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In this article we present new formalism for high-order coupled cluster method (CCM) calculations for “gen-
eralized” ground-state expectation values and the excited states of quantum magnetic systems with spin
quantum number s > 1

2
. We use high-order CCM to demonstrate spontaneous symmetry breaking in the

spin-half J1–J2 model for the linear chain using the coupled cluster method (CCM). We show that we are able
to reproduce exactly the dimerized ground (ket) state at the Majumdar-Ghosh point (J2/J1 =

1

2
) using a Néel

model state. We show that the onset of dimerized phase is indicated by a bifurcation of the nearest-neighbour
ket- and bra-state correlation coefficients for the nearest-neighbour Néel model state. We show that ground-
state energies are in good agreement with the results of exact diagonalizations of finite-length chains across
this entire regime (i. e., J1 > 0 and J2 6 1

2
). The effects of the bifurcation point are also observed for the sub-

lattice magnetization for the nearest-neighbour model state. Finally, we use the new formalism for the excited
state in order to obtain the excitation energy as a function of J2/J1 for the nearest-neighbour model state by
solving up to the LSUB14 level of approximation. We obtain an extrapolated value for the excited-state energy
gap of −0.0036 at J2/J1 = 0.0 and of 0.2310 at J2/J1 = 0.5. We show that an excitation energy gap opens
up at J2/J1 ≈ 0.24, although the gap only becomes large at J2/J1 ≈ 0.4.
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1. Introduction

The formation of dimer- and plaquette-ordered singlet ground states (so-called valence-bond
crystal (VBC) states) is an interesting and important topic in quantum spin systems. Often,
the formation of enhanced dimer or plaquette correlations is driven by frustration, which can
increase quantum fluctuations and which may result in such gapped rotationally-invariant quantum
paramagnetic states [1–25]. Usually, VBC states are complicated quantum many-body states, see,
e. g., the Heisenberg antiferromagnet on the star lattice [10,24,25]. However, for certain systems
the VBC states are simple exact product eigenstates of the underlying Heisenberg interaction
Hamiltonian. Examples for the appearance of such exact VBC product eigenstates are the spin-half
J1–J2 model on the linear chain [1–8] at the point J2/J1 = 1

2 (the so-called Majumdar-Ghosh point)
and the Shastry-Sutherland model [9–23]. Furthermore, it is often useful to distinguish between
VBC phases that have the same translational symmetry as the spin Hamiltonian and those that
spontaneously break the symmetry of the underlying spin lattice. Examples of the former case are
the Shastry-Sutherland model and the Heisenberg antiferromagnet on the star lattice, whereas the
J1–J2 model on the linear chain is an example of spontaneous symmetry breaking.

Another mechanism for the formation of non-magnetic dimer or plaquette VBC ground states
that does not involve frustration is the competition between non-equivalent antiferromagnetic
nearest-neighbor bonds. This may lead to the formation of local singlets of two (or four) coupled
spins if the strengths of the non-equivalent bonds differ sufficiently [10,26–38]. By contrast to
frustration, which yields competition in quantum as well as in classical spin systems, this type of
competition is present only in quantum systems. The symmetry of the ground state follows the
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symmetry of the Hamiltonian in such cases.
In this article we focus on the application of the coupled cluster method (CCM) [23,35,37,39–

85] to the spin-half, one-dimensional J1–J2 model. The Hamiltonian for this spin-half model has
nearest-neighbor bonds of strength J1 and next-nearest-neighbor bonds of strength J2 is given by

H =
J1

2

∑

i,ρ1

si · si+ρ1
+

J2

2

∑

i,ρ2

si · si+ρ2
, (1)

where the index i runs over sites on the lattice counting, ρ1 runs over all nearest-neighbors to i,
and ρ2 runs over all next-nearest-neighbors to i. Here we use a Néel model state in which nearest-
neighbor spins on the linear chain are antiparallel. We rotate the spin coordinates of the ‘up’
spins so that notationally they become ‘down’ spins in these locally defined axes. The relevant
Hamiltonian in these rotated coordinates is then given by

H =−
J1

2

∑

i,ρ1

(

sz
i s

z
i+ρ1

+
1

2

{

s−i s−i+ρ1
+ s+

i s+
i+ρ1

}

)

+
J2

2

∑

i,ρ2

(

sz
i s

z
i+ρ2

+
1

2

{

s+
i s−i+ρ2

+ s−i s+
i+ρ2

}

)

.

