

8
ε6 +

δ16

4
ε6

)

(

σq1σq2σq3 +σq1σq2σq4 +σq1σq3σq4 +σq2σq3σq4

)

+
1

4
(Vs +δa6ε6)

(

σq1σq2 +σq3σq4

)

+
1

4
(Vs −δa6ε6)

(

σq2σq3 +σq4σq1

)

+
1

4
Us

(

σq1σq3 +σq2σq4

)

+
1

16
Φsσq1σq2σq3σq4

]

. (2.4)

Here

Vs =−
1

2
w1, Us =

1

2
w1 −ε, Φs = 4ε−8w +2w1

and

ε= εa −εs , w = ε1 −εs , w1 = ε0 −εs ,

where εs , εa , ε1, ε0 are the energies of deutron configurations near the PO4 group.

The third term in (2.3) is a linear over the shear strain ε6 mean field Hamiltonian induced by the

piezoelectric coupling; ψ6 is the parameter of the deformational mean field.

The last term in (2.3) effectively describes the interactions of deuterons with an external electric field

E3. Here µ f 3 is the effective dipole moment related to the f -th hydrogen bonds, where

µ13 =µ23 =µ33 =µ43 =µ3 ,

and µ3 is the dipole moment of up/down deuteron configurations.

Taking into account the peculiarities of the crystalline structure of the MD2XO4 the type ferro-

electrics, their dynamic characteristics can be calculated within the four-particle cluster approximation

that proved to be effective in describing the thermodynamic characteristics of these crystals [12, 24–27].

33705-4



Longitudinal relaxation of mechanically clamped crystals

Long-range interactions are taken into account in the mean field approximation. Within the cluster ap-

proach, the thermodynamic potential of MD2XO4 ferroelectrics calculated per one primitive cell reads

gs(6) = H (0)
+2νc

(

η(1)z
)2
+

1

2β

4
∑

f =1

ln Z (1)
f s

−
1

β
ln Z (4)

6s − vσ6ε6 , (2.5)

where 4νc = J11(0)+2J12(0)+ J13(0), the eigenvalues of Fourier-transform of the long-range interaction

matrix J f f ′ =
∑

Rq−Rq′

J f f ′ (qq ′);

η(1)z
= 〈σq1〉 = 〈σq2〉 = 〈σq3〉 = 〈σq4〉

is the parameter of deuteron ordering; Z (1)
f s

= Spe
−βĤ (1)

q f s , Z (4)
6s = Spe−βĤ (4)

qs , β=
1

kBT are the single-particle

and four-particle partition functions. The single-particle Ĥ (1)
q f s

and four-particle Ĥ (4)
qs deuteron Hamilto-

nians are presented by

Ĥ (1)
q f s

=−
z̄6

β

σq f

2
, (2.6)

Ĥ (4)
qs =−

4
∑

f =1

z6

β

σq f

2
+ Ĥsh.s(6), (2.7)

where

z6 =β
(

−∆
c
s +2νcη

(1)z
−2ψ6ε6 +µ3E3

)

, z̄6 =β
(

−2∆c
s +2νcη

(1)z
−2ψ6ε6 +µ3E3

)

.

The effective field ∆
c
s exerted by the neighboring hydrogen bonds from outside the cluster, is determined

from the self-consistency condition: the mean values 〈σq f 〉 calculated within the four-particle and one-

particle cluster approximations should coincide.

The dynamic characteristics of the MD2XO4 crystals will be explored using the proposed dynamic

model based on a stochastic Glauber model [6]. Using the method developed in [10–12, 32], the system of

equations for the time-dependent deuteron distribution functions is obtained in the form

−α
d

dt

〈

∏

f

σq f

〉

=
∑

f ′

{〈

∏

f

σq f

[

1−σq f ′ tanh
1

2
βεz

q f ′ (t)

]

〉}

, (2.8)

where ε
z
q f ′ (t) is the local field acting on the f ′-th deuteron in the q-th cell, which can be obtained from

the Hamiltonian (2.3). Expanding tanh 1
2βε

z
q f ′ (t) over the pseudospin operatorsσq f , occurring in Hamil-

tonian (2.3), taking into account the fact that σq f = ±1 and the symmetry of the deuteron distribution

functions in the MD2XO4 ferroelectrics in the presence of the electric field E3

η(1)z
= 〈σq1〉 = 〈σq2〉 = 〈σq3〉 = 〈σq4〉,

η(3)z
= 〈σq1σq2σq3〉 = 〈σq1σq3σq4〉 = 〈σq1σq2σq4〉 = 〈σq2σq3σq4〉,

η(2)z
1 = 〈σq2σq3〉=〈σq1σq4〉, η(2)z

2 =〈σq1σq2〉=〈σq3σq4〉, η(2)z
3 =〈σq1σq3〉=〈σq2σq4〉, (2.9)

from (2.7), one can obtain a closed system of equations for the time-dependent single-particle, three-

particle, and pair distribution functions of deuterons in MD2XO4 within the four-particle cluster approx-

imation and for a single-particle distribution function within the single-particle approximation [32]:

