Кристаллографические, электрические и магнитные свойства системы La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO₃

О.З. Янчевский¹, А.И. Товстолыткин², О.И. Вьюнов¹, А.Г. Белоус¹

¹Институт общей и неорганической химии им. В.И. Вернадского НАН Украины пр. Палладина, 32/34, г. Киев, 03680, Украина E-mail: yanchoz@rambler.ru

²Институт магнетизма НАН Украины, пр. Вернадского, 36-б, г. Киев, 03680, Украина E-mail: atov@imag.kiev.ua

Статья поступила в редакцию 20 июля 2005 г.

На основании исследования рентгеноструктурных, электрических, магнитных, магниторезистивных свойств и спектров ферромагнитного резонанса керамических образцов $La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO_3$ ($0 \le x \le 0,10$) установлено, что конкуренция между структурными изменениями, влияющими на ферромагнетизм, приводит к монотонному ослаблению ферромагнетизма (снижение T_C составляет около 5 К/%Fe). Возрастание магнитосопротивления в низкотемпературной области и большие значения низкополевого вклада в магнитосопротивление указывают на неоднородный характер электрической проводимости и намагниченности образцов при $T < T_C$, что может быть обусловлено сосуществованием ферро- и парамагнитных фаз в широкой области температур.

На основі дослідження рентгеноструктурних, електричних, магнітних, магніторезистивних властивостей та спектрів феромагнітного резонансу керамічних зразків La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO₃ (0 $\leq x \leq 0,10$) встановлено, що конкуренція між структурними змінами, що впливають на феромагнетизм, приводить до монотонного послаблення феромагнетизму (зниження T_C складає біля 5 К/%Fe). Зростання магнітоопору в низькотемпературній області та високі значення низькопольового вкладу в магнітоопір вказують на неоднорідний характер електричної провідності та намагніченості зразків при $T < T_C$, що може бути обумовлено співіснуванням феро- і парамагнітних фаз у широкій області температур.

PACS: 75.47.Gk, 75.47.Lx, 76.50.+g

Ключевые слова: замещенные манганиты, магниторезистивные свойства, ферромагнитный резонанс, неоднородное магнитное состояние

Обнаружение сильного влияния магнитного поля на электрическое сопротивление сложных манганитов La_{1-x}A_xMnO₃ (A = Ca, Sr, Ba...) стимулировало интерес к дальнейшему исследованию таких систем [1-3]. Значительное снижение электрического сопротивления ρ под действием магнитного поля H, получившее название колоссального магнитосопротивления, может найти практическое применение в магнитных сенсорах, элементах считывания в устройствах сверхплотной магнитной записи и т.п.

Для сложных манганитов La_{1-x}A_xMnO₃, относящихся к структурному типу перовскита ABO₃ со смешанной валентностью ионов марганца (Mn^{3+}/Mn^{4+}) , характерна тесная связь магнитных, электрических свойств, кристаллографических параметров и химического состава [1,2]. Крайние составы $La^{3+}Mn^{3+}O_3$ и $A^{2+}Mn^{4+}O_3$ являются антиферромагнитными диэлектриками. Однако в диапазоне концентраций $0,2 \le x \le 0,5$ в системе $La_{1-x}A_xMnO_3$ с понижением температуры происходит переход от парамагнитного состояния с активационным характером проводимости к ферромагнитному металлическому состоянию, в результате которого появляется максимум на температурной зависимости электрического сопротивления $\rho(T)$ [1–3]. Температура максимума сопротивления близка к температуре перехода из ферро- в парамагнитное состояние T_C (точке Кюри). Как правило, подобный максимум вблизи T_C имеет также кривая MR(T), где MR — магнитосопротивление образца. В парамагнитной области магнитосопротивление стремится к нулю.

Очевидно, что для практического использования эффекта магнитосопротивления необходимы материалы как с высокой чувствительностью к магнитному полю, так и с температурой Кюри, близкой к 300 К. Ключевые параметры, влияющие на температуру максимума магнитосопротивления: средний радиус ионов подрешетки А (R_A) перовскитной структуры АВО3; отклонения в размерах катионов, заселяющих подрешетку А, а также валентное состояние марганца, определяемое соотношением количества трех- и четырехкратно ионизированных ионов марганца Mn³⁺/Mn⁴⁺ [3-6]. Основой теоретического объяснения эффекта колоссального магнитосопротивления служит понятие двойного обмена - постоянный переброс электрона от находящихся в эквивалентных позициях катионов Mn³⁺ и Mn^{4+} через 2*p*-орбитали аниона O^{2-} [7]. Важную роль в механизме магнитосопротивления играет сильное электрон-фононное взаимодействие, обусловленное ян-теллеровским локальным искажением кристаллической решетки ионами Mn³⁺ [8,9].