(2)
Henceforth we put J1 = 1 and consider J2 > 0.

The ground-state properties of this system have been studied using methods such as exact
diagonalizations [2,7], DMRG [3–5,55], CCM [8,52,54,78,85], and field-theoretical approaches [5]
(see [5,6] for a general review). Note that previous CCM studies of the model considering only
independent-spin product model states that conserve the lattice symmetry are reported in [52,79].
At J2/J1 = 0 we have the unfrustrated Heisenberg antiferromagnet, where the exact solution is
provided by the Bethe Ansatz. The ground state is gapless and the spin-spin correlation function
〈si · sj〉 decays slowly to zero according to a power-law, i. e. no true Néel-like long-range order is
observed. In the region J2/J1 > 0 the nearest-neighbor (J1) and next-nearest-neighbor interactions
(J2) compete, thus leading to frustration. At J2/J1 = 0.2411(1) the model exhibits a transition
to a two-fold degenerate gapped dimerized phase with an exponential decay of the correlation
function 〈si · sj〉 [2,3,5,6]. This state breaks the translational lattice symmetry. At the Majumdar-
Ghosh point J2/J1 = 1

2 there are two degenerate simple exact dimer-singlet product ground states
corresponding to the dimerized product state for the Hamiltonian of equation (2) [1].

We note again that we treat the J1–J2 model in the regions J1 > 0 and 0 6 J2 . 0.6 using the
CCM in this article. We show how the dimerized ground-state at J2/J1 = 1

2 is exactly reproduced
by the CCM ket-state wave function. We consider the CCM correlation coefficients and show that
the onset of the dimerized phase is indicated by a bifurcation of nearest-neighbour correlation
coefficients. Finally, we demonstrate that the excited-state energy gap is predicted well by the
CCM using a localized approximation scheme. New high-order CCM formalism for the ground and
excited states for spin quantum number s > 1

2 is presented in the appendices.

2. Method

The details of the practical application of high-order coupled cluster method (CCM) formalism
to lattice quantum spin systems are given in [60,64,69,74] and also in the appendices to this article.
The high-order CCCM code is freely available online [73]. However, it is important for the reader
who is not interested in the technical detail to note at this point that the exact ket and bra ground-
state energy eigenvectors, |Ψ〉 and 〈Ψ̃|, of a general many-body system described by a Hamiltonian
H , are given by

H |Ψ〉 = Eg |Ψ〉 , 〈Ψ̃|H = Eg〈Ψ̃| . (3)

Furthermore, the ket and bra states are parametrized within the single-reference CCM as follows:

|Ψ〉 = eS |Φ〉 , S =
∑

I 6=0

SIC
+
I ,

〈Ψ̃| = 〈Φ|S̃e−S , S̃ = 1 +
∑

I 6=0

S̃IC
−
I . (4)
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One of the most important features of the CCM is that one uses a single model or reference state
|Φ〉 that is normalized. This, in turn, leads to a normalization condition for the ground-state bra
and ket wave functions (〈Ψ̃|Ψ〉 ≡ 〈Φ|Φ〉 = 1). The model state is required to have the property of
being a cyclic vector with respect to two well-defined Abelian subalgebras of multi-configurational

creation operators {C+
I } and their Hermitian-adjoint destruction counterparts {C−

I ≡ (C+
I )†}.

The CCM formalism is exact in the limit of inclusion of all possible multi-spin cluster corre-
lations within S and S̃, although this is usually impossible to achieve practically. It is therefore
necessary to utilize various approximation schemes within S and S̃. Here we use the localized
LSUBm scheme, in which all multi-spin correlations over distinct localities on the lattice defined
by m or fewer contiguous sites are retained. Another important feature of the method is that the
bra and ket states are not always explicitly constrained to be Hermitian conjugates when we make
such approximations, although the important Helmann-Feynman theorem is always preserved. We
remark that the CCM provides results in the infinite-lattice limit N → ∞ from the outset.