α
d

dt















η(1)z

η(3)z

η(2)z
1

η(2)z
2

η(2)z
3















=













c̄11 c̄12 c̄13 c̄14 c̄15

c̄21 c̄22 c̄23 c̄24 c̄25

c̄31 c̄32 c̄33 c̄34 c̄35

c̄41 c̄42 c̄43 c̄44 c̄45

c̄51 c̄52 c̄53 c̄54 c̄55



























η(1)z

η(3)z

η(2)z
1

η(2)z
2

η(2)z
3















+













c̄1

c̄2

c̄3

c̄4

c̄5













, (2.10)
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where the following notations are used

c̄11 =−(1−P z
6 −Qz

61 −Qz
62), c̄12 = Rz

6 , c̄13 = M z
61, c̄14 = M z

62, c̄15 = N z
6 , c̄1 = Lz

6 ,

c̄21 = (2P z
6 +2Qz

61 +2Qz
62 +3R6), c̄22 =−(3−P z

6 −Qz
61 −Qz

62), c̄23 = (N z
6 +M z

62 +Lz
6),

c̄24 = (N z
6 +M z

61 +Lz
6), c̄25 = (M z

61 +M z
62 +Lz

6), c̄2 = (N z
6 +M z

61 +M z
62),

c̄31 = 2(N z
6 +M z

62 +Lz
6), c̄32 = 2M z

61, c̄33 =−2(1−Rz
6 ), c̄34 = 2P z

6 , c̄35 = 2Qz
61, c̄3 = 2Qz

62,

c̄41 = 2(N z
6 +M z

61 +Lz
6), c̄42 = 2M z

62, c̄43 = 2P z
6 , c̄44 =−2(1−Rz

6 ), c̄45 = 2Qz
62, c̄4 = 2Qz

61,

c̄51 = 2(M z
61 +M z

62 +Lz
6), c̄52 = 2N z

6 , c̄53 = 2Qz
61, c̄54 = 2Qz

62, c̄55 =−2(1−Rz
6 ), c̄5 = 2P z

6 ,

(2.11)

α
d

dt
η(1)z

=−η(1)z
+ tanh

1

2
z̄6 . (2.12)

3. Relaxational dynamics of mechanically clamped MD2XO4 crystals

Now, using the obtained systems of equations, let us calculate the dynamic characteristics of the

MD2XO4 crystals. Let us consider the case of small deviations of the considered system from equilib-

rium. We can separate the static and dynamic parts in the obtained system of equations. To do so, we

present the distribution functions and the effective fields as sums of the equilibrium functions and their

fluctuations

η(1)z
= η(1)

+η(1)z
t , η(3)z

= η(3)
+η(3)z

t , η(2)z
i

= η(2)
i

+η(2)z
i t

(i = 1,2,3),

z6 = z̃6 + z6t , z̃6 =−β∆̃c
s +2βνcη

(1)
−2βψ6ε6 , z6t =−β∆c

st +2βνcη
(1)z
t +βµ3E3t . (3.1)

Owing to a piezoelectric coupling, time-dependent electric fields should induce time-dependent strains.

However, in the present paper we shall consider the fields with the frequencies of the order of 109 ∼

1012 Hz, which is far above the frequency of piezoelectric resonance. When the frequency is that high,

the strains are not capable of following the external fields, which means that the crystal is effectively

clamped. Therefore, in the expansions (3.1) we assume the strain ε6 to be time-independent.

We expand the expressions for the coefficients P z
6 , . . . ,Lz

6 in series in z6t /2 up to the linear terms. Tak-

ing into account these expansions and (3.1), we obtain a system of equations that describes the behavior

of fluctuational parts of distribution functions [32, 34]:

d

dt















η(1)z
t

η(3)z
t

η(2)z
1t

η(2)z
2t

η(2)z
3t















=













c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

c41 c42 c43 c44 c45

c51 c52 c53 c54 c55



























η(1)z
t

η(3)z
t

η(2)z
1t

η(2)z
2t

η(2)z
3t















−
µ3E3t

2kT













c1

c2

c3

c4

c5













, (3.2)

where the coefficients of the system read

c11 =
1

α

(

c̄(0)
11 +βνc Y (1)

s −k(1)
s Ψ

z
s

)

