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The author’s lecture notes concerning the correlation functions and the thermodynamics of a simple polar
fluid are summarized. The emphasis is on the dipolar hard sphere fluid and the mean spherical approximation
and on the relation of these results to the Clausius-Mossotti and Onsager formulae for the dielectric constant.
Previous excerpts from these lecture notes, Condens. Matter Phys., 2009, 12, 127; ibid., 2010, 13, 13002,
have contained results that were not widely known. It is hoped that this third, and likely final, excerpt will prove
equally helpful by gathering several results together and making these more widely available and recording a
few new results.
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1. Introduction

This paper is dedicated to Yura Kalyuzhnyi on the occasion of his sixtieth birthday; it is the
result of the beautiful work of Michael Wertheim on hard spheres and dipolar hard spheres that has
inspired the author and many others, including Yura and his colleagues in Lviv. There is little in
this paper, drawn from the author’s lecture notes, that is not well-known to Michael but, perhaps,
lesser mortals will benefit from this collection of results and those in two previous papers [1, 2]
taken from the author’s lecture notes.

Dipolar hard spheres are a simple representative molecular fluid and polar fluid. For a canonical
ensemble, the well known definition for the h-particle correlation function for a simple atomistic
fluid of N molecules in a volume V is easily generalized for a molecular fluid,

g(1 · · ·h) =
V hN !

Nh(N − h)!
·

1

QN

∫

exp[−βU(1 · · ·N)]drh+1 · · ·drNdΩh+1 · · · dΩN , (1)

where

U(1 · · ·N) =
N
∑

i<j=1

u(Rij ,Ωi,Ωj) (2)

is the energy of the system, β = 1/kT (T is the temperature and k is the Boltzmann constant),
QN is the configurational partition function given by

QN =

∫

exp[−βU(1 · · ·N)]dr1 · · ·drNdΩ1 · · · dΩN , (3)

and Rij = |ri−rj | is the distance between the centers of a pair of molecules, i and j, whose centers
are located at ri and rj . The “volume” elements, dΩ, are normalized so that

∫

dΩ = 1. Thus,

dΩ =
sin θdθdφ

4π
. (4)

The function u(Rij ,Ωi,Ωj), that can be written as u(ij) for brevity, is the intermolecular potential
between a pair of molecules.
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The following notation is employed. A function, such as g(ij), that depends upon the orientation
of each member of a pair of particles, i and j, is denoted by the presence of each of the indices of
the two particles in the argument of the function. After integration over the orientations of the two
particles, a function that depends only on the scalar separation, R, of the two molecules results.
This spherically averaged function is denoted by the subscript 0. Thus, the radial distribution
function (RDF) is given by

g0(R) =

∫

g(12)dΩ1dΩ2 = 〈g(12)〉. (5)

The Ornstein-Zernike (OZ) equation becomes

h(12) = c(12) + ρ

∫

h(13)c(23)dr3dΩ3 , (6)

where ρ = N/V , h(12) = g(12)− 1 and c(12) are the total and direct correlation functions.
The common thermodynamic functions are given by

E =
1

2
Nρ

∫

g(12)u(12)dr2dΩ1Ω2 =
1

2
Nρ

∫

〈g(12)u(12)〉dr2 , (7)

pV

NkT
= 1−

1

6
βρ

∫

〈g(12)u′(12)R12〉dr2 , (8)

and

kT
∂ρ

∂p
= 1 + ρ

∫

h0(12)dr2 . (9)

In the above E is the energy in excess of the kinetic energy terms, p is the pressure, and h0(12) =
g0(12)− 1. The functions, h0(12) and g0(12), are the total and pair correlation functions, respec-
tively.

This article gives only an outline of the field of molecular fluids. The discussion will be restricted
to molecular fluids with a hard core. For convenience, molecular fluids can be divided further into
two broad types, (1) fluids in which the hard core is spherical (the asymmetry comes from the
attractive potential) and (2) fluids in which even the hard core is nonspherical. The first class is
conceptually simpler and is considered here. Dipolar hard spheres will be considered as an example
of this class. Liquid crystals are an example of the second class and may, perhaps, be considered
in a future installment.