The manner in which high-order CCM may be solved has been discussed extensively elsewhere.
For example, we refer the interested reader to [64,69] for additional extensive discussions of high-
order CCM for the ground and excited states. Recently, however, considerable extensions to the
basic high-order formalism for quantum spin systems have also been made. Hence, the formalism
and computational algorithms used to derive and solve CCM ket-state and bra-state equations
to high orders of approximation are also discussed in detail in Appendices A–C. Furthermore,
we present new high-order formalism for “generalized” expectation values using the CCM in Ap-
pendix D. The manner in which these high-order techniques may be parallelized in order to reach
extremely high orders of approximation for the ground state is considered in Appendix E. We
remark that the excited state is constructed by solving the Schrödinger equation for the excited-
state, namely, H |Ψe〉 = Ee|Ψe〉, and where |Ψe〉 = Xe eS |Φ〉. Xe is called the excited-state operator
and it may be used (as here) to form an excited state of different symmetry to the ground state.
The basic CCM formalism for the excited state [64] is presented in Appendix F. Again, high-order
CCM may be carried out for the excited state in an analogous manner as for the ground state.
New high-order CCM formalism for the excited state for s > 1

2 is given in Appendix G. The man-
ner in which the excited-state equations are derived and solved is given in Appendix H. Finally,
this problem may be solved using direct iteration of the CCM equations using a “shifted” power
iteration approach and this approach is presented in Appendix I.

As mentioned previously, we use a Néel model state in which nearest-neighbour spins are
antiparallel. Furthermore, the ground state lies in the subspace sz

T ≡
∑

i sz
i = 0, whereas the

excited state has sz
T ≡

∑

i sz
i = +1. We use a “doubled” unit cell including two neighboring sites

for this spin-half system on the linear chain at points (0,0,0) and (1,0,0) and a single Bravais vector
(2,0,0)T to take into account the symmetry breaking. Thus, there are two distinct types of two-
spin nearest-neighbor ket-state correlation coefficients, namely, those connecting the sites inside
the unit cell and those connecting different unit cells. These coefficients are denoted as Sa

2 and Sb
2 .

It is straightforward to prove [85] that the ground state at J2/J1 = 1
2 is obtained exactly by setting

Sa
2 = 1 and all other coefficients equal to zero. Starting from J2/J1 = 1

2 we are able to track this
exact solution at J2/J1 = 1

2 within a certain LSUBm approximation for other values of J2/J1.

3. Results

The results for the nearest-neighbor ket-state correlation coefficients in LSUB14 approximation
are presented in figure 1. Clearly, we see that the exact dimerized product-state solution for the
ket ground state is obtained within LSUB14 level of approximation (and, indeed, at all LSUBm
approximations with m > 2) at J2/J1 = 1

2 , i. e. Sa
2 = 1 and all other coefficients equal to zero.

Moving away from J2/J1 = 1
2 we still find a CCM ground state that breaks the lattice symmetry.

However, this dimerized state deviates from the simple product state, i. e. Sa
2 6= 1 and other

non-zero coefficients SI occur.

Furthermore, the solution (i. e. Sa
2 = Sb

2) having full translational symmetry is the only solution
below a critical point J2/J1|c1

(< 1
2 ). Henceforth, we shall refer to this solution below J2/J1|c1

as the
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Figure 1. CCM results at the LSUB14 level of approximation for the ground-state nearest-
neighbor ket-state correlation coefficients of the spin-half J1–J2 antiferromagnet on the linear
chain. The nearest-neighbor coefficients Sa

2 and Sb

2 of the symmetry breaking dimerized solution
are shown by the full lines. Results for the usual (‘Néel-type’) solution in the region J2/J1 >
J2/J1|c1 (where Sa

2 = Sb

2) are shown by the dotted line. Below the (bifurcation) CCM critical
point at J2/J1|c1 there is only the solution with Sa

2 = Sb

2. A termination point J2/J1|t of the
CCM equations for the dimerized solution, at which point the real solution to the CCM equations
terminates, is indicated by the boxes.

Figure 2. CCM results at the LSUB14 level of approximation for the ground-state nearest-
neighbor bra-state correlation coefficients of the spin-half J1–J2 antiferromagnet on the linear
chain. The nearest-neighbor coefficients S̃a

2 and S̃b

2 of the dimerized solution are shown by the
full lines. Results for the usual (‘Néel-type’) solution for J2/J1 > J2/J1|c1 (where S̃a

2 = S̃b

2) are
shown by the dotted line. Below the critical point at J2/J1|c1 both solutions coincide. Results for
these bra-state correlation coefficients diverge at the critical point J2/J1|c1 . Another termination
point J2/J1|t is shown by the boxes on the right-hand side of the figure.