, c12 =
1

α

(

c̄(0)
12 −k(1)

s c̄(0)
12

)

, c13 =
1

α

(

c̄(0)
13 −k(1)

s c̄(0)
13

)

,

c14 =
1

α

(

c̄(0)
14 −k(1)

s c̄(0)
14

)

, c15 =
1

α

(

c̄(0)
15 −k(1)

s c̄(0)
15

)

, c1 =
1

α
k(1)

s rs ,

c21 =
1

α

(

c̄(0)
21 +βνc Y (3)

s −k(3)
s Ψ

z
s

)

, c22 =
1

α

(

c̄(0)
22 −k(3)

s c̄(0)
12

)

, c23 =
1

α

(

c̄(0)
23 −k(3)

s c̄(0)
13

)

,

c24 =
1

α

(

c̄(0)
24 −k(3)

s c̄(0)
14

)

, c25 =
1

α

(

c̄(0)
25 −k(3)

s c̄(0)
15

)

, c2 =
1

α
k(3)

s rs ,
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c31 =
1

α

(

c̄(0)
31 +βνc Y (2)

s1 −k(2)
s1 Ψ

z
s

)

, c32 =
1

α

(

c̄(0)
32 −k(2)

s1 c̄(0)
12

)

, c33 =
1

α

(

c̄(0)
33 −k(2)

s1 c̄(0)
13

)

,

c34 =
1

α

(

c̄(0)
34 −k(2)

s1 c̄(0)
14

)

, c35 =
1

α

(

c̄(0)
35 −k(2)

s1 c̄(0)
15

)

, c3 =
1

α
k(2)

s1 rs ,

c41 =
1

α

(

c̄(0)
41 +βνc Y (2)

s2 −k(2)
s2 Ψ

z
s

)

, c42 =
1

α

(

c̄(0)
42 −k(2)

s2 c̄(0)
12

)

, c43 =
1

α

(

c̄(0)
43 −k(2)

s2 c̄(0)
13

)

,

c44 =
1

α

(

c̄(0)
44 −k(2)

s2 c̄(0)
14

)

, c45 =
1

α

(

c̄(0)
45 −k(2)

s2 c̄(0)
15

)

, c4 =
1

α
k(2)

s2 r6 ,

c51 =
1

α

(

c̄(0)
51 +βνc Y (2)

s3 −k(2)
s3 Ψ

z
s

)

, c52 =
1

α

(

c̄(0)
52 −k(2)

s3 c̄(0)
12

)

, c53 =
1

α

(

c̄(0)
53 −k(2)

s3 c̄(0)
13

)

,

c54 =
1

α

(

c̄(0)
54 −k(2)

s3 c̄(0)
14

)

, c55 =
1

α

(

c̄(0)
55 −k(2)

s3 c̄(0)
15

)

, c5 =
1

α
k(2)

s3 rs .

The expressions for the quantities entering the coefficients of the system (3.2), are given in [34]; if the

piezoelectric coupling is neglected, they coincide with the corresponding expressions of [12].

The system of equations (3.2) is reduced to a non-uniform differential equation with constant coeffi-

cients for a single-particle distribution function

.....
η

(1)z

t +p4

....
η

(1)z

t +p3

...
η

(1)z

t +p2

..
η

(1)z

t +p1

.
η

(1)z

t +p0η
(1)z
t =

µ3E3t

2
βp, (3.3)

where p =−
[

(iω)4p(4) + (iω)3p(3) + (iω)2p(2) + (iω)p(1) +p(0)
]

. Expressions for coefficients p4, . . . , p(0) are

presented in [34].

Finally, time-dependent single-particle distribution function is obtained in the following form

η(1)z
t =

5
∑

i=1

C z
i exp

(

−
t

τz
i

)

+
µ3E3t

2
β

4
∑

k=0
(iω)k p(k)

(iω)5 +
4
∑

k=0
(iω)k pk

. (3.4)

Here C z
i
are constant coefficients; τz

i
are relaxation times represented by

τz
i = (−qz

i )−1,

where qz
i
are roots of the characteristics equation

(qz )5
+p4(qz )4

+p3(qz )3
+p2(qz )2

+p1(qz )+p0 = 0. (3.5)

The dynamic dielectric susceptibility of a clamped crystal is defined as

χε
33(ω,T ) = lim

E3t→0
2
µ3

v

dη(1)z
t

dE3t
=

µ2
3

v
β

4
∑

k=0
(iω)k p(k)

(iω)5 +
4
∑

k=0
(iω)k pk

=
µ2

3

v
β

5
∏

i=1
τz

i

[ 4
∑

k=0
(iω)k p(k)

]

5
∏

i=1
(1+ iωτz

i
)

