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An exact solution of non-stationary Schrodinger equation is obtained for a one-dimensional movement of elec-

trons in an electromagnetic field with arbitrary intensity and frequency. Using it, the permeability coefficient is

calculated for a two-barrier resonance tunnel nano-structure placed into a high-frequency electromagnetic field.

It is shown that a nano-structure contains quasi-stationary states the spectrum of which consists of the main

and satellite energies. The properties of resonance and non-resonance channels of permeability are displayed.
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1. Introduction

An intensive investigation of resonance tunnel structures (RTSs) is caused by their utilization in nano-

devices having unique physical characteristics [1–7], and arewidely used inmedicine, environment mon-

itoring and communication systems. The knowledge of the properties of RTS is urgent both from the

applied and fundamental physics point of view.

The theory of ballistic and non-ballistic transport of electrons through the RTSwas developed in detail

mainly within the approximation of a small amplitude of high-frequency electromagnetic field [8–13].

Also, only linear terms over the intensity of an electric field were preserved in the Hamiltonian and wave

functions. This approximation did not permit to quit the frames of the first order of the perturbation

theory depending on time.

In order to clarify the effect of strong electromagnetic fields on the spectra of electrons and their

tunnel through the RTS, an approximated iterating method was used for the two-level model of a nano-

system [14, 15] and a numeric method was used for a multi-level model of periodical structures [16, 17].

In the majority of papers, in order to use the well developed method of analytical calculations [18, 19],

the Hamiltonian of electron-electromagnetic field interaction is written not as the one proportional to the

product of electron kinetic momentum on the vector potential of the field but as a term proportional to

the product of field intensity on the respective electron coordinate. The latter Hamiltonian is correct (as

proven in reference [20]) at the assumption that the electron interacts with the electromagnetic field

inside the RTS which is not very strong. If the electromagnetic field is strong, its interaction with an elec-

tron should be taken into account in the whole space (outside the RTS too). It means that not only linear

but also square terms over the kinetic momentum and vector potential must be present in a complete

Hamiltonian.

In the paper, we propose an exact analytical solution of one-dimensional non-stationary Schrodinger

equation obtained for the first time with the Hamiltonian of a system containing linear and square terms

both over the electron kinetic momentum and vector potential of electromagnetic field. Using it, we de-

velop a theory of transport of amono-energetic electronic current through a two-barrier RTS placed into a
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high-frequency electromagnetic field with an arbitrary intensity and frequency. It is shown that the inter-

action between electrons and electromagnetic field is the reason why, besides the main quasi-stationary

states (QSSs), there appear satellite states (QSSs) with the energies multiplied by field.

2. Permeability coefficient for a two-barrier RTS placed into a high-fre-

quency electromagnetic field

We study the symmetric two-barrier RTS (figure 1) in a homogeneous high-frequency electromagnetic

field: E (t) = 2E cos(ωt) with an arbitrary electric field intensity E and frequency ω. The mono-energetic

electronic current with the energy E moving perpendicularly to the planes of RTS gets in it from the left

hand side.

Figure 1. Energy scheme for an electron in

two-barrier RTS with δ-like potential bar-

riers.

The electron wave function has to satisfy a complete one-

dimensional Schrodinger equation

iħ∂Ψ(z, t)

∂t
=

[

1

2m

(

p̂z −
e

c
Az

)2
+U (z)

]

Ψ(z, t). (1)

Using the known expressions for a kinetic momentum oper-

ator p̂z and vector potential Az written in Coulomb calibra-

tion, equation (1) takes the form

iħ∂Ψ(z, t)

∂t
= [He +U (z)+Hint]Ψ(z, t). (2)

The complete Hamiltonian contains an electron kinetic

energy operator

He =− ħ2

2m

∂2

∂z2
, (3)

the potential energy of electron in two-barrier RTS written within the typical δ-barrier approximation,

references [8–10]

U (z)=U∆[δ(z)+δ(z −a)], (4)

and the potential energy of interaction between the electron and electromagnetic field

Hint =−2ieEħ
mω

sin(ωt)
∂

∂z
+ 2(eE )2

mω2
sin2(ωt), (5)

where e , m are the electron charge and mass; U , ∆ are the height and width of potential barriers; a is the

width of potential well.

The equation (2) has two exact linearly independent solutions for all parts of a nano-structure

ψ±(E ,ω, z, t) = exp

{

±ik0

[

z +
2eE

mω2
cos(ωt)

]

−
i

ħ

[

E +
(eE )2

mω2

(

1−
sin(2ωt)

2ωt

)]

t

}

, (6)

describing the incident and the reflected waves with quasi-momentum k0 =ħ−1
p

2mE .