2. Dipolar hard spheres

As an example of a molecular fluid, we consider the dipolar hard sphere fluid where the inter-
molecular potential is given by

u(12) =

{

∞, R12 < σ,

− µ2

R3

12

D(12), R12 > σ,
(10)

where µ and σ are the magnitude of the dipole moment and diameter of the dipolar hard spheres,

D(12) = 3(ê1 · R̂12)(ê2 · R̂12)− (ê1 · ê2), (11)

where R̂12 = R12/|R12| is a unit vector in the direction of R12, ê1 is a unit vector in the direction
of dipole 1, and

∆(12) = ê1 · ê2 . (12)

The function ∆(12) does not appear in the intermolecular potential, except as part of D(12).
However, D(12) and ∆(12) contribute independently to the correlation functions. The dipoles are
assumed to be nonpolarizable.
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Barker [3] has proved the very useful theorem that is given in the following two equations,

∫

(êi · a)dΩi = 0

and
∫

(êi · a)(êi · b)dΩi =
1

3
(a · b).

Note that b could be êj , i 6= j. We shall call these results Barker’s theorem.
Using Barker’s theorem, it is easy to show that 1, D(12), and ∆(12) are orthogonal,

∫

D(12)dΩ1dΩ2 = 0, (13)

∫

∆(12)dΩ1dΩ2 = 0, (14)

and
∫

D(12)∆(12)dΩ1dΩ)2 = 0. (15)

The normalization of 1, D(12), and ∆(12) can also be obtained from Barker’s theorem and is

∫

dΩ1dΩ2 = 1, (16)

∫

D2(12)dΩ1dΩ2 =
2

3
, (17)

and
∫

∆2(12)dΩ1dΩ2 =
1

3
. (18)

This means that 1, D(12), and ∆(12) are part of an orthogonal basis set. Indeed, they are a
subset of the spherical harmonics. A basis set is a linearly independent set of functions with the
property that any function can be expressed as a linear combination of the members of the basis
set. One basis set for three-dimensional Euclidean space is the set of vectors in the directions of
the x, y, and z axes. The space of all functions for which the spherical harmonics are the basis
set has an infinite dimension. As will be seen, in some special cases the functions 1, D(12), and
∆(12) form a complete basis set of finite (three) dimension but this is not usually the case. A
basis set need not consist of orthogonal vectors or functions. However, it is convenient if they are
orthogonal. A nonorthogonal basis set can be transformed into an orthogonal basis set by what is
called the Schmidt orthogonalization procedure. Hence, we can expand

g(12) = g0(R12) + hD(R12)D(12) + h∆(R12)∆(12) + · · · , (19)

where g0(R12) is given by equation (5),

hD(R12) =
3

2

∫

D(12)g(12)dΩ1dΩ2 , (20)

and

h∆(R12) = 3

∫

∆(12)g(12)dΩ1dΩ2 . (21)

The coefficients g0(R12), hD(12), and h∆(12) can be called the “projections” of g(12) onto the basis
vectors, 1, D(12), and ∆(12). The notation h, rather than g, is used for hD, and h∆ because they
are zero when R12 → ∞. Note that h0(R) = −1, for R < σ but hD(R) and h∆(R) equal 0, for
R < σ.
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The common thermodynamic functions are given by

pV

NkT
= 1 + y0(σ) −

1

3
βρµ2

∫

hD(R)

R3
dR, (22)

E =
3

2
NkT −

1

3
Nρµ2

∫

hD(R)

R3
dR, (23)

and

kT
∂ρ

∂p
= 1 + ρ

∫

h0(R)dR, (24)

where y(12) is the background, or cavity, function, y(12) = exp[βu(12)]g(12) and u(12) is the pair
interaction. Note that y(12) is a continuous function even if u(12) is discontinuous. The functions
y0(R) and h0(R) are the spherically averaged projections of y(12) and h(12), respectively.

As we shall see shortly, the dielectric constant is also given by an integral involving h∆. This
means that the dielectric constant and common thermodynamic functions can be obtained from
g0, hD, and h∆ even if the other projections are not known. Of course, in general, to obtain these
three projections, the other projections must be calculated. In any case, these three projections can
be called the active projections for the dipolar hard sphere fluid since they determine the common
thermodynamic functions and the dielectric constant of this fluid.

3. Simple treatments of the dielectric constant

The simple treatments considered here are based on the concept of the local field, Eloc, felt by
a dipole. This is not equal to the applied field, E, because of the other dipoles. Let us carve out a
sphere of volume a, centered at a dipole. Since the dipole-dipole interaction is long ranged, we may
assume that the dielectric or polar fluid is a continuum outside this sphere. Choose the volume of
this sphere to be equal to the volume per dipole,

4π

3
a3 =

V

N
=

1

ρ
. (25)

The average value of µ is related to Eloc ,

〈µ〉 = 〈µ cos θ〉, (26)

〈µ〉 = µ

∫ π

0 cos θ exp(βµEloc cos θ) sin θdθ
∫ π

0 exp(βµEloc cos θ) sin θdθ
. (27)

As Eloc is relatively small, the exponentials in equation (27) may be linearized. Thus,

〈µ〉 = µ

∫ π

0 (1 + βµEloc cos θ) cos θ sin θdθ
∫ π

0 (1 + βµEloc cos θ) sin θdθ
. (28)

The integrals of the first term in the numerator and the second term in the denominator vanish.
The result is

〈µ〉 =
1

3
βµ2Eloc . (29)

Our task is to calculate Eloc. We will consider two simple approaches first.

