Condensed Matter Physics, 2011, Vol. 14, No 3, 33001: 1{17] @OIDENSED
DOI:[10.5488/CMP.14.33001 AT UTER
http://www.icmp.lviv.ua/journal BHVSIGS
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The author’s lecture notes concerning the correlation functions and the thermodynamics of a simple polar
fluid are summarized. The emphasis is on the dipolar hard sphere fluid and the mean spherical approximation
and on the relation of these results to the Clausius-Mossotti and Onsager formulae for the dielectric constant.
Previous excerpts from these lecture notes, Condens. Matter Phys., 2009, 12, 127; ibid., 2010, 13, 13002,
have contained results that were not widely known. It is hoped that this third, and likely final, excerpt will prove
equally helpful by gathering several results together and making these more widely available and recording a
few new results.
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1. Introduction

This paper is dedicated to Yura Kalyuzhnyi on the occasion of his sixtieth birthday; it is the
result of the beautiful work of Michael Wertheim on hard spheres and dipolar hard spheres that has
inspired the author and many others, including Yura and his colleagues in Lviv. There is little in
this paper, drawn from the author’s lecture notes, that is not well-known to Michael but, perhaps,
lesser mortals will benefit from this collection of results and those in two previous papers [1, 2]
taken from the author’s lecture notes.

Dipolar hard spheres are a simple representative molecular fluid and polar fluid. For a canonical
ensemble, the well known definition for the h-particle correlation function for a simple atomistic
fluid of N molecules in a volume V is easily generalized for a molecular fluid,

VAN 1
901 = TN On / exp[—BU(L+ N)Jdrpsy - deydQpgr - dQy, (1)
where
N
U(l---N) = Z u(Rij, Qi, ) @
1<j=1

is the energy of the system, § = 1/kT (T is the temperature and k is the Boltzmann constant),
@n is the configurational partition function given by

Qn = /exp[fﬁU(lu-N)]drl o drydQy - dQy (3)

and R;; = |r; —r;| is the distance between the centers of a pair of molecules, ¢ and j, whose centers
are located at r; and r;. The “volume” elements, d2, are normalized so that [ dQ2 = 1. Thus,

sin 0dfd¢

dQ =
47

(4)

The function u(R;;, %, ?;), that can be written as u(ij) for brevity, is the intermolecular potential
between a pair of molecules.
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The following notation is employed. A function, such as g(ij), that depends upon the orientation
of each member of a pair of particles, ¢ and j, is denoted by the presence of each of the indices of
the two particles in the argument of the function. After integration over the orientations of the two
particles, a function that depends only on the scalar separation, R, of the two molecules results.
This spherically averaged function is denoted by the subscript 0. Thus, the radial distribution
function (RDF) is given by

nl(B) = [ g(12)ad0% = (9(12)). 6
The Ornstein-Zernike (OZ) equation becomes
h(12) = ¢(12) + p/h(13)0(23)dr3d93 , (6)

where p = N/V, h(12) = g(12) — 1 and ¢(12) are the total and direct correlation functions.
The common thermodynamic functions are given by

E = 3N [902)u(12)draa0 = ;Np [(g12)u02))drs. (7)
J\l;—l‘c/T = 1- %ﬁp/(g(lZ)u’(12)R12>dr2, ()

and 9
kTa—Z -1 +p/ho(12)dr2. (9)

In the above F is the energy in excess of the kinetic energy terms, p is the pressure, and hy(12) =
90(12) — 1. The functions, ho(12) and go(12), are the total and pair correlation functions, respec-
tively.

This article gives only an outline of the field of molecular fluids. The discussion will be restricted
to molecular fluids with a hard core. For convenience, molecular fluids can be divided further into
two broad types, (1) fluids in which the hard core is spherical (the asymmetry comes from the
attractive potential) and (2) fluids in which even the hard core is nonspherical. The first class is
conceptually simpler and is considered here. Dipolar hard spheres will be considered as an example
of this class. Liquid crystals are an example of the second class and may, perhaps, be considered
in a future installment.