“usual (‘Néel-type’) solution” because previous CCM calculations [52,54] for the J1–J2 model have
considered the non-symmetry breaking case only. For larger values of J2/J1 a CCM termination
point is observed at J2/J1|t (> 1

2 ), shown by the boxes in figure 1. At this point, the real solution
of the CCM dimerized solution is terminated. These CCM results indicate that a dimerized phase
exists over a finite range of J2/J1, which is in agreement with the known results, see e. g. [3,5,6].
Qualitatively similar results are observed at other levels of LSUBm approximation for the ket-state
correlation coefficients as a function of J2/J1. The results for J2/J1|c1

and J2/J1|t are shown in
table 1. It is obvious that the CCM critical point J2/J1|c1

becomes smaller (i. e., becomes closer
to the true critical point J2/J1 = 0.2411(1) [3,6]) with higher orders m of LSUBm approximation.
However, the critical point J2/J1|c1

is still significantly too high even at the LSUB14 level of
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Table 1. CCM results for the positions of the range of the dimerized phase.

LSUBm J2/J1|c1 J2/J1|t
2 0.476 –

4 0.475 0.558

6 0.464 –

8 0.457 0.741

10 0.450 0.640

12 0.443 0.596

14 0.436 0.576

approximation. This subject is considered in more detail when we discuss the CCM results for the
excitation energy gap below. On the side of J2/J1 > 1

2 the existence of termination points can
be related to the appearance of incommensurate spiral spin correlations at J2/J1 > 0.6 [5,7,55,78]
that are not taken into account in the model state used here.

The nearest-neighbor bra-state correlation coefficient at the LSUBm level of approximation
at J2/J1 = 1

2 has S̃a
2 = 1/4 with m > 4. This is shown in figure 2 for the LSUB14 level of

approximation. We find that the bra-state solution for the nearest-neighbor correlation coefficients
is close to 1/4 over the range J2/J1|c1

< J2/J1 6 J2/J1|t. However, we find that the nearest-
neighbor correlation coefficient diverges as J2/J1 → J2/J1|c1

and this is also shown in figure 2.
Again, the usual (‘Néel-type’) solution (S̃a

2 = S̃b
2) is obtained for J2/J1 < J2/J1|c1

. The upper
CCM termination point at J2/J1|t is also shown in figure 2 by the boxes on the right-hand side
of the figure. Once more, qualitatively similar results are observed at other levels of LSUBm
approximation for the bra-state correlation coefficients as a function of J2/J1.

Figure 3. CCM results for the ground-state energy of the spin-half J1–J2 antiferromagnet with
J1 = 1 on the linear chain for the LSUBm approximation with m = {6, 8, 10, 12, 14}. Results of
exact diagonalizations for N = 28 and N = 32 number of sites are also shown.

We now consider the ground-state energy of this system in the dimerized regime, and results of
LSUBm approximation are shown in figure 3 as a function of J2/J1. We observe that the LSUBm
converge rapidly with increasing level of approximation. Furthermore, we see that CCM results
compare well to those results of exact diagonalizations in the regime 0 6 J2/J1 6 1

2 . We study
the details of the ground state energy for the new dimer solution and the usual (‘Néel-type’)
solution for the LSUB14 level of approximation in figure 4. Again, we remark that our solution
is an exact ground eigenstate at J2/J1 = 1

2 . The exact ground-state energy of Eg/N = −0.375J1

is obtained at the point J2/J1 = 1
2 at all levels of approximation, as expected. We also see that

ground-state energy of the usual (‘Néel-type’) CCM solution in which Sa
2 = Sb

2 at the LSUB14 level
of approximation actually lies below this exact solution. This indicates (i) that the usual (‘Néel-
type’) CCM solution is a relatively poor choice at this point; and, (ii) that the CCM ground-state
energy does not fulfill the variational principle [62]. Furthermore, we see that CCM dimer solution
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Figure 4. CCM results for the ground-state energy of the spin-half J1–J2 antiferromagnet with
J1 = 1 on the linear chain at the LSUB14 level of approximation. The dimerized and usual
(‘Néel-type’) solutions are shown in this figure. Results of exact diagonalizations for N = 28
and N = 32 number of sites are also shown. The CCM bifurcation and termination points for
the dimerized solution are shown by the boxes.

compares extremely well to results of exact diagonalizations for N = 28 and N = 32 sites in the
dimerized regime shown in figure 4. It certainly provides far better results than those of the usual
(‘Néel-type’) CCM solution beyond the critical point at J2/J1|c1

.