Clausius-Mossotti result for ǫ

The field inside the dielectric fluid is different from the applied field due to the polarization of
this fluid.

D = ǫE = E+ 4πP, (30)
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Figure 1. Dielectric constant for the dipolar hard sphere fluid for ρσ3
= 0.8 as a function of y.

The solid curve gives the result of Tani et al. [23], equation (142), and the broken curves give
the CM [6, 7], Onsager [9], and MSA [12] results. The points are simulation results [8].

where D and P are the electric displacement and polarization vectors. For an isotropic system, the
vectors have the same direction. Thus,

P =
ǫ− 1

4π
E = ρ〈µ〉. (31)

Lorentz [4, 5] argued that there are four contributions to Eloc: (1) the applied field, E; (2) the
volume charge contribution of P, which is zero because P is a constant and ∇ · P = 0; (3) the
surface charge contribution of P on the surface of the sphere of radius a; and (4) the field due to
the dipole, which is independent of E and so does not contribute to 〈µ〉. For a surface element of
this sphere at a polar angle, θ, measured from the direction of P and E, the area of this element is
dS = 2πa2 sin θdθ. The surface charge density in the direction of the normal to the surface of the
sphere at the polar angle θ due to the polarization is Pn = P cos θ. Thus, the element of the field
due to the surface polarization is dE′ = PndS/a

2 and E′ is

E′ =

π
∫

0

cos θ(P cos θ)2π sin θdθ =
4π

3
P (32)

so that

Eloc = E +
4π

3
P (33)

and

〈µ〉 =
1

3
βµ2

(

E +
4π

3
P

)

, (34)

yielding

P =
1
3ρβµ

2E

1− 4π
3

1
3ρβµ

2
. (35)

Recalling that

ǫ = 1 +
4πP

E
, (36)

this gives
ǫ− 1

ǫ+ 2
=

4π

9
ρβµ2 = y (37)

or

ǫ =
1 + 2y

1− y
, (38)
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which is the Clausius-Mossotti result [6, 7]. This is not a very good result because the CM ǫ
diverges when y = 1, for which there is no experimental support. Sometimes this problem is called
the polarization catastrophe. The CM result for ǫ is plotted and compared with some simulation
results [8] in figure 1. There is no singularity in the simulation results.

The constant y is not to be confused with the background function, y(12).

Onsager result for ǫ

To obtain Eloc, Onsager [9] solved the boundary value problem for a sphere of radius a and
dielectric constant equal to unity within an infinite dielectric medium whose dielectric constant is
ǫ and with an applied field E. Denote the potential inside and outside the sphere by φ1 and φ2,
respectively. Thus,

∇2φ1 = ∇2φ2 = 0. (39)

The potential and displacement are continuous across the surface of the sphere so that φ1(a) =
φ2(a) and ∂φ1(a)/∂R = ǫ∂φ2(a)/∂R. The potential φ1 is finite inside the sphere (in particular at
R = 0) and, far from the sphere, φ2 = −ER cos θ. The solution of this boundary value problem is

φ1(R) = −
3ǫ

2ǫ+ 1
ER cos θ. (40)

Hence,

Eloc = −
∂φ1

∂R
=

3ǫ

2ǫ+ 1
E. (41)

From this

〈µ〉 =
1

3
βµ2 3ǫ

2ǫ+ 1
E. (42)

Using,

P = ρ〈µ〉 =
ǫ− 1

4π
E, (43)

the dielectric constant is given by

ǫ− 1 = 3y
3ǫ

2ǫ+ 1
(44)

or
(ǫ − 1)(2ǫ+ 1)

9ǫ
= y. (45)

Explicitly, ǫ = [1 + 9y + 3
√

1 + 2y + 9y2]/4. This is Onsager’s formula. It is plotted in figure 1.
This result does not diverge and is much better than the Clausius-Mossotti result. Until Wertheim’s
result, this was the standard formula. Wertheim’s results will now be considered. However, some
preliminary formulae are needed.