Помимо ян-теллеровских ионов Mn^{3+} , локальные искажения кристаллической решетки в соединениях La_{1-x}A_xMnO₃ возможны при замещении марганца ионами других 3*d*-металлов. Исходя из близких значений ионных радиусов R_{Mn}^{3+} (0,65 Å) и R_{Fe}^{3+} (0,645 Å) [10] возможно существование твердых растворов La_{1-x}A_xMn_{1-y}Fe_yO₃. При этом влияние на двойной обмен может быть достигнуто не только путем изменения числа обменных позиций в подрешетке марганца, но и образованием разрывов в парах Mn³⁺–Mn⁴⁺ при встраивании Fe³⁺ в цепочки Mn³⁺–O^{2–}–Mn⁴⁺.

К настоящему времени имеются данные о влиянии железа на свойства лантан-кальциевых манганитов La_{1-x}Ca_xMnO₃ [11-16]. Для La_{0.75}Ca_{0.25}Mn_{1-y}Fe_yO₃ авторы работ [11,12] обнаружили существование размерно-распределенных кластеров, делокализующихся при определенном критическом значении у. В твердом растворе La_{0.67}Ca_{0.33}Mn_{0.90}Fe_{0.10}O₃ обнаружена конкуренция между ферромагнитным и антиферромагнитным характерами взаимодействий между кластерами, а также переход в состояние спинового стекла [14]. Для одного и того же состава $La_{0,7}Ca_{0,3}Mn_{0,95}Fe_{0,05}O_3$ снижение T_C по сравнению с нелегированным образцом составляет от 10 К/%Fe [15] до 13 К/% Fe [16]; сама величина магнитосопротивления при легировании железом системы La_{1-r}Ca_rMnO₃ меняется незначительно.

Несомненно, значительный научный и практический интерес представляют исследования влияния легирования железом на свойства лантан-стронициевых манганитов La_{1-x}Sr_xMnO₃, имеющих $T_C \ge 300$ K. В большинстве случаев результаты работ, в которых исследовано замещение ионов марганца ионами железа, подтверждают, что ионы Fe³⁺ не принимают участия в двойном обмене, однако авторы этих работ отмечают значительное изменение магнитных, электрических и магниторезистивных свойств [17-24]. Так, авторы работы [17] обнаружили, что система La_{0.7}Sr_{0.3}Mn_{1-r}Fe_rO₃ при x > 0,2 во всем температурном диапазоне становится диэлектрической. Величина снижения Т_С при легировании железом лантан-стронциевых манганитов колеблется от 7 К/%Fe [18] до 15 К/%Fe [21]. Однако в большинстве случаев при таких исследованиях анализ влияния изменения кристаллографических параметров на магнитные и электрические свойства не проводился, а данные о величине магнитосопротивления носят отрывочный характер.

Цель данной работы — систематическое исследование структурных, магнитных и электрических свойств твердых растворов $La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO_3$ в диапазоне $0 \le x \le 0,10$.

Экспериментальная часть

Образцы для исследований были получены методом твердофазного синтеза из предварительно просушенных La₂O₃, Mn₂O₃, Fe₂O₃ («осч»), SrCO₃ («хч»), которые смешивали и гомогенизировали с дистиллированной водой на вибромельнице в течение 6 ч. После первой термообработки при 1190 К длительностью 4 ч проводили повторный гомогенизирующий помол. Температура второй термообработки составляла 1210 К при длительности 4 ч. В обожженный, гомогенизированный порошок La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO₃ вводили связующее и прессовали заготовки диаметром 10 мм и толщиной 3–4 мм, которые спекали 2 ч при температурах 1620–1670 К.

Структурные параметры определяли методом полнопрофильного анализа Ритвельда. Рентгеновские исследования осуществляли на дифрактометре ДРОН-4-07 с применением СиК $_{\alpha}$ -излучения (внешние стандарты: SiO₂ (стандарт 2 θ) и NIST SRM1979 — Al₂O₃ (сертифицированный стандарт интенсивности)). Съемку дифрактограмм проводили в интервале углов 2 θ = 10–150° в дискретном режиме с шагом $\Delta 2\theta$ = 0,02° и экспозицией в каждой точке 10 с.