A complete wave function, being a linear combination of both solutions (6), taking into account the

expansion of all periodical functions into Fourier range and considering the super positions with all

electromagnetic field harmonics, is written as follows:

Ψ(E ,ω, z, t)=
+∞
∑

p=−∞

[

ψ+(E +pΩ,ω, z, t)+ψ−(E +pΩ,ω, z, t)
]

, (7)

where

ψ±(E +pΩ,ω, z, t) = e±ikp z− i
ħ (E+pΩ)t

+∞
∑

n1=−∞
fn1 (±kp ,ω, t)e−in1ωt

×
{

B±
0,pθ(−z)+B±

1,p [θ(z)−θ(z −a)]+B±
2,pθ(z −a)

}

, (8)
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fn1 (±kp ,ω, t) = 1

2π

π
∫

−π

exp

{

in1ξ±4iαβakp cosξ−2iαβ2ξ

[

1− sin(2ξ)

2ξ

]}

dξ. (9)

Here, convenient denotations are

Ω=ħω; α=
ħ2k2

a

2mΩ
; β= Ua

Ω
; Ua = eE a; kp =ħ−1

√

2m(E +pΩ); ka = a−1 (10)

with the evident physical sense: α is the kinetic energy of an electron with quasi-momentum ka , β is the

potential energy of an electron interacting with the electromagnetic field written in the units of electro-

magnetic field energy Ω.

All unknown coefficients: B±
(0,1,2),p

are obtained from the conditions of a wave function and its density

of current continuity at RTS interfaces at any moment of time t :

Ψ(E ,ω,+η, t) =Ψ(E ,ω,−η, t) (η→ 0) ;

∂

∂z
Ψ(E ,ω, z, t)

∣

∣

∣

z=+η
−

∂

∂z
Ψ(E ,ω, z, t)

∣

∣

∣

z=−η
=

U∆k2
a

αΩ
Ψ(E ,ω,0, t) ;

Ψ(E ,ω, a +η, t) =Ψ(E ,ω, a −η, t) ;

∂

∂z
Ψ(E ,ω, z, t)

∣

∣

∣

z=a+η
− ∂

∂z
Ψ(E ,ω, z, t)

∣

∣

∣

z=a−η
=

U∆k2
a

αΩ
Ψ(E ,ω, a, t). (11)

Also, B+
0,p,0 = B−

2,p = 0 because the mono-energetic electronic current gets in RTS only along the main

channel (p = 0) and there are no incident currents along the other channels (p , 0).

The system of equations (11) contains an infinite number of equations due to an infinite number of

harmonics. Performing the calculations, it can be confined by the sufficient arbitrarily big but finite num-

ber of positive N+ and negative N− harmonics which are limited by the number of open channels fixed

by an obvious condition: N− < [E/Ω]. Thus, in the finite system of 4(N−+N++1) equations respectively

the same number of coefficients is obtained.

The law of conservation of a complete density of current through all the open channels should be

fulfilled

J+(E ,ω, z = 0) =
N+
∑

p=−N−

[

J−(E +pΩ,ω, z = 0)+ J+(E +pΩ,ω, z = a)
]

. (12)

Thus, calculating the densities of forward J+ and backward J− electronic currents getting in RTS (z =
0) and coming out of RTS (z = a), according to reference [21], the permeability coefficient is expressed

through partial terms

D(E ,ω) =
N+
∑

p=−N−
J+(E +pΩ,ω, a)

[

J+(E ,ω,0)
]−1 =

N+
∑

p=−N−
Dp (E +pΩ,ω). (13)

Using it, one can obtain the resonance energies and widths of the main and arbitrary number of satel-

lite QSSs for the electrons interacting with a high-frequency electromagnetic field. The developed theory

proves that this interaction causes renormalization of “pure” electron QSSs and, besides, the appearance

of satellite QSSs corresponding to all possible electromagnetic field harmonics. Consequently, the respec-

tive maxima of permeability coefficient can be observed when a satellite QSS of a certain electron state

should resonate with the main or satellite state of the other QSS, producing complex QSSs.