2. Dipolar hard spheres

As an example of a molecular fluid, we consider the dipolar hard sphere fluid where the inter-
molecular potential is given by

12y=14 . 2 <o, 10
U( ) B 7}5_32D(12)7 Ry > g, ( )

where p and o are the magnitude of the dipole moment and diameter of the dipolar hard spheres,
D(12) = 3(&1 - R12) (&2 - Ria) — (&1 - &2), (11)

where Rys = R12/|R12| is a unit vector in the direction of Rq3, &1 is a unit vector in the direction
of dipole 1, and
A(l12) =&; - é9. (12)

The function A(12) does not appear in the intermolecular potential, except as part of D(12).
However, D(12) and A(12) contribute independently to the correlation functions. The dipoles are
assumed to be nonpolarizable.

33001-2



Some simple results for the properties of polar fluids

Barker |3] has proved the very useful theorem that is given in the following two equations,

/ (& - a)d = 0

and .
/(éi -2)(8; - b)d, = S(a-b).

Note that b could be &;, ¢ # j. We shall call these results Barker’s theorem.
Using Barker’s theorem, it is easy to show that 1, D(12), and A(12) are orthogonal,

/ D(12)d0dQs = 0, (13)

/ A(12)d0 A0, = 0, (14)
and

/D(12)A(12)d91dﬂ)2 ~0. (15)

The normalization of 1, D(12), and A(12) can also be obtained from Barker’s theorem and is

/d91d92 = 1, (16)
) 2
D?(12)d0dQy = 3 (17)
and
1
/A2(12)d91d(22 =3 (18)

This means that 1, D(12), and A(12) are part of an orthogonal basis set. Indeed, they are a
subset of the spherical harmonics. A basis set is a linearly independent set of functions with the
property that any function can be expressed as a linear combination of the members of the basis
set. One basis set for three-dimensional Euclidean space is the set of vectors in the directions of
the z, y, and z axes. The space of all functions for which the spherical harmonics are the basis
set has an infinite dimension. As will be seen, in some special cases the functions 1, D(12), and
A(12) form a complete basis set of finite (three) dimension but this is not usually the case. A
basis set need not consist of orthogonal vectors or functions. However, it is convenient if they are
orthogonal. A nonorthogonal basis set can be transformed into an orthogonal basis set by what is
called the Schmidt orthogonalization procedure. Hence, we can expand

9(12) = go(R12) + hp(R12)D(12) + ha(Ri2)A(12) + -+ -, (19)

where go(R12) is given by equation (5),

ho(Rix) = / D(12)g(12)d04d0, (20)

and
ha(Ri2) = 3/A(12)g(12)dQlng. (21)

The coefficients go(R12), hp(12), and ha(12) can be called the “projections” of g(12) onto the basis
vectors, 1, D(12), and A(12). The notation h, rather than g, is used for hp, and ha because they
are zero when Ryjs — oo. Note that ho(R) = —1, for R < ¢ but hp(R) and ha(R) equal 0, for
R<o.
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The common thermodynamic functions are given by

o _ 1, 2 [ho(R)
NET 1 +yo(o) Sﬂpu/ 73 dR, (22)
3 1 , [ hp(R)
E = CNKT s Non / =7 dR, (23)
and
Idp
kTa—p:1+p ho(R)dR, (24)

where y(12) is the background, or cavity, function, y(12) = exp[Su(12)]g(12) and «(12) is the pair
interaction. Note that y(12) is a continuous function even if u(12) is discontinuous. The functions
yo(R) and ho(R) are the spherically averaged projections of y(12) and h(12), respectively.

As we shall see shortly, the dielectric constant is also given by an integral involving ha. This
means that the dielectric constant and common thermodynamic functions can be obtained from
go, hp, and ha even if the other projections are not known. Of course, in general, to obtain these
three projections, the other projections must be calculated. In any case, these three projections can
be called the active projections for the dipolar hard sphere fluid since they determine the common
thermodynamic functions and the dielectric constant of this fluid.

3. Simple treatments of the dielectric constant

The simple treatments considered here are based on the concept of the local field, Ejoc, felt by
a dipole. This is not equal to the applied field, E, because of the other dipoles. Let us carve out a
sphere of volume a, centered at a dipole. Since the dipole-dipole interaction is long ranged, we may
assume that the dielectric or polar fluid is a continuum outside this sphere. Choose the volume of
this sphere to be equal to the volume per dipole,

47 Vv 1
3=y = o (25)
The average value of p is related to Ejoc,
W) = {ucosd) 6)
W = e
As Fj,. is relatively small, the exponentials in equation (27) may be linearized. Thus,
() = fow(l + BuFEoc cos @) cos b sin 6d0 28)

Jo (1 + BpEioc cos ) sin 6dd

The integrals of the first term in the numerator and the second term in the denominator vanish.
The result is

<‘LL> - %ﬂN2Eloc- (29)

Our task is to calculate Ej,.. We will consider two simple approaches first.