Электрическое сопротивление спеченной керамики измеряли четырехзондовым методом в температурном интервале 77–370 К. Образцы для исследований вырезали в форме прямоугольных заготовок 2×3×10 мм. Контакты наносили путем вжигания серебросодержащей пасты. Магнитосопротивление MR измеряли в магнитных полях до 1,2 MA/м и вычисляли, используя соотношение MR = $[(\rho_H - \rho_0)/\rho_0] \cdot 100\%$, где ρ_0 — электросопротивление в поле H = 0; ρ_H — электросопротивление в поле H.

Спектры ферромагнитного резонанса (ФМР) записывали с помощью спектрометра RADIOPAN на образцах в виде параллелепипедов размерами $1 \times 1 \times 5$ мм в магнитном поле, направленном параллельно длинной оси образца.

Результаты и их обсуждение

Исследованы образцы $La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO_3$ с x = 0; 0,02; 0,04; 0,06; 0,08 и 0,10. На рис. 1 приведены рентгеновские дифрактограммы системы $La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO_3$. Все синтезированные образцы однофазные и могут быть проиндексированы в ромбоэдрической структуре с пространственной группой $R\overline{3}c$.

Результаты расчетов по методу Ритвельда кристаллографических параметров $La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO_3$ в гексагональной установке $R\overline{3}c$ представлены в таблице. Как следует из таблицы, в твердом растворе $La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO_3$ с увеличением содержания железа объем элементарной ячейки и длина связи Mn–O монотонно снижаются. Данный факт объясняется

Рис. 1. Рентгеновские дифрактограммы поликристаллических образцов системы $La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO_3$: температура синтеза 1650 К, 2 ч.

меньшим ионным радиусом Fe^{3+} (0,645 Å) по сравнению с ионным радиусом Mn^{3+} (0,65 Å), что может также служить одним из подтверждений реализации в манганитах механизма зарядовой компенсации $\text{Mn}^{3+} \rightarrow \text{Fe}^{3+}$; это согласуется с данными, приведенными в работе [23]. Согласно мессбауэровским исследованиям, высокая стабильность конфигурации $t_{2g}^3 e_g^2$ железа в манганитах обусловливает неучастие Fe^{3+} в образовании e_q -связи [24].

При анализе характера изменения кристаллографических параметров с увеличением содержания

x	0	0,02	0,04	0,06	0,08	0,10
Параметры ячейки $R\overline{3}c$						
<i>a</i> , Å	5,5082(4)	5,5074(5)	5,5066(5)	5,5060(4)	5,5053(4)	5,5048(4)
<i>c</i> , Å	13,3718(6)	13,3671(7)	13,3651(7)	13,3644(6)	13,3641(7)	13,3640(7)
V, Å ³	351,35(4)	351,12(5)	350,97(5)	350,88(4)	350,78(4)	350,71(4)
Координаты ионов О						
<i>x</i> / <i>a</i>	0,456(3)	0,457(3)	0,458(2)	0,459(3)	0,460(3)	0,462(5)
Изотропные микронапряжения, %						
	15,87	15,1`3	14,32	8,43	8,02	6,82
Межатомные расстояния и углы связей						
Mn–O, Å	1,957(2)	1,956(2)	1,955(2)	1,954(2)	1,953(2)	1,952(3)
Mn-O-Mn, град.	165,8(6)	166,1(6)	166,4(4)	166,7(6)	167,1(6)	167,7(9)
Факторы достоверности						
<i>R</i> _{<i>B</i>} , %	5,59	4,86	6,29	6,51	6,95	6,70
R_f , %	5,43	5,14	6,17	6,12	7,69	6,53

Таблица. Кристаллографические параметры системы La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO₃ (температура синтеза 1650 К; 2 ч)

Примечание: позиция и координаты ионов в структуре $R\overline{3}c$: La 6*a* (0 0 1/4); Mn 6*b* (0 0 0); O 18*e* (x 0 1/4).

железа следует отметить несколько неожиданный результат, который дали расчеты изотропных микронапряжений, характеризующих степень устойчивости структуры [25]: по мере замещения позиций марганца ионами другого элемента — железа — устойчивость структуры повышалась. Непосредственной причиной этого может быть раскрытие угла Mn–O–Mn, в наиболее устойчивом состоянии равного 180°.