Figure 5. CCM results for the sublattice magnetization M of the spin-half J1–J2 antiferromagnet
on the linear chain. Below the critical point at J2/J1|c1 the results for the usual (‘Néel-type’)
and the dimerized solution coincide. At J2/J1|c1 the sublattice magnetization of the dimerized
solution exhibits a jump, whereas we remark that M for the usual (‘Néel-type’ – not shown)
solution is continuous.

The results for the sublattice magnetization M of this model are presented graphically in
figure 5. Since the one-dimensional J1–J2 model does not possess Néel long-range order for any value
of J1, J2 > 0 the true value is M = 0. As is known from previous CCM calculations [52,64,78,79],
the sublattice magnetization is nonzero (but small) using the usual Néel model state. However, the
correct result M = 0 can be obtained [78,79] by extrapolating the ‘raw’ LSUBm data to m → ∞.
Indeed we see that the CCM LSUBm values for M are non-negligible for Néel model state in
the region J2/J1 < J2/J1|c1

. It is also clear that M decreases with the level of approximation
m approaching the true value M = 0 and that increasing the strength J2 of the frustration
weakens the magnetic order. More interestingly, we find that the sublattice magnetization behaves
discontinuously at J2/J1|c1

by tracking the lattice symmetry-breaking dimerized solution, and
then remains near to zero at LSUB10 to LSUB14 levels of approximation across the entire range
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J2/J1|c1
< J2/J1 < J2/J1|t. (At the lower LSUB8 level of approximation the results for the

sublattice magnetization differ from zero by a small amount in a small region above J2/J1 > 1
2 .)

On the other hand, by tracking the usual (‘Néel-type’) solution it is found (see [85]) that M changes
continuously with J2 and it is larger than for the dimerized solution for J2/J1|c1

< J2/J1 < 1
2 . This

behavior of M is another indication that the dimerized CCM solution describes the true physics
of the model much better than the usual Néel solution. We note finally that the CCM sublattice
magnetization is exactly zero at the Majumdar-Ghosh point J2/J1 = 1

2 at all levels of LSUBm
approximation using the dimerized product state.

Figure 6. CCM results for the excited-state energy gap, ε, of the spin-half J1–J2 antiferromagnet
on the linear chain at J2/J1 = 0.0 and J2/J1 = 1

2
.

Figure 7. CCM results for the excited-state energy gap, ε, of the spin-half J1–J2 antiferromagnet
on the linear chain plotted with respect to J2/J1.

We consider the results for the excitation energy gap, ε, at J2/J1 = 0 and J2/J1 = 1
2 in

figure 6. We find that the values for ε at J2/J1 = 0 are given by 0.56040, 0.38346, 0.29025, 0.23310,
0.19458, 0.16689 at the LSUBm levels of approximation with m = {4, 6, 8, 10, 12, 14}. These results
agree with previous results up to the LSUB12 level of approximation for the spin-half linear chain
Heisenberg model [64]. Furthermore, we find that an quadratic extrapolation rule at J2/J1 = 0.0
gives −0.0036, also shown in figure 6. This result is in reasonable agreement with the exact result
that is known is to be zero from the Bethe Ansatz at this point. By contrast, we find values for
ε at J2/J1 = 1

2 of 0.35250, 0.34170, 0.30548, 0.28732, 0.27559, and 0.26760 at the LSUBm levels
of approximation with m = {4, 6, 8, 10, 12, 14}. These results are also shown in figure 6. We also
see from this figure that the simple extrapolation of these results in the limit m → ∞ using a
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quadratic function gives a value for the gap of 0.2310. This result is in agreement with results
of exact diagonalizations that predict a gap of 0.234 [86]. We conclude that the CCM provides
good results for the ground and the excited states at the point J2/J1 = 1

2 for the new “symmetry
breaking solution”.