Clausius-Mossotti result for €

The field inside the dielectric fluid is different from the applied field due to the polarization of
this fluid.
D =¢E =E + 47P, (30)
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Figure 1. Dielectric constant for the dipolar hard sphere fluid for po® = 0.8 as a function of y.
The solid curve gives the result of Tani et al. [23], equation (142), and the broken curves give
the CM |6, [7], Onsager [|9], and MSA [12] results. The points are simulation results |[§].

where D and P are the electric displacement and polarization vectors. For an isotropic system, the
vectors have the same direction. Thus,

e—1

o E = plu). (31)

P =

Lorentz [4, [5] argued that there are four contributions to Ejo.: (1) the applied field, E; (2) the
volume charge contribution of P, which is zero because P is a constant and V - P = 0; (3) the
surface charge contribution of P on the surface of the sphere of radius a; and (4) the field due to
the dipole, which is independent of E and so does not contribute to (u). For a surface element of
this sphere at a polar angle, 8, measured from the direction of P and E, the area of this element is
dS = 2ma?sin 6df. The surface charge density in the direction of the normal to the surface of the
sphere at the polar angle 6 due to the polarization is P, = P cosf. Thus, the element of the field
due to the surface polarization is dE’ = P,,dS/a? and E’ is

T

4
E' = /cos O(P cos0)2m sin 00 = %P (32)
0
so that 4
Eioe = E + %P (33)
and ) A
™
o) =g (B45P). 54
yielding
1 2
= E
el . (35)
1= 35pBu
Recalling that
4P
=14+ — 36
€ + B (36)
this gives
e—1 Arm 9
= = 37
cra g =Y (37)
or 19
Y
- 38
=g (39)
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which is the Clausius-Mossotti result |6, [7]. This is not a very good result because the CM e
diverges when y = 1, for which there is no experimental support. Sometimes this problem is called
the polarization catastrophe. The CM result for € is plotted and compared with some simulation
results [§] in figure 1. There is no singularity in the simulation results.

The constant y is not to be confused with the background function, y(12).

Onsager result for €

To obtain Ej.., Onsager [9] solved the boundary value problem for a sphere of radius a and
dielectric constant equal to unity within an infinite dielectric medium whose dielectric constant is
e and with an applied field E. Denote the potential inside and outside the sphere by ¢; and ¢o,
respectively. Thus,

V2¢p1 = V2¢hy = 0. (39)

The potential and displacement are continuous across the surface of the sphere so that ¢1(a) =
¢2(a) and 0¢1(a)/OR = edp2(a)/OR. The potential ¢ is finite inside the sphere (in particular at
R =0) and, far from the sphere, ¢po = —ER cosf. The solution of this boundary value problem is

3e
¢1(R) et 1 Rcosf (40)
Hence,
8¢1 3e
Eoc ~an 41
! OR ~ 2e+1 (41)
From this 1 3
5 3€
== 42
) = 565 (42)
Using,
e—1
P =plu) = ——F, (43)
T
the dielectric constant is given by
3e
—1= 44
‘ K (44)
" (e~ 1)(2e+1)
€ — €+
= q. 45
o y (45)

Explicitly, e = [1 + 9y + 3v/1 + 2y + 9y3]/4. This is Onsager’s formula. It is plotted in figure 1.
This result does not diverge and is much better than the Clausius-Mossotti result. Until Wertheim’s
result, this was the standard formula. Wertheim’s results will now be considered. However, some
preliminary formulae are needed.

4. Fourier transform of ha(R)
As has been mentioned, h(12) can be expanded in spherical harmonics,
h(12) = ho(R) + ha(R)A(12) + hp(R)D(12) + - - - . (46)

A similar expansion can be made for ¢(12). We will want to substitute these expressions into the
OZ equation, equation (6). To do this it is convenient to use the Fourier transform. The Fourier
transforms of hg, cg, ha, and ca are straightforward. However, the Fourier transforms of hp(12) and
¢p(12) are more complicated because D(12) contains R and we must transform the combinations
hp(R)D(12) and ¢p(R)D(12) as wholes.