4. Fourier transform of h∆(R)

As has been mentioned, h(12) can be expanded in spherical harmonics,

h(12) = h0(R) + h∆(R)∆(12) + hD(R)D(12) + · · · . (46)

A similar expansion can be made for c(12). We will want to substitute these expressions into the
OZ equation, equation (6). To do this it is convenient to use the Fourier transform. The Fourier
transforms of h0, c0, h∆, and c∆ are straightforward. However, the Fourier transforms of hD(12) and
cD(12) are more complicated because D(12) contains R and we must transform the combinations
hD(R)D(12) and cD(R)D(12) as wholes.

First, recall that the Fourier transform pair is

f̃(k) =

∫

f(R) exp(ik · r)dr (47)
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and

f(R) =
1

(2π)3

∫

f̃(k) exp(−ik · r)dk, (48)

where R = |r| and k = |k|. Choose the coordinate system so that r = R(sin θ sinφ, sin θ cosφ, cos θ)
and k = (0, 0, k). For an easier notation, define T (12) = hD(R)D(12). After some algebra,

T̃ = h̄D(k)Dk(12), (49)

where
Dk(12) = 3(ê1 · k̂)(ê2 · k̂)− (ê1 · ê2) (50)

and

h̄D(k) = −4π

∞
∫

0

R2j2(kR)hD(R)dR, (51)

where

j2(x) =
3 sinx

x3
−

3 cosx

x2
−

sinx

x
. (52)

The function f̄(k) is sometimes called a Hankel transform. Note that h̄D(k) is not h̃D(k), the
Fourier transform of hD(R), which is given by

h̃D(k) =
4π

k

∞
∫

0

R sin kRhD(R)dR = 4π

∞
∫

0

R2j0(kR)hD(R)dR. (53)

The functions j0(x) and j2(x) are spherical Bessel functions. Equation (49) is a perfectly good result
for the Fourier transform of hD(R)D(12) but it is a nuisance to have two kinds of transforms. Thus,
it is useful to define an auxiliary function,

F (R) = f(R)− 3

∞
∫

R

f(R′)

R′
dR′, (54)

because, as is seen by straightforward integration, the Fourier transform of F (R) is the Hankel
transform of f(R).

Thus, in summary, the Fourier transform of T (12) = hD(R)D(12) is given by

T̃ (12) = H̃D(k)Dk(12), (55)

where Dk(12) is given by equation (50) and

HD(R) = hD(R)− 3

∞
∫

R

hD(R′)

R′
dR′. (56)

The inverse of the last equation is

hD(R) = HD(R)−
3

R3

R
∫

0

HD(R′)R′2dR′. (57)

This auxiliary function has another interesting property. If f(R) is long ranged, F (R) is short
ranged. For example, if

f(R) =

{

0, R < σ,
− 1

R3 , R > σ,
(58)

then

F (R) =

{

− 1
σ3 , R < σ,

0, R > σ.
(59)

This property can be exploited to evaluate integrals of long ranged functions which would be
difficult if direct integration were attempted.
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5. Fourier transform of the OZ equation for dipolar hard sphe res

It has been seen that

h(12) = h0(R) + h∆(R)∆(12) + hD(R)D(12) + · · · (60)

and
c(12) = c0(R) + c∆(R)∆(12) + cD(R)D(12) + · · · . (61)

Hence,
h̃(12) = h̃0(k) + h̃∆(k)∆(12) + H̃D(k)Dk(12) + · · · (62)

and
c̃(12) = c̃0(k) + c̃∆(k)∆(12) + C̃D(k)Dk(12) + · · · . (63)

Table 1. Wertheim’s “multiplication” table.

1 ∆(23) DK(23)
1 1 0 0

∆(13) 0 1
3∆(12) 1

3DK(12)

DK(13) 0 1
3DK(12) 1

3 [DK(12) + 2∆(12)]

To take the transform of the convolution in the OZ relation, we must evaluate integrals of the
form

∫

∆(13)D(23)dΩ3 .

To do this, Wertheim’s “multiplication table”, which is given in table 1, is required. This multipli-
cation table is easily obtained using Barker’s theorem. Using this table, the transform of the OZ
equation may be obtained. Since 1, ∆(12), and D(12) are orthogonal, we can equate coefficients.
Thus,

h̃0 = c̃0 + ρh̃0c̃0 + · · · , (64)

h̃∆ = c̃∆ +
1

3
ρ(h̃∆c̃∆ + 2H̃DC̃D) + · · · , (65)

and

H̃D = C̃D +
1

3
ρ(h̃∆C̃D + H̃D c̃∆ + H̃DC̃D) + · · · , (66)

with similar equations for the transforms of the higher order terms.
We know that

h0(R) = −1, R < σ, (67)

h0(R) → 0, R → ∞, (68)

c0(R) → 0, R → ∞, (69)

h∆(R) = 0, R < σ, (70)

h∆(R) → 0, R → ∞, (71)

c∆(R) → 0, R → ∞, (72)

and

hD(R) = 0, R < σ, (73)

hD(R) → 0, R → ∞, (74)

cD(R) →
βµ2

R3
, R → ∞. (75)
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Equations (73)–(75) are fine but we are interested in HD(R) and CD(R) rather than in hD(R)
and cD(R). It is easy to show that