Results for the excitation energy gap using the LSUBm approximation presented as a function
of J2/J1 are given in figure 7. We see that the gap for all levels of LSUBm approximation is non-zero
and positive in the region J2/J1 6 0.6. We use the quadratic extrapolation rule used in figure 6
that provided reasonable results at J2/J1 = 0 and J2/J1 = 1

2 in order to extrapolate our results at
other values of J2/J1. The results for the extrapolation of LSUBm data with m = {6, 8, 10, 12, 14}
are given in figure 7. (Extrapolations in the region where J2/J1 ≈ J2/J1|c1

are difficult to achieve
accurately and so are not attempted here.) These results show that the gap is negative but close
(i. e., |ε| < 0.003) for a finite region above J2/J1 = 0. Indeed, the gap becomes zero at J2/J1 = 0.238
and then becomes positive and finite for increasing values of J2/J1 above this point.

This is an interesting result because we have obtained a gap for the extrapolated results for the
“usual Néel” solution, i. e., without symmetry breaking. Indeed, this is somewhat disconcerting
at first glance because one expects from the Lieb-Schulz-Mattis theorem that the ground state
is either gapless and non-degenerate or that it is gapped and degenerate for half-integer spin
Heisenberg chains. Hence, one might expect that the gap should appear at that point where we
find symmetry broken solution, namely, for values of J2/J1 greater than J2/J1|c1

. This is clearly
not the case in figure 7. However, we remember that we are starting from a Néel model state and so
we are explicitly breaking the symmetry. Furthermore, we note that we are using the localized (but
systematic) LSUBm approximation scheme in order to include quantum effects. Hence, the gap
is finite when determined at a given level of LSUBm approximation even at J2/J1 = 0, as noted
above. As was also found to be the case for the square and cubic lattice Heisenberg antiferromagnets
[64], the correct solution at J2/J1 = 0 of a gap of zero (i. e., the continuous symmetry breaking
solution) is recovered only when we extrapolate in the limit m → ∞. Hence, this analysis does
not necessarily exclude the possibility of a non-zero extrapolated gap opening up below J2/J1|c1

.
Indeed, our result of J2/J1 = 0.238 is very close to the “true” value J2/J1 = 0.2411(1) from [3,6].

The presence of a gap would be consistent with an “effective system” with residual anisotropy
in the z-direction, namely, on the szsz terms in the Hamiltonian. The J1–J2 model is known
[3] to be a special case of the more general model with anisotropy ∆ on the szsz terms in the
Hamiltonian. Furthermore, the line ∆ = 1 (for J2/J1 < 0.2411) is known [3] to be a boundary
between a Luttinger spin liquid (gapless) for ∆ < 1 and a Néel ordered regime (with a finite gap)
for ∆ > 1. If the “effective system” does indeed have a “residual anisotropy” then we would expect
the value of the boundary to change as well. Indeed, from the results of [64], we would expect
its value in terms of J2/J1 to increase. This is exactly what we find; the spontaneous symmetry
breaking solution occurs at values of J2/J1|c1

, which is well above 0.2411 (as shown in table 1).
Presumably, as we carry out higher and higher orders of approximation then J2/J1|c1

will tend to
J2/J1 = 0.2411(1) [2,3,5,6].

We note that the results for the excitation energy gap in the region J2/J1 > J2/J1|c1
are very

highly converged. The LSUB14 result for the “usual Néel solution” is also given in figure 7. We
see that these results lie much lower than the equivalent LSUB14 result for the dimer solution
for J2/J1 > J2/J1|c1

. Indeed, this usual Néel solution for LSUB14 provides poor results in the
dimerized region. Furthermore, we see that the gap ε only becomes larger in the region J2/J1 > 0.4,
as predicted by DMRG results [5]. However, the peak in the energy gap is predicted by the CCM
to occur at J2/J1 ≈ 0.52, whereas DMRG results [5] clearly indicate that this peak occurs at
J2/J1 ≈ 0.6. This probably indicates that our model state is a poor choice for J2/J1 > 1

2 .