First, recall that the Fourier transform pair is

fo) = [ £(R) expliic - x)ar (47)
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and
1 ~ .
F(R) = s / F(k) exp(—ik - r)dk, (48)

where R = |r| and k = |k|. Choose the coordinate system so that r = R(sin 6 sin ¢, sin 6 cos ¢, cos 0)
and k = (0,0, k). For an easier notation, define T(12) = hp(R)D(12). After some algebra,

T = hp(k)Dx(12), (49)
where
Dp(12) = 3(&1 - k)(82 - k) — (&) - &) (50)
and -
Fio(k) = —dr / R2ja(kR)hp(R)dR, (51)
0
where 34 3 .
.72(x) _ ST _ COST _ ST . (52)

x3 x? x
The function f(k) is sometimes called a Hankel transform. Note that hp(k) is not hp(k), the
Fourier transform of hp(R), which is given by

hp(k) = 4% / RsinkRhp(R)dR = 4n

0

R%jo(kR)hp(R)dR. (53)

The functions jo(z) and j2(x) are spherical Bessel functions. Equation (49) is a perfectly good result
for the Fourier transform of hp(R)D(12) but it is a nuisance to have two kinds of transforms. Thus,
it is useful to define an auxiliary function,

F(R) = f(R) —3/f(1§)d3’, (54)
R

because, as is seen by straightforward integration, the Fourier transform of F(R) is the Hankel
transform of f(R).
Thus, in summary, the Fourier transform of T'(12) = hp(R)D(12) is given by

T(12) = Hp(k)Dy(12), (55)

where Dy (12) is given by equation (50) and

Hp(R) = hp(R) -3 / hD]gf%l)dR’. (56)
R
The inverse of the last equation is
R
hp(R) = Hp(R) — % / Hp(R)R™?dR'. (57)
0

This auxiliary function has another interesting property. If f(R) is long ranged, F'(R) is short
ranged. For example, if

0, R < o,
rm={ ", RS (58)
then )
— 33 R <o,
F(R) = { 0, R>o. (59)

This property can be exploited to evaluate integrals of long ranged functions which would be
difficult if direct integration were attempted.
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5. Fourier transform of the OZ equation for dipolar hard sphe res

It has been seen that

h(12) = ho(R) + ha(R)A(12) + hp(R)D(12) + - - - (60)
. c(12) = co(R) + ca(R)A(12) 4 cp(R)D(12) + - - - . (61)
enee 7(12) = ho(k) + ha (K)A(12) + Hp(k)Dyp(12) + - -- (62)
e ¢(12) = éo(k) + ea(k)A(12) + Cp (k) Dp(12) + - - - . (63)

Table 1. Wertheim’s “multiplication” table.

1 A(23) D (23)
1 1 0 0
A(13) |0 1A(12) 3Dk (12)
Di(13) | 0 $Dk(12) 3 [Dk(12) +2A(12)]

To take the transform of the convolution in the OZ relation, we must evaluate integrals of the
form

/A(13)D(23)d93.

To do this, Wertheim’s “multiplication table”, which is given in table [ is required. This multipli-
cation table is easily obtained using Barker’s theorem. Using this table, the transform of the OZ
equation may be obtained. Since 1, A(12), and D(12) are orthogonal, we can equate coefficients.
Thus,

ho = éo + photo + -+, (64)
~ 1 - L
ha =¢éa + gp(hAéA +2HpCp)+---, (65)
and 1
Hp :C’DJrgp(ﬁAC’DJrHDéAJrﬁDéD)JF"' ) (66)

with similar equations for the transforms of the higher order terms.
We know that

ho(R) = -1, R < o, (67)
ho(R) — 0, R — oo, (68)
co(R) — 0, R — oo, (69)
ha(R) =0, R < o, (70)
ha(R) — 0, R — o0, (71)
ca(R) — 0, R — oo, (72)
and
hp(R) =0, R < o, (73)
hp(R) — 0, R — oo, (74)
cp(R) — B—MQ R — o0 (75)
R3 '
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Equations (73)—(75) are fine but we are interested in Hp(R) and Cp(R) rather than in hp(R)
and cp(R). It is easy to show that