HD(R) = −3K, R < σ, (76)

HD(R) → 0, R → ∞, (77)

CD(R) → 0, R → ∞, (78)

where

K =

∞
∫

σ

hD(R)dR

R
. (79)

The parameter, K, is independent of R but depends on T , ρ, ǫ, etc., and is not known until the
problem is solved.

We can establish an interesting result for C̃D(0). We know that

cD(R) = CD(R)−
3

R3

R
∫

0

CD(R′)R′2dR′. (80)

Using equations (75) and (78) it follows that

βµ2

R3
= −

3

R3

∞
∫

0

CD(R′)R′2dR′. (81)

From this, we have

−
1

3
ρC̃D(0) = y. (82)

6. Some exact results for ǫ

Onsager’s expression is a special case of the exact result [10, 11]

(ǫ− 1)(2ǫ+ 1)

9ǫ
=

4πβρ

9

〈M2〉

N
, (83)

where M is the total dipole moment of the dielectric. Write this as

(ǫ− 1)(2ǫ+ 1)

9ǫ
= ygK . (84)

The parameter gK is called the Kirkwood gK factor. The gK factor can be written as an integral,

gK =
〈M2〉

Nµ2
= 1 +N〈ê1 · ê2〉 (85)

yielding

gK = 1 +
1

3
ρ

∫

h∆(R)dR = 1 +
1

3
ρh̃∆(0) (86)

so that
(ǫ − 1)(2ǫ+ 1)

9ǫ
= y

[

1 +
1

3
ρh̃∆(0)

]

. (87)

The Onsager approximation consists in neglecting the contribution of h∆(R).
Some other interesting exact results for ǫ can be obtained using the OZ equation given above.

We can use the truncated versions of the expressions for h0, h∆, and hD, namely,

h̃0 = c̃0 + ρh̃0c̃0 , (88)
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h̃∆ = c̃∆ +
1

3
ρ(h̃∆c̃∆ + 2H̃DC̃D), (89)

and

H̃D = C̃D +
1

3
ρ(h̃∆C̃D + H̃D c̃∆ + H̃DC̃D). (90)

The missing terms do not contribute. Solving the truncated equation (89) for h̃∆ gives

h̃∆ =
c̃∆ + 2

3ρH̃DC̃D

1− 1
3ρc̃∆

. (91)

Solving equation (90) for H̃D gives, for k = 0,

H̃D(0) =
C̃D(0)

(x− y)(x+ 2y)
, (92)

where x = 1− 1
3ρc̃∆(0) and equations (82) and (91) have been used.

Equation (91) can be rewritten as

1 +
1

3
ρh̃∆ =

2
9ρ

2H̃DC̃D

1− 1
3ρc̃∆

. (93)

Thus,

x

[

1 +
1

3
ρh∆(0)

]

= 1−
2

3
ρH̃(0)y. (94)

Using equation (92) yields

x+ y

(x− y)(x + 2y)
= 1 +

1

3
ρh̃∆(0) =

(ǫ − 1)(2ǫ+ 1)

9yǫ
. (95)

The solution of this equation can be verified to be

x = y
ǫ+ 2

ǫ− 1
= 1−

1

3
ρc̃∆(0) (96)

or
ǫ− 1

ǫ+ 2
=

y

1− 1
3ρc̃∆(0)

. (97)

Hence, the Clausius-Mossotti result is obtained by neglecting c∆(R).
Finally

1

3
ρH̃D(0) = −

y

(x− y)(x+ 2y)
(98)

or
1

3
ρH̃D(0) = −

(ǫ− 1)2

9ǫy
. (99)

These three routes to ǫ may not be consistent for a given approximation. However, they will be
consistent if the OZ relation is satisfied.

Note also, that we have obtained exact expressions for h̃∆(0), H̃D(0), c̃∆(0), and C̃D(0)!