4. Conclusions

We have shown in this article that we can form dimer VBC ground states using the CCM by
considering the spin-half J1–J2 model for the linear chain. We showed that we are able to exactly
reproduce the dimerized ground state at J2/J1 = 0.5. Interestingly, a spontaneous symmetry-
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breaking dimerized CCM solution is observed for J2/J1 < 1
2 , which only becomes equal to the usual

(‘Néel-type’) solution that conserves the lattice symmetry at a CCM critical point J2/J1|c1
. Results

for the bra state correlation coefficients diverged at this point as well. We took this to indicate
the onset of the dimerized ground-state phase that breaks the translational lattice symmetry.
We also found that termination points occurred in the CCM equations for J2/J1 > 1

2 , and we
took this to be an indication of another critical point in this region. Results for the ground-state
energy for the dimerized CCM solution were found to agree extremely well with the results of
exact diagonalizations for N = 28 and N = 32 chains in the dimerized regime. The effects of the
bifurcation point at given levels of LSUBm approximation were also seen in the results for the
sublattice magnetization that demonstrates a discontinuity at J2/J1|c1

.
Results for the excitation energy gap of this model were considered. We found that extrapolated

results for the excitation energy gap at J2/J1 = 0.0 and J2/J1 = 1
2 of −0.0036 and 0.2310,

respectively, were in reasonable agreement with the known results at these points. Interestingly,
results for the extrapolated excitation energy gap indicated that a gap opens up at J2/J1 = 0.238,
which is in excellent agreement with the known result of J2/J1 = 0.2411(1) from other studies
[2,3,5,6]. However, this result was found for the non-symmetry breaking solution to our equations.
Superficially, this result seems to violate the Lieb-Shultz-Mattis theorem, namely, that the ground
state is either gapless and non-degenerate or that it is gapped and degenerate for half-integer spin
Heisenberg chains. Hence, one might expect a gap to occur only when we reach the spontaneous
symmetry breaking solution to our equations, namely, for J2/J1 > J2/J1|c1

. However, we know
already from [64] for the linear-chain, and square- and cubic-lattice antiferromagnets that LSUBm
results yield a gap at a given level of LSUBm approximation. We start from a model state with spins
in the z-direction (explicitly breaking the symmetry) and the zero gap result (i. e., for continuous
symmetry breaking) is only ever reached when we extrapolate the LSUBm results. This “allows”
a gap to form for J2/J1 > 0.238 even for the non-spontaneous symmetry breaking solution to
our CCM equations. We seem to have a new intermediate region from 0.24 < J2/J1 < J2/J1|c1

,
although this is simply an artefact and it will disappear as we increase the approximation level.
However, we are clearly seeing a radical change in the nature of the ground state near to J2/J1 ≈
0.24 that is in good agreement with known results [2,3,5,6]. Results for the excitation energy gap
are also found to become large at J2/J1 ≈ 0.4 in agreement with DMRG [5], and they show that
the model state is probably a poor choice for J2/J1 > 1

2 .
Finally, new high-order CCM formalism for the ground state (including “generalized” expec-

tation values) as well as for the excited state for spin quantum number s > 1
2 is presented in the

appendices.
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A. CCM ground-state formalism

We begin the description of the CCM high-order formalism by noting again that we wish to
solve the Schrödinger equation of equation (3). We remark again that the bra and ket states are
given by equation (4). It may be proven from equations (3) and (4) in a straightforward manner
that the ket- and bra-state equations are thus given by

〈Φ|C−
I e−SHeS |Φ〉 = 0, ∀I 6= 0, (5)

〈Φ|S̃e−S [H, C+
I ]eS |Φ〉 = 0, ∀I 6= 0. (6)

The index I refers to a particular choice of cluster from the set of (NF) fundamental clusters
that are distinct under the symmetries of the crystallographic lattice and the Hamiltonian and
for a given approximation scheme at a given level of approximation. We note that these equations
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are equivalent to the minimization of the expectation value of H̄ = 〈Ψ̃|H |Ψ〉 with respect to the
CCM bra- and ket-state correlation coefficients {S̃I ,SI}. We note that equation (5) is equivalent
to δH̄/δS̃I = 0, whereas equation (6) is equivalent to δH̄/δSI = 0. Furthermore, we note that
equation (5) leads directly to simple form for the ground-state energy given by

Eg = Eg({SI}) = 〈Φ|e−SHeS |Φ〉. (7)