Hp(R)=-3K, R<o, (76)
Hp(R) -0, R— o0, (77)
Cp(R) — 0, R — oo, (78)
where -
K = / 7}”3(];)‘“% : (79)

The parameter, K, is independent of R but depends on T, p, €, etc., and is not known until the
problem is solved. B
We can establish an interesting result for Cp(0). We know that

R
3
¢p(R) = Cp(R) — 7 / Cp(R')R?dR'. (80)
0
Using equations (75) and (78) it follows that
By 3 [
== m Cp(R)R?dR'. (81)
0
From this, we have
1 =
—3rCp(0) =y. (82)

6. Some exact results for €
Onsager’s expression is a special case of the exact result |10, [11]

(c— D2+ 1) _ dmpp (M?)
9¢ 9 N

(83)

where M is the total dipole moment of the dielectric. Write this as

(e—1)(2e+1)

oc YK (84)

The parameter gx is called the Kirkwood gy factor. The gx factor can be written as an integral,

M? .
JK = <]VM2> =1+ N<e1 '62> (85)

yielding
1 1 -
gic =1+ 30 [ ha(RMR =1+ pha(0) (36)
so that (e~ 1)(26 + 1) )
€ — €+ =
— 9. Y [1 + gPhA(O)] . (87)

The Onsager approximation consists in neglecting the contribution of ha(R).
Some other interesting exact results for € can be obtained using the OZ equation given above.
We can use the truncated versions of the expressions for hg, ha, and hp, namely,

ilo =co+ piloéo , (88)
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- 1 - .
ha = Ca + gp(hAéA + QHDCD), (89)
and )
HD :C'D+§p(iLAC~'D+I‘?[D5A+HDC~'D). (90)

The missing terms do not contribute. Solving the truncated equation (89) for ha gives

~ 5A+%pﬁDC~'D

ha = . 91
e (01)
Solving equation (90) for Hp gives, for k=0,
. Cp(0)
Hp(0) = — P 92
O e o
where = 1 — $péa(0) and equations (82) and (91) have been used.
Equation (91) can be rewritten as
1 - 2pHpC
1+ Zphy = 222220 (93)
3 1—3pca
Thus,
1 2 -
x [1 + gphA(O)} =1- ng(O)y. (94)
Using equation (92) yields
x4y 1 - (e—1)(2e+1)
————— =14+ -pha(0) = —————=. 95
(z —y)(z +2y) 37 a(0) 9ye (95)
The solution of this equation can be verified to be
€+ 2 1
= =1—=pé
T=y— 5rca(0) (96)
or )
€ Y
= — . 97
e+2 1—1péa(0) ©7)
Hence, the Clausius-Mossotti result is obtained by neglecting ca (R).
Finally
L E0(0) y (98)
ZpHp(0) = ——— 2
3 (z —y)(z + 2y)
or ( 2
1 - e—1
—pHp(0) = — . 99
5700 =~ (99)

These three routes to € may not be consistent for a given approximation. However, they will be
consistent if the OZ relation is satisfied. B 3 3
Note also, that we have obtained exact expressions for ha(0), Hp(0), ¢a(0), and Cp(0)!

7. The mean spherical approximation for the dipolar hard sph ere fluid

Because the MSA is a linearized approximation, 1, A, and D are a complete basis set for the
MSA. Thus, equations (88)—(90) can be employed. The MSA is

ho = -1, R<o, (100)
0 = 0, R>o, (101)
ha = 0, R<o, (102)
cA 0, R > o, (103)
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and

Hp = -3K, R <o, (104)
Cp = 0, R>o. (105)
These equations were first obtained and solved by Wertheim |12].