7. The mean spherical approximation for the dipolar hard sph ere fluid

Because the MSA is a linearized approximation, 1, ∆, and D are a complete basis set for the
MSA. Thus, equations (88)–(90) can be employed. The MSA is

h0 = −1, R < σ, (100)

c0 = 0, R > σ, (101)

h∆ = 0, R < σ, (102)

c∆ = 0, R > σ, (103)
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and

HD = −3K, R < σ, (104)

CD = 0, R > σ. (105)

These equations were first obtained and solved by Wertheim [12].
The first thing to note is that h0 and c0 are decoupled from equations (89) and (90). Equations

(100) and (101) are the Percus-Yevick (PY) approximation for a hard sphere (HS) fluid. Thus,

h0(R) = hPY
HS (R). (106)

Algorithms for calculating hPY
HS (R) = gPY

HS (R)−1, that are based on the formulae of Thiele [13] and
Wertheim [14, 15], have been given previously [16, 17]. The other two equations may be solved by
introducing the new functions,

h+(R) =
1

3K

[

HD(R) +
1

2
h∆(R)

]

(107)

and

h−(R) =
1

3K
[HD(R)− h∆(R)]. (108)

After a little algebra, the decoupled equations,

h̃+ = c̃+ + 2Kρh̃+c̃+ (109)

and
h̃− = c̃− −Kρh̃−c̃− (110)

follow. The MSA approximation consists of

h+ = −1, R < σ, (111)

c+ = 0, R > σ (112)

and

h− = −1, R < σ, (113)

c− = 0, R > σ. (114)

Hence,
h+(R; ρ) = hPY

HS (R; 2Kρ) (115)

and
h−(R; ρ) = hPY

HS (R;−Kρ), (116)

where hPY
HS (R; ρ) are the PY hard sphere correlation functions. The equations for c+ and c− are

similar. The contact values of h+(R; ρ) and h(R; ρ) are given by

h+(σ; ρ) = Kη
5− 4Kη

(1− 2Kη)2
(117)

and

h−(σ; ρ) = −Kη
5 + 2Kη

2(1 +Kη)2
, (118)

where η = πρσ3/6.
The algorithms of Smith et al. [16, 17] can be used. These algorithms are robust and, with a

small change, give sensible results, even for the negative densities required by equation (116). The
required change is that the one line in the program where a cube root of a quantity involving η
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is taken, the instruction should be changed so that when η is negative, the absolute value of η is
used and the resulting cube root is multiplied by −1.

Thus,
h∆(R) = 2K

[

hPY
HS (R; 2Kρ)− hPY

HS (R;−Kρ)
]

(119)

and

HD(R) = 2K

[

hPY
HS (R; 2Kρ) +

1

2
hPY
HS (R;−Kρ)

]

. (120)

The contact values of h∆(R) and HD(R) follow from equations (117) and (118) together with

gPY
HS (σ; ρ) =

1 + η/2

(1− η)2
. (121)

The function that we want is hD(R), not HD(R). This can be calculated from equation (57). In
particular, the contact value of hD(R) is

hD(σ) = HD(σ) + 3K. (122)

The parameter K is not yet specified but we are in a position to do so now. Using equation (82)
and

1− ρc̃PY
HS (0) =

(1 + 2η)2

(1− η)4
(123)

yields
(1 + 4Kη)2

(1− 2Kη)4
−

(1 − 2Kη)2

(1 +Kη)4
= 3y, (124)

which specifies K, which has been renormalized so that it is dimensionless. Note that 0 < Kη < 1/2.
When Kη = 0, y = 0 and when Kη = 1/2, y = ∞.

Figure 2. Correlation functions for the dipolar hard sphere fluid for ρσ3
= 0.9. The points given

by solid and open circles are the simulation results [18, 19] for βµ2
= 0 (hard spheres) and βµ2

=

1, respectively. The solid and broken curves give the results of the MSA and equations (125)
and (126), respectively, for βµ2

= 1.

The correction functions for the dipolar hard sphere fluid that follow from the MSA are plotted
and compared with simulation results [18, 19] in figure 2 for a representative case. The MSA gives
fairly accurate results for g0(R). The simulation results for g0(R) for dipolar hard spheres are very
nearly equal to those for hard spheres but are slightly larger. Hence, one prediction of the MSA is
that g0(R) for dipolar hard spheres is independent of the magnitude of the dipole moment and is
equal to the radial distribution function of a hard sphere fluid. This prediction is not exact but is
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quite well satisfied by the simulation results. However, the MSA results for hD(R) and h∆(R) are
rather poor. Interestingly, the approximations, called LEXP,

hD(R) = gPY
HS (R)hMSA

D (R) (125)

and
h∆(R) = gPY

HS (R)hMSA
∆ (R), (126)

are much better.