=

5
∑

i=1

χ3i

1+ iωτz
i

. (3.6)

The coefficients χ3i are found from the following system of equations













n11 n12 n13 n14 n15

n21 n22 n23 n24 n25

n31 n32 n33 n34 n35

n41 n42 n43 n44 n45

n51 n52 n53 n54 n55

























χ31

χ32

χ33

χ34

χ35













=













n1

n2

n3

n4

n5













. (3.7)
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Here, the following notations are used

n11 = τz
2τ

z
3τ

z
4τ

z
5 ; n12 = τz

1τ
z
3τ

z
4τ

z
5 ; n13 = τz

1τ
z
2τ

z
4τ

z
5 ; n14 = τz

1τ
z
2τ

z
3τ

z
5; n15 = τz

1τ
z
2τ

z
3τ

z
4 ;

n21 = τz
2τ

z
3τ

z
4 +τz

2τ
z
3τ

z
5 +τz

2τ
z
4τ

z
5 +τz

3τ
z
4τ

z
5; n22 = τz

1τ
z
3τ

z
5 +τz

1τ
z
4τ

z
5 +τz

1τ
z
3τ

z
4 +τz

3τ
z
4τ

z
5 ;

n23 = τz
1τ

z
2τ

z
4 +τz

1τ
z
2τ

z
5 +τz

1τ
z
4τ

z
5 +τz

2τ
z
4τ

z
5; n24 = τz

1τ
z
2τ

z
3 +τz

1τ
z
2τ

z
5 +τz

1τ
z
3τ

z
5 +τz

2τ
z
3τ

z
5 ;

n25 = τz
1τ

z
2τ

z
3 +τz

1τ
z
2τ

z
4 +τz

1τ
z
3τ

z
4 +τz

2τ
z
3τ

z
4; n31 = τz

2τ
z
3 +τz

2τ
z
4 +τz

3τ
z
4 +τz

2τ
z
5 +τz

3τ
z
5 +τz

4τ
z
5 ;

n32 = τz
1τ

z
3 +τz

1τ
z
4 +τz

1τ
z
5 +τz

3τ
z
4 +τz

3τ
z
5 +τz

4τ
z
5 ; n33 = τz

1τ
z
2 +τz

1τ
z
4 +τz

1τ
z
5 +τz

2τ
z
4 +τz

2τ
z
5 +τz

4τ
z
5 ;

n34 = τz
1τ

z
2 +τz

1τ
z
3 +τz

1τ
z
5 +τz

2τ
z
3 +τz

2τ
z
5 +τz

3τ
z
5 ; n35 = τz

1τ
z
2 +τz

1τ
z
3 +τz

1τ
z
4 +τz

2τ
z
3 +τz

2τ
z
4 +τz

3τ
z
4 ;

n41 = τz
2 +τz

3 +τz
4 +τz

5 , n42 = τz
1 +τz

3 +τz
4 +τz

5 ; n43 = τz
1 +τz

2 +τz
4 +τz

5 ,

n44 = τz
1 +τz

2 +τz
3 +τz

5 , n45 = τz
1 +τz

2 +τz
3 +τz

4 ; n51 = n52 = n53 = n54 = n55 = 1;

n1 =
µ2

3

v
β

5
∏

i=1
τz

i
p(4), n2 =

µ2
3

v
β

5
∏

i=1
τz

i
p(3), n3 =

µ2
3

v
β

5
∏

i=1
τz

i
p(2),

n4 =
µ2

3

v β
5
∏

i=1
τz

i
p(1), n5 =

µ2
3

v τz
i

p(0). (3.8)

The complex longitudinal dielectric permittivity of the deuteron subsystem of a mechanically

clamped MD2XO4 crystal reads

εε
′

33(ω,T ) = 1+4πχε′

33(ω,T ), εε
′′

33(ω,T ) = 4πχε′′

33(ω,T ).

A numerical analysis shows that the most important contribution to the dispersion of εε33(ω,T ) is made by

the first relaxational mode [χ3(1) ≫χ3(i )], while the dispersion of the complex dielectric permittivity of a

mechanically clamped crystal is close to the Debye one. If the piezoelectric coupling is omitted, εε33(ω,T )

transforms into the expression corresponding to [12].

4. Comparison of the numerical results with experimental data.

Discussion

Let us analyse the results of numerical calculations performed within the framework of the proposed

model for longitudinal dynamic dielectric characteristics of the M(H1−xDx )2XO4 crystals and compare

them with the corresponding experimental data. It should be noted that the theory developed in the

previous sections, strictly speaking, is valid for the MD2XO4 type crystals only. The experimental data

are available for the M(H1−xDx )2XO4 crystals with different deuterations x (0 É x É 1). The experimen-

tally established relaxational character of the dielectric dispersion of ε∗33(ν,T ) [35–38] in these crystals,

as has been already mentioned, is associated with suppression of tunneling by short-range interactions.