3. Properties of quasi-stationary spectrum of electron-electromagnetic

field system in a two-barrier RTS

It is well known, references [15, 22], that when there is no electromagnetic field, a quasi-stationary

electron spectrum is characterized by resonance energies En , with the magnitudes determined by the
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Figure 2. The energies of main and satellite QSSs as functions of electromagnetic field energy Ω at Ua =
10 meV in two-barrier RTS with a = 24 nm, ∆= 12 nm.

maxima of permeability coefficient D in energy scale. Similarly, a quasi-stationary spectrum of electrons

interacting with electromagnetic field is defined by the positions of all maxima of the permeability coeffi-

cient. In this spectrum one can see the satellite QSSs with the energies: En(p) = En +pΩ, arising near each

of the QSSs with “pure” resonance energies En .

The calculations of permeability coefficient and the energies of QSSswere performed for In0.52Al0.48As/

In0.53Ga0.47As two-barrier RTS, often studied experimentally [1–3]. The physical parameters are: m =
0.043 me (me is the pure electron mass), U = 516 meV and geometrical ones: a = 24 nm, ∆= 12 nm.

In figure 2, the results of numeric calculations of the energies of the main and satellite QSSs are shown

as functions of the electromagnetic field energyΩ at a fixed shift energy (Ua = 10 meV) arising due to the

electric intensity E . From the figure it is clear that at certain field energies, the energies of main and

satellite QSSs coincide in pairs, which means that these states degenerate (points a, b, c). Anti-crossings

are observed for the other field energies (d, e, f).

One can see that the first series of anti-crossings is located in the vicinity of the field energy:Ω=Ω21 =
E2 −E1 corresponding to the difference between the resonance energies of the second and the first QSS.

The second series of anti-crossings is located in the vicinity of the field energy: Ω = E2 = E1 +Ω21. It is

clear that the series of anti-crossings are located in the vicinity of the field energies corresponding to the

energies of all possible harmonics and their combinations (super positions) with the energies of “pure”

QSSs.

For the field energies where there are still no anti-crossings, the energies of QSSs can be consistently

characterized by two indexes: En(p) , where p = 0 is the main state and p = ±1,±2, . . . is the number

of positive (+) or negative (−) satellite states for n-th QSS. The same indexes are correct for the points

of degeneration (a, b, c at figure 2). However, a more detailed indexation should be introduced in the

vicinity of field energies where anti-crossings occur. The indexes should show how the energy of the

state n(p) transforms into the energy of the state n′(p ′) for each of the both complex states producing an

anti-crossing at an increase of the field energy. So, the energies of the first anti-crossing pair (d at figure 2)

are written as: E1(0);2(−1) (lower one) and E2(−1);1(0) (upper one). Here, the first pair of numbers means

from what state this complex state started, and the second pair means into what state it transferred at

an increase of the field energy. The proposed indexes consistently characterize all the double complex

states. Also, it is evident that in the vicinity of all series of anti-crossings the rule n+p = n′+p ′ is fulfilled.
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It means that the sum of indexes for each complex QSS in an anti-crossing pair is the same. The sizes of

all anti-crossings in certain series (the first atΩ=Ω21, the second atΩ= E2 = E1 +Ω21) and the distances

between its neighbouring anti-crossings are the same too. The distance between the neighbouring anti-

crossings of the first series is, naturally, smaller than that of the second one. The sizes of anti-crossings of

the first series are much bigger than those of the second series.

Figure 3. Dependence of permeability coefficient D on electron energy E at a fixed electromagnetic field

energy Ω in the vicinity of degeneration points [(a), (b), (c)] and in the vicinity of anti-crossings [(d), (e),

(f)] in two-barrier RTS with a = 24 nm, ∆= 12 nm.
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In figure 3, the dependencies of permeability coefficient D on the electron energy E are presented in

the vicinity of degeneration (points a, b, c) and in the vicinity of anti-crossings (d, e, f) for three different

magnitudes of the field energy written in the figure. The latter are chosen in such a way that the points

of degeneration or minimal magnitudes of anti-crossings are enveloped from both sides. We should also

note that the characters near the points of degeneration (a, b, c) and near the anti-crossings (d, e, f) in

figure 2 correspond to those in figure 3.