8. MSA thermodynamic functions

Using the compressibility route, the thermodynamic functions are as follows:

β
∂p

∂ρ
=

(1 + 2η)2

(1 − η)4
. (127)

When the compressibility equation is used, this is a very poor result since the MSA incorrectly
predicts, that there is no contribution from the dipolar part of the intermolecular potential.

Using the pressure route,

pV

NkT
=

1 + 2η + 3η2

(1− η)2
−

4π

3
βρµ2

∞
∫

σ

hD(R)

R
dR, (128)

which becomes
pV

NkT
=

1 + 2η + 3η2

(1− η)2
− 3Ky, (129)

and, using the energy route,
E

NkT
=

3

2
− 3Ky. (130)

Figure 3. Free energy of the dipolar hard sphere fluid for ρσ3
= 0.9 as a function of βµ2/σ3.

The points are simulation results [19]. The dashed curves marked MSA, 2, and 2+3 give the
results of the MSA and perturbation theory when truncated after 2 and 3 terms, respectively.
The solid curve gives the results of the Padé extrapolation of Rushbrooke et al. [24].

One interesting characteristic of the MSA is that the energy can be integrated analytically to
give the (energy equation) free energy and this free energy can be differentiated to yield the (energy
equation) pressure. After a little algebra, the results are

A−AHS

NkT
= −K2η

[

8
(1 +Kη)2

(1− 2Kη)4
+

(2−Kη)2

(1 +Kη)4

]

(131)
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and
p− pHS

ρkT
= Kη2

[

8
(1 +Kη)2

(1− 2Kη)4
+

(2−Kη)2

(1 +Kη)4

]

− 3Ky, (132)

where AHS and pHS are the hard sphere free energy and pressure, respectively. Note that K has
been renormalized so that it is dimensionless. The free energy that results from the MSA is plotted
and compared with simulation results [20] in figure 3. As is usually the case, the thermodynamics
obtained from the energy equation are more accurate than those obtained from the compressibility
or pressure equations.

9. MSA dielectric constant

The dielectric constant can be calculated by the three routes given above. All three routes yield
the same expression for ǫ. For example, starting with equation (97), we obtain

3y
ǫ+ 2

ǫ− 1
=

(1 + 4Kη)2

(1− 2Kη)4
+ 2

(1− 2Kη)2

(1 +Kη)4
. (133)

Solving for ǫ gives

ǫ =
(1 + 4Kη)2(1 +Kη)4

(1 − 2Kη)6
. (134)

Some MSA results for ǫ are plotted in figure 1. The agreement of the MSA result with the simulation
results is better than for the CM and Onsager theories but the MSA results are still too small.

Expanding the MSA expression for ǫ gives

ǫ − 1

ǫ + 2
= y −

15

16
y3 + · · · , (135)

which is correct to order y3. By contrast, the CM result is

ǫ− 1

ǫ+ 2
= y (136)

and the Onsager result is, on expansion,

ǫ− 1

ǫ+ 2
= y − 2y3 + · · · . (137)

There is no term of order y3 in the CM theory. The Onsager coefficient of the y3 term is too
negative.

Of course, approximations that are better than the MSA approximation can be used. For
example, Fries and Patey [21] used the hypernetted chain (HNC) approximation. The HNC results
are better than the MSA results but the calculations are lengthy and, in contrast to the theories
considered here, do not yield analytic results. It is to be noted that other combinations of β, µ,
and ρ, besides y, appear when the HNC approximation is employed. This is true of other more
general theories, for example the perturbation theory that is considered below.

10. Perturbation theory for dipolar hard spheres

Perturbation theory has been found to be very successful for simple fluids. It is natural to
wonder if perturbation theory might also be useful for a polar fluid. The answer is yes but some
qualifications are necessary.

By expanding the free energy in powers of β, the following result is obtained

A = AHS + β2µ4A2 + β3µ6A3 + · · · , (138)
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where AHS is the hard sphere free energy. The quantities A2 and A3 are given by

A2

NkT
= −

1

4
ρ

∫

〈D2(12)〉

R6
gHS(R)dR = −

1

6
ρ

∫

gHS(R)

R6
dR (139)

and
A3

NkT
=

1

6
ρ2

∫

〈D(12)D(13)D(23)〉

(R12R13R23)3
gHS(123)dr2dr3 =

1

54
ρ2Iddd , (140)

where gHS(R) and gHS(123) are the pair and triplet distribution functions of the hard sphere fluid,
and