Therefore, we shall neglect the effects of proton tunneling in M(H1−xDx )2XO4. We shall assume that the

proposed theory for these crystals is also valid if we use the averaged effective values of the model pa-

rameters

ε(x) = εH(1− x)+εD x, w(x) = wH(1− x)+wDx .

In [26], we calculated the static longitudinal, piezoelectric, elastic, and thermal characteristics of the

M(H1−xDx )2XO4 and explored their dependencies on the values of the model parameters. It was shown

that at a proper choice of these values, a good quantitative agreement between the theoretical results and

the corresponding experimental data was obtained. These sets of the model parameters are used herein

in calculating the dynamic characteristics of M(H1−xDx )2XO4.

The parameter α that sets the time scale of the dynamic processes in M(H1−xDx )2XO4, is determined

from the condition that theoretical results for frequency dependencies of ε∗33(ν,T ) at different tempera-

tures agree with the experimental data. It is assumed that αH weakly depends on temperature

α= (P +R|∆T |) ·10−14, ∆T = T −Tc .
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Table 1. The obtained optimum values of the model parameters for K(H1−xDx )2PO4.

x Tc T0
ε

kB

w
kB

ν3(0)
kB

µ3−,10−18 µ3+,10−18 χ0
33 P− R− P+ R+

(K) (K) (K) (K) (K) (esu·cm) (esu·cm) (s) (s/K) (s) (s/K)

0.00 122.5 122.5 56.00 422.0 17.91 1.46 1.71 0.73 0.35 0.0100 0.43 0.0160
0.21 146.0 145.9 63.78 515.8 23.18 1.54 1.79 0.65 0.85 0.0095 1.22 0.0193
0.29 155.0 154.8 66.74 551.5 25.21 1.57 1.82 0.62 1.05 0.0093 1.51 0.0217
0.64 191.0 190.3 79.71 707.8 32.34 1.70 1.96 0.48 1.76 0.0385 2.44 0.0173
0.79 204.0 203.1 85.27 774.8 34.18 1.76 2.02 0.42 1.92 0.0082 2.65 0.0151
0.84 208.0 207.0 87.12 797.1 34.63 1.77 2.03 0.41 2.02 0.0081 2.83 0.0167
0.91 213.2 212.2 89.71 828.4 35.07 1.80 2.06 0.38 2.16 0.0079 2.88 0.0130
0.93 215.0 213.9 90.45 837.3 35.36 1.81 2.07 0.37 2.20 0.0079 3.04 0.0149
0.99 219.0 217.9 92.67 864.1 35.52 1.83 2.09 0.35 2.72 0.0077 4.21 0.0189
1.00 220.1 219.0 93.05 868.6 35.76 1.84 2.10 0.34 2.84 0.0077 4.54 0.0349

x
ψ6

kB

δs6

kB

δa6

kB

δ16

kB
c0

66 ·10−10 e0
36

(K) (K) (K) (K) (dyn/cm2) (esu/cm2)

0.00 –150.00 82.00 –500.00 –400.00 7.10 1000.00
0.64 –142.73 58.73 –863.64 –400.00 6.59 1727.27
0.84 –140.45 51.45 –977.27 –400.00 6.43 1954.55
0.93 –139.43 48.18 –1028.41 –400.00 6.36 2056.82
1.00 –138.64 45.64 –1068.18 –400.00 6.30 2136.36

Table 2. The obtained optimum values of the model parameters for RbH2PO4 and KH2AsO4.

Tc T0
ε

kB

w
kB

ν3(0)
kB

µ3−,10−18 µ3+,10−18 χ0
33

(K) (K) (K) (K) (K) (esu·cm) (esu·cm)

RbH2PO4 147.6 147.6 60.00 440.0 29.13 1.50 2.00 0.40

KH2AsO4 97.0 95.8 35.50 385.0 17.43 1.61 1.65 0.70

ψ6

kB

δs6

kB

δa6

kB

δ16

kB
c0

66 ·10−10 e0
36

(K) (K) (K) (K) (dyn/cm2) (esu/cm2)

RbH2PO4 –130.00 50.00 –500.00 –300.00 5.90 3000.00

KH2AsO4 –170.00 130.00 –500.00 –500.00 7.50 3000.00

P− R− P+ R+

(s) ( s
K
) (s) ( s

K
)

RbH2PO4 0.55 0.0080 0.93 0.0140

KH2AsO4 0.47 0.0160 0.61 0.0190

The obtained optimum values of the model parameters are presented in table 1 for K(H1−xDx )2PO4

and in table 2 for RbH2PO4 and KH2AsO4.