In figure 3 (a), (c), the permeability coefficient is presented as a function of field energy in the vicinity

of points of degeneration at the cross of the energy of the first main state E1(0) with the energy of the

second negative satellite E2(−2) of the second main state E2(0), figure 3 (a) and at the cross of the second

main state energy E2(0) with the energy of the second positive satellite E1(+2) of the first main state E1(0),

figure 3 (c). The both figures 3 (a), (c) prove that in accordance with the figure 2, an increase of field

energy Ω weakly shifts the peaks of the main states into the region of smaller or bigger energies and

almost does not change the magnitudes of their maxima (D1(0) ≈ 0.76, D2(0) ≈ 0.67). Herein, the satellite

peak with a small permeability (D2(−2) ≈ 0.002) near the first main state essentially shifts into the region

of smaller energies [figure 3 (a)] while the satellite peak with the small permeability (D1(+2) ≈ 0.029) near

the second main state essentially shifts into the region of bigger energies [figure 3 (c)]. Consequently, the

permeability of the main channels prevails while the permeability of satellite channels is negligibly small

in the vicinity of degeneration points of the main QSSs with satellite channels.

The permeability of satellite channels decreases at an increasing number of the respective harmonics

|p| and remains negligibly small till the pair of satellite QSSs approaches rather close to the point of de-

generation (b at figure 2) at the increasing field energy. An example of the behaviour of a pair of satellite

QSSs as a function of field energy is shown in figure 3 (b). It proves that at bigger Ω, the first positive

satellite E1(+1) of the first main state that shifts into the region of bigger energies, passes the point of de-

generation almost without changing its small width. The first negative satellite E2(−1) of the second main

state moves in the opposite direction. It also does not almost change its width which is bigger than the

width of the first peak. It is obvious that the permeability of both channels (till the moment of degener-

ation) is not essential (D1(+1) ≈ 0.23, D2(−1) ≈ 0.14) but already not negligibly small. The permeability of

a common channel in the point of degeneration almost coincides with the sum of permeabilities of the

both composing channels (D1(+1) +D2(−1) ≈ 0.38).

We have already noted that in the vicinity of the field energiesΩ21 close to the difference of resonance

energies, a series of anti-crossings is observed. They are produced by double complexes of QSSs which

are the super-positions of a pair of main states with the satellites of the other states [figure 3 (d), (e)] or a

pair of satellites of different main QSSs [figure 3 (f)].

Figures 2 and 3 prove that the distances between the energies of both states in each anti-crossing

decrease at first, approaching their minima and, then, increase at Ω increasing. Herein, an essential per-

meability of the main channels produced by double complexes of the main and satellite QSSs [figure 3 (d),

(e)] decreases at first and increases for the satellite channels. At Ω ≃Ω21, the permeabilities of the both

channels become the same. Then, the permeability of satellite channels decreases and that of the main

channels increases. The permeabilities of double satellite channels [figure 3 (f)] are small and nearly the

same in the vicinity of an anti-crossing.
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4. Conclusions

1. Using an exact solution of non-stationary one-dimensional Schrodinger equation for electrons in-

teracting with a high-frequency electromagnetic field and passing through the two-barrier RTS we

established the existence of resonance and non-resonance channels of permeability. It is proven

that there are observed the main satellite and double complexes of QSSs producing different chan-

nels of two-barrier RTS permeability.

2. In the vicinity of electromagnetic field energies that resonate with the difference of the energies of

the main QSSs, a series of anti-crossings arise both between the main states with the field satellites

of the other main states and between the satellites of different states with each other.

3. As far as the permeability of the both channels in a pair complex, producing an anti-crossing of

the main and satellite states, is rather big, it can essentially effect the operation of nano-lasers and

nano-detectors the basic element of which is a nano-RTS.
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Квазiстацiонарнi стани електронiв, що взаємодiють з

сильним електромагнiтним полем у двобар’єрнiй

наносистемi

М.В.Ткач, Ю.О.Сетi, О.М.Войцехiвська

Чернiвецький нацiональний унiверситет iм.Ю. Федьковича,

Україна, 58012 Чернiвцi, вул. Коцюбинського, 2

Знайдено точний розв’язок нестацiонарного рiвняння Шредiнґера для одновимiрного руху електронiв у

електромагнiтному полi довiльних величин напруженостi та частоти. На цiй основi виконано розрахунок

коефiцiєнта електронної прозоростi двобар’єрної резонансно-тунельної наноструктури у високочастотно-

му електромагнiтному полi. Показано, що дослiджувана система має квазiстацiонарнi стани, спектр яких

мiстить основнi та сателiтнi енергiї. Виявлено властивостi резонансних i нерезонансних каналiв прозо-

ростi двобар’єрної наносистеми.

Ключовi слова: резонансно-тунельна наноструктура, коефiцiєнт прозоростi, електромагнiтне поле
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