Температура ферромагнитного перехода, согласно [26,27], при сокращении длины связи Mn–O и раскрытии угла Mn–O–Mn должна увеличиваться. Поэтому, согласно данным, приведенным в таблице, характер изменения кристаллографических параметров при замещении Mn³⁺ \rightarrow Fe³⁺ должен способствовать усилению ферромагнитного взаимодействия. С другой стороны, поскольку введение ионов Fe³⁺ снижает число обменных позиций для переноса электронов и создает разрывы в цепях Mn³⁺–O^{2–}–Mn⁴⁺, замещение марганца железом будет ослаблять ферромагнетизм в системе La_{0,7}Sr_{0,3}Mn_{1–x}Fe_xO₃, что должно существенно сказаться на магнитных и электрических свойствах.

Температурные зависимости удельного электросопротивления $\rho(T)$ поликристаллических образцов La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO₃, спеченных при 1650 K, приведены на рис. 2. Для всех исследованных уровней легирования переход от металлического характера проводимости ($d\rho/dT > 0$, ферромагнитная фаза) к активационному ($d\rho/dT < 0$, парамагнитная фаза) к выражен неявно и происходит в широком интервале температур. В этом случае положение максимума на зависимости $\rho(T)$ может не совпадать с температурой Кюри [28,29], и для получения информации о магнитных свойствах необходимо проведение дополнительных измерений — магнитных или магниторезистивных.

Характер зависимостей MR(H) при комнатной температуре (рис. 3,a), а также отличные от нуля зна-

Рис. 2. Температурные зависимости удельного электросопротивления поликристаллических образцов $La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO_3$: x = 0.02 (кривая 1); 0.04 (2); 0.06 (3); 0.08 (4); 0.10 (5).

чения магнитосопротивления свидетельствуют о том, что при 300 К все образцы находятся в ферромагнитном состоянии. Таким образом, для всех образцов с $x \le 10 T_C$ превышает 300 К, а положение отдельных широких температурных максимумов электросопротивления с T < 300 К на рис. 2 не отражает реальных температур ферромагнитных переходов.

Результаты исследования влияния магнитного поля на магнитосопротивление образцов системы La_{0.7}Sr_{0.3}Mn_{1-r}Fe_rO₃ при температуре жидкого азота приведены на рис. 3,6. Абсолютные значения MR при 77 К существенно выше, чем при 300 К, и составляют от 23% (x = 0,02) до 20% (x = 0,10) в поле напряженностью 1,2 МА/м. Резкое изменение хода кривых MR₇₇(H) вблизи H = 0,16-0,17 MA/м может указывать на существование по меньшей мере двух механизмов воздействия магнитного поля на электросопротивление замещенных манганитов, один из которых преобладает в слабых полях ($H \le 0,17$ MA/м), а другой — в сильных полях ($H \ge 0.17$ MA/м). Первый из них связывают со спин-зависимым переносом заряда через межзеренные границы или слабопроводящие области, второй является результатом воздействия магнитного поля на электронную подсистему ядра зерен [1-3,30].

Рис. 3. Влияние магнитного поля на магнитосопротивление при комнатной температуре (*a*) и при температуре жидкого азота (*б*) для поликристаллических образцов $La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO_3$: x = 0,02 (кривая 1); 0,04 (2); 0,06 (3); 0,08 (4); 0,10 (5).

Температурная зависимость магнитосопротивления в поле H = 1,2 MA/м поликристаллических образцов La_{0,7}Sr_{0,3}Mn_{0,94}Fe_{0,06}O₃, спеченных при различных температурах, приведена на рис. 4. Слабовыраженные пики магнитосопротивления при 332–336 K, очевидно, связаны с переходом ферромагнетик — парамагнетик [3]. В данной работе мы определили T_C как температуру пиков на зависимостях MR(T). Для образцов, исследованных в данной работе, снижение T_C при легировании железом системы La_{0,7}Sr_{0,3}MnO₃ составляет около 5 K/%Fe.

Незначительные сдвиги положения максимума MR для одного и того же состава, как видно на рис. 4, указывают на то, что температура синтеза оказывает определенное влияние на точку Кюри замещенных манганитов. Наиболее высокие значения магнитосопротивления отмечаются в керамике, спеченной при температурах близких к 1650 К. Влияние температуры синтеза на MR может быть обусловлено изменением содержания кислорода в структуре и, соответственно, изменением соотношения Mn⁴⁺/Mn³⁺.

Заметный рост отрицательного магнитосопротивления ниже 300 К на кривых MR(T) обычно связывают со спинзависимым переносом заряда через магниторазупорядоченные области [1–3,31]. Сосуществование пара- и ферромагнитных фаз довольно часто наблюдается в замещенных манганитах [31,32] и связано с сильной зависимостью магнитных свойств от химических неоднородностей, локальных деформаций, обусловленных введением в марганцевую подрешетку иных ионов, особенностей микроструктуры и т.д.