Note that µ3+,P+,R+ and µ3−,P−R− correspond to the paraelectric and ferroelectric phases, respec-

tively. The temperature dependencies of the real and imaginary parts of the permittivity ε′33(ν,T ) and

ε′′33(ν,T ) at different frequencies for the KH2PO4, KD2PO4, RbH2PO4, and KH2AsO4 crystals are shown in

figures 2–5. Starting from a certain frequency νk , the low-frequency maximum in the temperature curve

of ε′33(ν,T ) is replaced with a sharp minimum at ∆T = 0 K which widens and deepens with an increasing

frequency that reaches ε0
33 at ν∼ 1012 Hz. In KH2PO4 νk = 33.2 GHz, in KD2PO4 νk = 1.4 GHz, in RbH2PO4

νk = 20.5 GHz, in KH2AsO4 νk = 20.8 GHz. The maximum of ε′33(ν,T ) at ∆Tn = |Tn −Tc| decreases and

smears out with an increasing frequency, whereas the magnitude of ∆Tn increases. With increasing fre-
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Figure 2. The temperature dependence of ε′33 and ε′′33 in KH2PO4 at different frequencies ν (GHz): 9.2 –

1, [36]; 33.2 – 2; 80 – 3; 154.2 – 4, [35]; 249 – 5, [35]; 372 – 6, [35]; 800 – 7. Symbols are experimental

points; lines are the theoretical values.

Figure 3. The temperature dependence of ε′33 and ε′′33 in KD2PO4 at different frequencies ν (GHz): 1.93 –

1; 3.0 – 2, [37]; 10.0 – 3, [37]; 20.0 – 4, [37]; 40.0 – 5; 80.0 – 6; 154.2 – 7. Symbols are experimental

points; lines are the theoretical values.
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Figure 4. The temperature dependence of ε′33 and ε′′33 in RbH2PO4 at different frequencies ν (GHz):

0.25 – 1; 10.0 – 2; 27.0 – 3, [40]; 154.2 – 4, [41]; 250.2 – 5, [41]; 372.0 – 6, [41]; 700.0 – 7. Symbols are

experimental points; lines are the theoretical values.

Figure 5. The temperature dependence of ε′33 and ε′′33 in KH2AsO4 at different frequencies ν (GHz): 9.2 –

1, [36]; 20.8 – 2; 80.0 – 3; 154.2 – 4, [41]; 198.9 – 5, [41]; 250.2 – 6, [41]; 7, [41]; 372.0 – 8, [41];

700.0 – 9. Symbols are experimental points; lines are the theoretical values.
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quency the magnitude of ε′33(ν) decreases at all ∆T = |T −Tc|. The maximal values of ε′33(ν) as well as the

values of ∆Tn are much larger in the paraelectric phase than in the ferroelectric phase. The dispersion

of a real part of the permittivity ε′33(ν,T ) in the ferrroelectric phase is observed in a narrow temperature

range ∆T ∼ 20 K, whereas in the paraelectric phase, ∆T is much larger, being of the order of 200 K.

Let us note that taking into account the piezoelectric coupling, the calculated minimal values of ε′33(ν)

at ∆T = 0 at different frequencies are larger than those obtained within the model without the piezoelec-

tric coupling.

At a decreasing∆T in the ferroelectric phase, the value of ε′′33(ν) increases, has a maximum at∆T = 0,

and decreases with an increasing ∆T in the paraelectric phase. At an increasing frequency, the maximal

value of ε′′33(ν) and the rate of its change with an increasing ∆T diminish.

At νk , the values of ε′33(ν,T ) = ε′′33(ν,T ) are 465 in KH2PO4, 520 in KD2PO4, 562 in RbH2PO4, and 330

in KH2AsO4.

The proposed theory provides a good quantitative agreement with the experiment for KH2PO4 (fig-

ure 2) and a little worse agreement for the data of [37] for KD2PO4 (figure 3), especially at ∆T < 20 K for

ε′33(ν,T ). However, it should, be noted that the values of ε′33(ν,T ) obtained in [37] at frequencies above

1 GHz have maxima at ∆T = 0 K, rather than minima.

The temperature dependence of ε∗33(ν,T ) in RbH2PO4 measured in [41] is appropriately and well de-

scribed by the present theory, except for the values of ε′33(ν,T ) at ν= 154.2 GHz and ∆T < 20 K (figure 4).