The first thing to note is that hg and ¢y are decoupled from equations (89) and (90). Equations
(100) and (101) are the Percus-Yevick (PY) approximation for a hard sphere (HS) fluid. Thus,

ho(R) = hyg (R). (106)

Algorithms for calculating h5¥ (R) = gh¥ (R) — 1, that are based on the formulae of Thiele [13] and
Wertheim [14, [15], have been given previously |16, [17]. The other two equations may be solved by
introducing the new functions,

he(R) = = | Ho(R) + 5ha(R) (107)
and )
ho(R) = s [Hp(R) — ha(R). (108)

After a little algebra, the decoupled equations,
hy =¢é; 4+ 2Kph,éy (109)

and - -
ho=é_ — Kph_c_ (110)

follow. The MSA approximation consists of

hy = -1, R<o, (111)

¢, =0, R>o (112)
and

h. = -1, R<o, (113)

c- = 0, R>o0. (114)

Hence,

hi(R; p) = higg (R; 2Kp) (115)
and

h-(R; p) = his (R; =K p), (116)

where hEY (R; p) are the PY hard sphere correlation functions. The equations for c¢; and c_ are
similar. The contact values of hy (R;p) and h(R; p) are given by

5—4Kn
hy(o;p) = Knm (117)
and
b (o 0) — K 5+ 2Kn 1
*(0—7/)) - 7’2(1 +K7’])2 s ( 8)

where 1 = 7po? /6.

The algorithms of Smith et al. [16, [17] can be used. These algorithms are robust and, with a
small change, give sensible results, even for the negative densities required by equation (116). The
required change is that the one line in the program where a cube root of a quantity involving 7
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is taken, the instruction should be changed so that when 7 is negative, the absolute value of 7 is
used and the resulting cube root is multiplied by —1.
Thus,
ha(R) = 2K [hid (R; 2K p) — hig (R; —K p)] (119)

and
1
Hp(R) = 2K |hys (R; 2K p) + Shis (R —Kp) | . (120)
The contact values of ha(R) and Hp(R) follow from equations (117) and (118) together with

gis (o3p) = % : (121)

The function that we want is hp(R), not Hp(R). This can be calculated from equation (57). In
particular, the contact value of hp(R) is

hD(J):HD(U)+3K. (122)

The parameter K is not yet specified but we are in a position to do so now. Using equation (82)
and

- 1+ 2n)?
1— peb¥(0) = (+2n)° 123
P HS( ) (1 _77)4 ( )
yields

14+ 4Kn)? 1—2Kn)?

(1+4Kn)* ( w3, (124)

(1—2Kn)* (1+ Kn)*

which specifies K, which has been renormalized so that it is dimensionless. Note that 0 < Kn < 1/2.
When Kn =0, y =0 and when Kn=1/2, y = cc.

N,
N,
N,

.
O N

\\ ~.,
~ "~

\o~\ O N e

1 [ I | ? M‘?AO

1.0 1.2 1.0 1.2 1.0 1.2

R/o

————Cr

Figure 2. Correlation functions for the dipolar hard sphere fluid for po® = 0.9. The points given
by solid and open circles are the simulation results |18, [19] for Su® = 0 (hard spheres) and Bu* =
1, respectively. The solid and broken curves give the results of the MSA and equations (125)
and (126), respectively, for Bu® = 1.

The correction functions for the dipolar hard sphere fluid that follow from the MSA are plotted
and compared with simulation results [18,[19] in figure 2 for a representative case. The MSA gives
fairly accurate results for go(R). The simulation results for go(R) for dipolar hard spheres are very
nearly equal to those for hard spheres but are slightly larger. Hence, one prediction of the MSA is
that go(R) for dipolar hard spheres is independent of the magnitude of the dipole moment and is
equal to the radial distribution function of a hard sphere fluid. This prediction is not exact but is
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quite well satisfied by the simulation results. However, the MSA results for hp(R) and ha(R) are
rather poor. Interestingly, the approximations, called LEXP,

hp(R) = gis (R)h> (R) (125)

and
ha(R) = gd (R)WN®A(R), (126)

are much better.

8. MSA thermodynamic functions

Using the compressibility route, the thermodynamic functions are as follows:

ap  (1+2n)?
o (L—m)*
When the compressibility equation is used, this is a very poor result since the MSA incorrectly

predicts, that there is no contribution from the dipolar part of the intermolecular potential.
Using the pressure route,

B (127)

PV 142432 dn 7hD(R)

= — —Bpp? | ———2d 12

which becomes

= — 3Ky, (129)
n

and, using the energy route,

E 3
—— = - —3Ky. 130
NkT ~ 2 Y (130)
G -— \\ ‘ T T \/ ‘
- \\\Q§‘_//2+3 g
~
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Figure 3. Free energy of the dipolar hard sphere fluid for po® = 0.9 as a function of Su?/c®.
The points are simulation results |19]. The dashed curves marked MSA, 2, and 2+3 give the
results of the MSA and perturbation theory when truncated after 2 and 3 terms, respectively.
The solid curve gives the results of the Padé extrapolation of Rushbrooke et al. [24].