На рис. 5 показаны спектры ферромагнитного резонанса для образцов $La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO_3$, измеренные при 77 К. Такие спектры характерны для ферромагнитной фазы замещенных манганитов [28–29,32,33]. Как видно на рис. 5, с увеличением содержания железа вплоть до 0,10 форма спектров не претерпевает значительных изменений. В то же

Рис. 4. Температурные зависимости магнитосопротивления в поле 1,2 MA/м для поликристаллического образца $La_{0,7}Sr_{0,3}Mn_{0,94}Fe_{0,06}O_3$, спеченного при *T*, K: 1620 (*1*), 1650 (*2*), 1670 (*3*).

Рис. 5. Спектры ферромагнитного резонанса, измеренные при температуре жидкого азота, для поликристаллических образцов $La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO_3$.

время происходит монотонное увеличение разницы между положениями максимумов и минимумов (ΔB) спектров ФМР от 170–175 мТл (x = 0) до 245–250 мТл (x = 0,10). Это может указывать на повышение неоднородности и связанное с ним снижение доли ферромагнитной фазы в лантан-стронциевых манганитах по мере возрастания содержания ионов Fe³⁺.

Выводы

Реализация механизма зарядовой компенсации $Mn^{3+} \rightarrow Fe^{3+}$ в системе $La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO_3$ ($0 \le x \le 0,10$) приводит к сочетанию двух конкурирующих тенденций, одна из которых (уменьшение объема элементарной ячейки, снижение длины связи Mn-O, раскрытие угла Mn-O-Mn) способствует ферромагнетизму, а другая (разрывы в цепях Mn-O-Mn, сокращение числа обменных позиций) — ослабляет ферромагнетизм.

Согласно нашим данным, для всех образцов системы $La_{0,7}Sr_{0,3}Mn_{1-x}Fe_xO_3$ с $0 \le x \le 0,10$ значения температуры Кюри T_C превышают 300 К, однако с увеличением x происходит монотонное ослабление ферромагнетизма (снижение T_C составляет около 5 К/%Fe). Определенное влияние на T_C оказывает и температура синтеза твердых растворов манганитов. Монотонный рост магнитосопротивления в низкотемпературной области и большие значения низкополевого вклада в магнитосопротивление указывают на неоднородный характер электрической проводимости и намагниченности образцов при $T < T_C$, которое может быть вызвано сосуществованием ферро- и парамагнитных фаз в широкой области температур.

Авторы выражают благодарность Д.И. Подъяловскому (Институт магнетизма НАН Украины, г. Киев) за помощь в проведении измерений ФМР. Данная работа поддержана Научно-технологическим центром в Украине, проект №3178.

- H. Kuwahara, Y. Tomioka, Y. Morimoto, A. Asmitsu, M. Kasai, R. Kumai, and Y. Tokura, *Science* 272, 5258 (1996).
- R. Magendiran, S.K. Tiwary, and A.K. Raychaudhauri, *Phys. Rev.* B53, 3348 (1996).
- H.Y. Hwang, S.-W. Cheong, P.G. Radaelli, M. Marezio, and B. Batlogg, *Phys. Rev. Lett.* **75**, 914 (1995).
- 4. Э.Л. Нагаев, УФН 166, 833 (1996).
- F. Damay, C. Martin, A. Maignan, and B. Raveau, J. Appl. Phys. 82, 6181 (1997).
- L.M. Rodriguez-Martinez and J.P. Attfield, *Phys. Rev.* B54, 15622 (1996).
- 7. C. Zener, Phys. Rev. Lett. 132, 403 (1951).
- 8. J.B. Goodenough, *Magnetism and Chemical Bond*, Interscience, New York, London (1963).
- A.J. Millis, P.B. Littlewood, and B.I. Shraiman, *Phys. Rev. Lett.* **74**, 5141 (1995).
- R.D. Shennon and C.T. Prewitt, *Acta Crystallogr.* B25, 925 (1969).
- S.B. Ogale, R. Sheekala, Ravi Bathe, S.K. Date, S.K. Date, S.I. Patil, B. Hannoyer, F. Petit, and G. Marest, *Phys. Rev.* B57, 7841 (1998).
- M. Pissas, G. Kallias, E. Devlin, A. Simopolous, and D. Niarches, *J. Appl. Phys.* 81, 5770 (1997).
- K.H. Ahn, X.W. Wu, K. Liu, and C.L. Chien, *Phys. Rev.* B54, 15299 (1996).
- 14. Jian-Wang Cai, Cong Wang, Bao-Shen, Jian-Gao Zhao, and Wen-Zhan, *Appl. Phys. Lett.* **71**, 1727 (1997).
- L. Righi, P. Gorria, M. Insausti, J. Gutierrer, and J.M. Barandiaran, *J. Appl. Phys.* 81, 5767 (1997).
- K. Ghosh, S.B. Ogale, R. Ramesh, R.L. Creene, T. Venkatesan, K.M. Gapchup, Ravi Bathe, and S.I. Patil, *Phys. Rev.* B59, 533 (1999).
- 17. A. Tiwari and K. Rajeev, *J. Appl. Phys.* 86, 5175 (1999).
- 18. Ya-Dong Li, Jiang-Hui Zhang, Cao-Shui Xiong, and Hong-Wei Liao, J. Am. Ceram. Soc. 83, 980 (2000).
- J. Gutierrez, J.M. Barandiaran, M. Insausti, L. Lezama, A. Pena, J.J. Blanco, and T. Rojo, *J. Appl. Phys.* 83, 7171 (1998).
- Alexander Börger und Hubert Langbein, Z. Naturforsch. 58b, 1079 (2003).
- 21. K.H. Han, Q. Huang, P.C. Ong, and C.K. Ong, J. Phys.: Condens. Matter 14, 6619 (2002).