The theory and experimental data of [40] for ε∗33(ν,T ) at ν = 27 GHz are also in a good agreement. The

obtained theoretical results for ε∗33(ν,T ) at 198 and 366 are only in qualitative agreement with the data

of [42], which, in their turn, are in disagreement with the results of other measurements of [41].

The calculated temperature dependencies of εε
′

33(ν,T ) and εε
′′

33(ν,T ) accord well with the ones mea-

sured in [41] for KH2AsO4 at different frequencies starting from the submillimeter range (figure 5). The

data for ε∗33(ν,T ) obtained in [36] at ν = 9.2 GHz are in a somewhat worse agreement with the theory,

especially at ∆T < 20 K.

Figures 6–13 contain the calculated temperature dependencies of the real and imaginary parts of

longitudinal dynamic dielectric permittivity ε′33(ν,T ) and ε′′33(ν,T ) of clamped K(H1−xDx )2PO4 crystals at

different deuterations x and frequencies along with the corresponding experimental data.

Figure 6. The temperature dependence of ε′33 and ε′′33 in K(H0.79D0.21)2PO4 at different frequencies

ν (GHz) [35]: 154.2 – 1, ; 249.0 – 2, ; 372.0 – 3, . Symbols are experimental points; lines are the

theoretical values.

With an increasing deuteration x in K(H1−xDx )2PO4, the magnitude of ε′33(ν,T ) decreases, whereas

∆Tn increases.

At an isomorphic replacement K → Rb, P→ As, the maximal values of ε′33(ν,T ) remain almost un-

changed, whereas ∆Tn slightly increase.

It should be noted that in the MH2XO4, the experimental data of [36, 41, 44, 45] correspond to the

region of dielectric permittivity dispersion. At the same time, for KD2PO4 in the measurements of [35],

the submillimeter frequencies correspond to a high-frequency “tail” of the dispersion, whereas in the
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Figure 7. The temperature dependence of ε′33 and ε′′33 in K(H0.36D0.64)2PO4 at different frequencies

ν (GHz) [35]: 154.2 – 1, ; 249.0 – 2, ; 372.0 – 3, . Symbols are experimental points; lines are the

theoretical values.

Figure 8. The temperature dependence of ε′33 and ε′′33 in K(H0.16D0.84)2PO4 at different frequencies

ν (GHz) [35]: 154.2 – 1, ; 249.0 – 2, ; 372.0 – 3, . Symbols are experimental points; lines are the

theoretical values.

Figure 9. The temperature dependence of ε′33 and ε′′33 in K(H0.07D0.93)2PO4 at different frequencies

ν (GHz) [35]: 154.2 – 1, ; 249.0 – 2, ; 372.0 – 3, . Symbols are experimental points; lines are the

theoretical values.
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Figure 10. The temperature dependence of ε′33 and ε′′33 in K(H1−xDx )2PO4 at ν=9.2 GHz and for

different x [36]: 0.0 – 1, ; 0.29 – 2, ; 0.99 – 3, . Symbols are experimental points; lines are the theo-

retical values.

Figure 11. The temperature dependence of ε′33 and ε′′33 in K(H1−xDx )2PO4 at ν=138.6 GHz and for differ-

ent x [43]: 0.63 – 1, ; 0.91 – 2, . Symbols are experimental points; lines are the theoretical values.

Figure 12. The temperature dependence of ε′33 and ε′′33 in K(H0.22D0.78)2PO4 at different frequencies

ν (GHz) [38]: 8.6 – 1, ; 9.7 – 2, ; 26.5 – 3, . Symbols are experimental points; lines are the theoretical

values.

data of [37], this is the low-frequency tail. Further experimental measurements of ε∗33(ν,T ) at ν> 10 are

required to evaluate the validity of the calculated ε∗33(ν,T ).

Themost graphic illustration of the dispersion of the real and imaginary parts of the dielectric permit-
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Figure 13. The temperature dependence of ε′33 and ε′′33 in RbH2PO4 at different frequencies ν (GHz) [42]:

198.0 – 1, ; 366.0 – 2, . Symbols are experimental points; lines are the theoretical values.

tivity ε∗33(ω,T ) in M(H1−xDx )2XO4 would be their frequency-temperature plots drawn in wide frequency

and temperature ranges. Such plots for theoretical dependencies along with the experimental points are

presented in figures 14, 15 for K(H0.07D0.93)2PO4, in figures 16, 17 for RbH2PO4, and in figures 18, 19 for

KH2AsO4.

Figure 14. The frequency-temperature dependence of ε′33 in K(H0.07D0.93)2PO4. , , – [35]. Symbols

are experimental points; lines are the theoretical values.