One interesting characteristic of the MSA is that the energy can be integrated analytically to
give the (energy equation) free energy and this free energy can be differentiated to yield the (energy
equation) pressure. After a little algebra, the results are

A—Aus _ g 8(1+K77)2 (2 - Kn)?
NeT TP a 2kt T At K

(131)
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and
P — PHS o[ A+ Kn)?  (2—Kp)?
- K — 3K 132
kT T ek Ty k| Y (132)

where Apgs and pps are the hard sphere free energy and pressure, respectively. Note that K has
been renormalized so that it is dimensionless. The free energy that results from the MSA is plotted
and compared with simulation results [20] in figure 3. As is usually the case, the thermodynamics
obtained from the energy equation are more accurate than those obtained from the compressibility
or pressure equations.

9. MSA dielectric constant

The dielectric constant can be calculated by the three routes given above. All three routes yield
the same expression for e. For example, starting with equation (97), we obtain

e+2 (14+4Kn)? 2(1*2K77)2
e—1 (1-2Kn)* (14 Kn)* -~

3y (133)

Solving for e gives
~ (14+4Kn)*(1 4 Kn)* (134)
‘T a—2Ens

Some MSA results for € are plotted in figure 1. The agreement of the MSA result with the simulation
results is better than for the CM and Onsager theories but the MSA results are still too small.
Expanding the MSA expression for € gives

=y——y3 4 (135)

which is correct to order y3. By contrast, the CM result is

6—1_

= 136
€+2 4 (136)
and the Onsager result is, on expansion,
e—1
=y—2y°+ . 137
e+2 ot (137)

There is no term of order %> in the CM theory. The Onsager coefficient of the 33 term is too
negative.

Of course, approximations that are better than the MSA approximation can be used. For
example, Fries and Patey [21] used the hypernetted chain (HNC) approximation. The HNC results
are better than the MSA results but the calculations are lengthy and, in contrast to the theories
considered here, do not yield analytic results. It is to be noted that other combinations of 3, u,
and p, besides y, appear when the HNC approximation is employed. This is true of other more
general theories, for example the perturbation theory that is considered below.

10. Perturbation theory for dipolar hard spheres

Perturbation theory has been found to be very successful for simple fluids. It is natural to
wonder if perturbation theory might also be useful for a polar fluid. The answer is yes but some
qualifications are necessary.

By expanding the free energy in powers of 3, the following result is obtained

A= Apus + BPutAs + BPuSAs + -, (138)
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where Ayg is the hard sphere free energy. The quantities As and A3 are given by

Ay 1 (D*(12)) 1 gus(R)
= —— —_— == — = 1
i =10 [ s Lans(Rydr = —gp [ PR (139)
wnd (D(12)D(13)D(23))
As 1, [(D(12)D(13)D(23 1,
= — 123)drodrs = —p~1, 140
NiT — 6 / (R BisRa)? gus(123)dradrs w1 lada; (140)

where gus(R) and gns(123) are the pair and triplet distribution functions of the hard sphere fluid,
and

1+3 0 0 0
Iddd:/ 1200501 €053 €08 ? gus(123)dradrs (141)

(Ri2R13R23)?

where the 6; are the three interior angles of the triangle formed by the three sides, R;;. The angle
0 is the angle opposite the side Ras, etc. Barker’s theorem has been used to perform/simplify
the angular integrations. The term of order S vanishes on angular integration, as do some of
the terms of order 3% and 32 that formally contribute. Barker et al. |[22] and Tani et al. |23]
have calculated I;4q by simulation and direct integration via the superposition approximation,
gus(123) = gus(12)gus(13)gus(23). A numerical fit of their results is given by