- 22. Xianyu Wen-xu, Li Bao-he, Qian Zheng-nan, and Jin Han, J. Appl. Phys. 86, 5164 (1999).
- S. Hebert, A. Maignan, C. Martin, and B. Raveau, Solid State Commun. 121, 229 (2002).
- A. Tkachuk, K. Rogacki, D.E. Brown, B. Dabrowski, A.J. Fedro, C.W. Kimball, B. Pyles, and D. Rosenmann, *Phys. Rev.* B57, 85509 (1998).
- 25. H. Ohsato, M. Imaeda, and Y. Takagi, Proc. of the 12th IEEE Intern. Symp. on Applications of Ferroelectrics, Mountrex (August 24–27), 509 (1998).
- P.W. Anderson and H. Hasegawa. *Phys. Rev.* 100, 675 (1955).
- 27. P.-G. De Gennes, Phys. Rev. 118, 141 (1960).
- В.П. Пащенко, G. Kakazei, А.А. Шемяков, А.В. Пащенко, Л.Т. Цымбал, В.П. Дьяконов, Н. Szymczak, J.A.M. Santos, and J.B. Sousa, *ФНТ* **30**, 403 (2004).
- В.П. Пащенко, А.А. Шемяков, М.М. Савоста, С.И. Харцев, В.Н. Деркаченко, В.К. Прокопенко, В.А. Турченко, А.В. Пащенко, В.П. Дьяконов, *ФНТ* 29, 1200 (2003).
- W. Zhang, W. Ding, W. Zhong, D. Xing, and Y. Du, *Phys. Rev.* B56, 8138 (1997).
- 31. А.И. Товстолыткин, А.Н. Погорелый, С.М. Ковтун, *ФНТ* **25**, 1282 (1999).
- M. Izumi, Y. Konishi, T. Nishiharo, S. Hayashi, M. Shinoharo, M. Kawasaki, and Y. Tokura, *Appl. Phys. Lett.* 73, 2497 (1998).

Crystallographic, electric, and magnetic properties of $La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO_3$ system

O.Z. Yanchevskii, A.I. Tovstolytkin, O.I. V'yunov, and A.G. Belous

The x-ray diffraction, electric, magnetic, magnetoresistive, and ferromagnetic resonance studies of $\text{La}_{0.7}\text{Sr}_{0.3}\text{Mn}_{1-x}\text{Fe}_x\text{O}_3$ ($0 \le x \le 0.10$) ceramic samples demonstrate that the competition between structural changes affecting the ferromagnetism results in its monotonic weakening (the drop of T_C is about 5 K/%Fe). An increase in the magnetoresistance in a low-temperatures range and high values of the low-field contribution to the magnetoresistance suggests that the electrical conductivity and the magnetization of the samples at $T < T_C$ are inhomogeneous, maybe due to the coexistence of ferro- and paramagnetic phases in a wide temperature region.

Keywords: doped manganites, magnetoresistive properties, ferromagnetic resonance, inhomogeneous magnetic state