Iddd =

∫

1 + 3 cos θ1 cos θ2 cos θ3
(R12R13R23)3

gHS(123)dr2dr3 , (141)

where the θi are the three interior angles of the triangle formed by the three sides, Rij . The angle
θ1 is the angle opposite the side R23, etc. Barker’s theorem has been used to perform/simplify
the angular integrations. The term of order β vanishes on angular integration, as do some of
the terms of order β2 and β3 that formally contribute. Barker et al. [22] and Tani et al. [23]
have calculated Iddd by simulation and direct integration via the superposition approximation,
gHS(123) = gHS(12)gHS(13)gHS(23). A numerical fit of their results is given by

Iddd =
5π2

3
σ6 1 + 1.12754ρ∗ + 0.56192ρ∗2

1− 0.05495ρ∗ + 0.13332ρ∗2
, (142)

where ρ∗ = ρσ3.
As is seen in figure 3, this truncated series gives poor results. However the Padé,

A = AHS + β2µ4 A2

1− βµ2 A3

A2

, (143)

that was proposed by Rushbrooke et al. [24], gives excellent agreement with the simulation results.
A Padé tends to work best for alternating series. For example, the series 1−1+1−1+· · · is summed
correctly to 1/2 by a Padé. Patey and Valleau [20] refer to the Padé results as “absurdly successful”.
This is meant as a positive comment and is a fair observation. Unfortunately, a Padé does not work
well for the correlation functions. Some thoughts about the development of approximations that
are consistent with equations (143) have been considered by Barker and Henderson [25]. However,
nothing much has come of these efforts.

The dielectric constant can be calculated from

(ǫ− 1)(2ǫ+ 1)

9ǫ
= y

[

1 +
9Idd∆
16π2

+ · · ·

]

(144)

where [22, 23]

Idd∆ =

∫

3 cos2 θ3 − 1

(R13R23)3
gHS(123)dr2dr3 =

17π2

9
σ6 1− 0.93952ρ∗ + 0.36714ρ∗2

1− 0.92398ρ∗ + 0.23323ρ∗2
. (145)

This gives poor results, even with a Padé. However, the direct expansion, due to Tani et al. [23],

ǫ = 1 + 3y + 3y2 + 3y3
(

9Idd∆
16π2

− 1

)

, (146)

gives very good results, as is in figure 1.

Perturbation theory can be recast by subtracting the MSA contributions from the perturbation
terms and writing the perturbation theory as a series of corrections to the MSA. This was done by
Henderson et al. [26]. The results are similar to those of the perturbation theory considered here.
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11. A few remarks

The mean spherical approximation and perturbation theory are pleasing extensions of the
classic theories of Clausius and Mossotti and Onsager for polar fluids. Not only do they make
more accurate predictions for the dielectric constant of a polar fluid but they predict the other
thermodynamic properties of polar fluids. Many of these ideas are applicable to polar fluids with
a dispersion interaction. The simplest system of the kind is the dipolar Yukawa fluid. Szalai et
al. [27] and Mate et al. [28] have considered this model to be polar fluid.

The molecules considered here are unpolarizable dipoles. Onsager considered polarizable dipoles.
Valiskó et al. have generalized some of the expressions presented here for polarizable dipoles and
have made simulations for a polarizable dipolar hard sphere fluid.

The author had hoped to include his lecture notes on liquid crystals as an example of a molecular
fluid with a nonspherical hard core. However, despite some searching, these have not been found.
If they do come to light, they can form a fourth part of this series and the “concerto” with three
movements can become a “symphony” with four movements.
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Деякi простi результати для властивостей полярних плинiв

Д. Гендерсон

Вiддiл хiмiї та бiохiмiї, унiверситет Брiгема Янга, Прово, штат Юта 84602

Пiдсумовується лекцiйний матерiал автора, присвячений кореляцiйним функцiям i термодинамi-
цi простого полярного плину. Особлива увага придiляється дипольному плину твердих сфер i
середньо-сферичному наближенню, а також зв’язку цих результатiв iз формулами Клаузiуса-Мосоттi
та Онзагера для дiелектричної сталої. Попереднi викладки iз цих лекцiй, Condens. Matter Phys., 2009,
12, 127; ibid., 2010, 13, 13002, мiстили результати, якi не були загальновiдомими. Є надiя що ця третя

i, ймовiрно, остання викладка буде такою ж корисною, об’єднуючи кiлька результатiв i роблячи їх

доступними для ширшої аудиторiї, а також представляючи кiлька нових результатiв.

Ключовi слова: кореляцiйнi функцiї, полярнi плини, термодинамiчнi функцiї, дiелектрична стала
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