Let us analyse the changes in the real and imaginary parts of ε∗33(ω) in the M(H1−xDx )2XO4 crystals

at replacing H → D, K → Rb, and P → As. At ∆T = +0 K, the dispersion frequency [i.e., the frequency

of the maximum of ε′′33(ω)] is 33.2 in KH2PO4, 1.93 in KD2PO4, 20.5 in RbH2PO4, and 20.8 in KH2AsO4.

The linewidth [i.e., the difference between frequencies of the maximum and half maximum of ε′′33(ω)] is

12.0 GHz in KH2PO4, 4.8 in KD2PO4, 7.8 in RbH2PO4, and 7.2 in KH2AsO4.

The temperature dependencies of the inverse relaxation time (τz
1)−1 in K(H1−xDx )2PO4 along with the

values estimated from different experimental measurements are presented in figure 20. The calculated

values of the relaxation times τz
2,3,4, in contrast to τz

1 , are unlikely to depend on temperature and are

much smaller than the value of τz
1 . The theory provides a satisfactory agreement with the experiment for

temperature curves of the relaxation time. A certain difference between the relaxation times estimated

from the dielectric permittivity and ultrasoundmeasurements is due to the contributions into attenuation

from the mechanisms irrelevant for the permittivity (e.g., scattering by admixtures).
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Figure 15. The frequency-temperature dependence of ε′′33 in K(H0.07D0.93)2PO4. , , – [35]. Symbols

are experimental points; lines are the theoretical values.

Figure 16. The frequency-temperature dependence of ε′33 in RbH2PO4. – [40]; , , – [41]. Symbols are

experimental points; lines are the theoretical values.

Figure 17. The frequency-temperature dependence of ε′′33 in RbH2PO4. – [40]; , , – [41]. Symbols are

experimental points; lines are the theoretical values.
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Figure 18. The frequency-temperature dependence of ε′33 in KH2AsO4. – [36]; , , , , – [41].

Symbols are experimental points; lines are the theoretical values.

Figure 19. The frequency-temperature dependence of ε′′33 in KH2AsO4. – [36]; , , , , – [41].

Symbols are experimental points; lines are the theoretical values.

Figure 20. The temperature dependence of the inverse polarization relaxation time at different x: 0.0 –

1, [47], [48], [49]; 0.07 – 2, [50]; 0.21 – 3, [50]; 0.43 – 4, [50]; 0.72 – 5, [50]; 0.805 – 6, [51];

0.84 – 7, [52]; 0.93 – 8, [48]; 1.0 – 9, [53]. Symbols are experimental points; lines are the theoretical

values.
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5. Conclusions

Within the framework of the modified proton ordering model, taking into account a linear over the

strain ε6 contribution into the energy of the proton subsystem, and using the four-particle cluster approx-

imation, we calculate the longitudinal dynamic characteristics of mechanically clamped crystals of the

KH2PO4 family. For the partially deuterated crystals M(H1−xDx )2XO4, these characteristics are obtained

within themean crystal approximation. The data for ε′33(ν,T ) and ε′′33(ν,T ) presented by different groups

of experimentalists are analyzed and systematized. At the proper choice of the theory parameters for the

M(H1−xDx )2XO4 crystals, we obtain a good quantitative description of the available experimental data

for ε′33(ν,T ) and ε′′33(ν,T ). For the first time, the dispersion of the longitudinal dynamic dielectric permit-

tivity of clamped crystals of the KH2PO4 family is explored in wide temperature and frequency ranges. It

should be noted that the effect of piezoelectric coupling on the dielectric characteristics of these crystals

is essential. In the present paper, the observed temperature behavior of ε′33(ν,T ) in the phase transition

region at different frequencies has been appropriately described for the first time.
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Поздовжня релаксацiя механiчно затиснутих кристалiв типу

KH2PO4

Р.Р. Левицький1, I.Р. Зачек2, А.С. Вдович1

1 Iнститут фiзики конденсованих систем НАН України вул. Свєнцiцького, 1, Львiв, 79011, Україна,
2 Нацiональний унiверситет “Львiвська полiтехнiка” вул. С. Бандери 12, 79013, Львiв, Україна

У рамках модифiкованої моделi протонного впорядкування сеґнетоактивних кристалiв сiм’ї КH2PO4 з вра-

хуванням лiнiйного за деформацiєю внеску ε6 в енергiю протонної системи в наближеннi чотиричастин-

кового кластера в межах динамiчної моделi Глаубера отримано вираз для поздовжньої динамiчної дiеле-

ктричної проникностi механiчно затиснутого кристалу. При належному виборi параметрiв теорiї отрима-

но добрий кiлькiсний опис наявних експериментальних даних для цих кристалiв.

Ключовi слова: сегнетоелектрики, кластерне наближення, дiелектрична проникнiсть, часи релаксацiї
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