512 41+ 1.12754p* + 0.56192p*2

J L 142
ddd = 370 1 0.05495p" + 0.13332p"2 (142)
where p* = po?.
As is seen in figure 3, this truncated series gives poor results. However the Padé,
A
A= Aus + Pt —=4-, (143)
1 - fu24s

that was proposed by Rushbrooke et al. [24], gives excellent agreement with the simulation results.
A Padé tends to work best for alternating series. For example, the series 1 —14+1—1+-- - is summed
correctly to 1/2 by a Padé. Patey and Valleau |2(] refer to the Padé results as “absurdly successful”.
This is meant as a positive comment and is a fair observation. Unfortunately, a Padé does not work
well for the correlation functions. Some thoughts about the development of approximations that
are consistent with equations (143) have been considered by Barker and Henderson [25]. However,
nothing much has come of these efforts.
The dielectric constant can be calculated from

(e—1)(2e+1) 9144n
- Deer ) 144
9e VI e T (144)
where [22, (23]
3cos?f; — 1 1772 1 —0.93952p* + 0.36714p*2
TIjan = | F5———"gns(123)drodrs = 6 . 145
das / (RisRa)e 181 28)dradrs = =m0 e o+ 0.03323,° (14)

This gives poor results, even with a Padé. However, the direct expansion, due to Tani et al. [23],

9I
€=1+3y+3y2+3y3( dda —1),

16,2 (146)

gives very good results, as is in figure 1.

Perturbation theory can be recast by subtracting the MSA contributions from the perturbation
terms and writing the perturbation theory as a series of corrections to the MSA. This was done by
Henderson et al. [26]. The results are similar to those of the perturbation theory considered here.
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11. A few remarks

The mean spherical approximation and perturbation theory are pleasing extensions of the
classic theories of Clausius and Mossotti and Onsager for polar fluids. Not only do they make
more accurate predictions for the dielectric constant of a polar fluid but they predict the other
thermodynamic properties of polar fluids. Many of these ideas are applicable to polar fluids with
a dispersion interaction. The simplest system of the kind is the dipolar Yukawa fluid. Szalai et
al. [27] and Mate et al. [28] have considered this model to be polar fluid.

The molecules considered here are unpolarizable dipoles. Onsager considered polarizable dipoles.
Valisko et al. have generalized some of the expressions presented here for polarizable dipoles and
have made simulations for a polarizable dipolar hard sphere fluid.

The author had hoped to include his lecture notes on liquid crystals as an example of a molecular
fluid with a nonspherical hard core. However, despite some searching, these have not been found.
If they do come to light, they can form a fourth part of this series and the “concerto” with three
movements can become a “symphony” with four movements.
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Aeski NpocTi pe3ynbTaTu AJi9 BJIaCTUBOCTEN NONIAPHUX MNJIVHIB

[. TengoepcoH

Bigoin ximii Ta 6ioximii, yHiBepcuteT Bpirema Axra, Npoeo, wrat 0T1a 84602

MigcymMoBY€ETLCS NEKUiMHUI MaTepian aBTopa, MPUCBSAYEHUI KOPEeNnauiiHuM GYHKLUiSM | TepMoguHami-
ui npoctoro nonspHoro nanHy. OcobnvBa yBara NPUAINSETLCA AUMNONLHOMY MANHY TBEpAuXx cdep i
cepenHbo-chHEPUUHOMY HABMXKEHHIO, @ TaKOX 3B’A3KY LiMX pe3ynbraTis i3 dopmynamu Knaysiyca-MocoTTi
Ta OH3arepa ans aienekTpuyHoi ctanoi. MonepenHi Buknaaku i3 umx nekuin, Condens. Matter Phys., 2009,
12, 127; ibid., 2010, 13, 13002, MicTnnn pe3ynsTaTtu, siki He Oynu 3arasbHOBIAOMUMM. € HaAlia WO LS TPeTs
i, IMOBIPHO, OCTaHHs BukNaaka 6yae Takolo X KOPUCHOI0, 06’€QHYyoHN Kinbka peaynbTaTiB i pobnsym ix
LOCTYMHVMMW AN LUMPLUOT ayamMTopii, 8 TakoX NPeACTaBAsioumn Kilbka HOBUX PE3ynbTaTiB.

KniouoBi cnoBa: kopensuiviHi pyHKuUii, NoaspHi navHu, TepMmoauHamivyHi GyHKUii, AienekTpnyHa crana
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