The full set {SI , S̃I} provides a complete description of the ground state. For instance, an arbitrary
operator A will have a ground-state expectation value given as

Ā ≡ 〈Ψ̃|A|Ψ〉 = 〈Φ|S̃e−SAeS |Φ〉 = Ā
(

{SI , S̃I}
)

. (8)

The similarity transform of A is given by,

Ã ≡ e−SAeS = A + [A, S] +
1

2!
[[A, S], S] + · · · . (9)

B. High-order ground-state operators and commutations

We begin the treatment of high-order CCM by introducing the ket-state correlation operator
given, as usual, by

S =
∑

l

∑

i1,··· ,il

Si1,···,il
s+

i1
· · · s+

il
. (10)

However, it is an important point to note that each of the indices {i1, i2, · · · , il} runs over all

lattice sites. Furthermore, we assume that there are (l!) orderings of these indices (even for s > 1
2 ),

although we never need to work out these factors explicitly in practice. The index I corresponds
to one of the choices of {i1, · · · , il} for the fundamental set of configurations. We may now write
a set of high-order CCM ket-state operators, given by

Fk ≡
∑

l

∑

i2,··· ,il
lSk,i2,···,il

s+
i2
· · · s+

il
,

Gkm ≡
∑

l>1

∑

i3,··· ,il
l(l − 1)Sk,m,i3,···,il

s+
i3
· · · s+

il
,

Mkmn ≡
∑

l>2

∑

i4,··· ,il
l(l − 1)(l − 2)Sk,m,n,i4,···,il

s+
i4
· · · s+

il
,

Nkmnp ≡
∑

l>3

∑

i5,··· ,il
l(l − 1)(l − 2)(l − 3)Sk,m,n,p,i5,···,il

s+
i5
· · · s+

il
.























(11)

The indices k, m, n, and p depend on those sums in the Hamiltonian or of another given operator.
We note that s± = sx±isy, [sz , s±] = ±s±, and [s−, s+] = −2sz. Hence, the following commutation
relations may be proven:

[sz
k, S] = Fks+

k ,
[s−k , S] = −2Fksz

k − Gkks+
k ,

[sz
k, Fm] = Gkms+

k ,
[sz

k, Gmn] = Mkmns+
k ,

[sz
k, F 2

m] = 2FmGkms+
k ,

[s−k , Fm] = −2Gkmsz
k − Mkkms+

k ,
[s−k , F 2

m] = −2G2
kms+

k − 2FmMkkms+
k − 4FmGkmsz

k ,
[sz

k, Mmnp] = Nkmnps
+
k ,

[s−k , Gmn] = −2Mkmnsz
k − Nkkmns+

k .























































(12)

We may now write the similarity-transformed expressions of the single-spin operators sα ; α ≡
{+,−, z}, as

e−Ss+
k eS ≡ s̃+

k = s+
k ,

e−Ssz
keS ≡ s̃z

k = sz
k + Fks+

k ,

e−Ss−k eS ≡ s̃−k = s−k − 2Fksz
k − Gkks+

k − F 2
k s+

k .















(13)

We see that there is a repeated index in Gkk in the similarity transformed version of s−. Clearly,
this term contributes only for systems with spin quantum number s > 1

2 .

420



CCM calculations of spontaneous symmetry breaking

C. Deriving and solving the CCM ground-state equations

We now wish to determine and solve the CCM ket-state equations, where the I-th such equation
is given by

EI ≡ 〈Φ|C−
I e−SHeS|Φ〉 = 0 , ∀I 6= 0 . (14)

(Note that we assume that 〈Φ|C−
I C+

I |Φ〉 = 1 in the above equation). Specific terms in the Hamil-
tonian are now explicitly written in terms of the high-order CCM operators as:

TERM 1 : s̃z
i s̃

z
j = sz

i s
z
j + Fjs

+
j sz

i + Fis
+
i sz

j + Gijs
+
i s+

j + FiFjs
+
i s+

j ,

TERM 2 : s̃z
i s̃

+
j = s+

j sz
i + Fis

+
i s+

j ,

TERM 3 : s̃z
i s̃

−
j = −2Fjs

z
i s

z
j − 2Gijs

+
i sz

j − Gjjs
+
j sz

i − Mijjs
+
i s+

j − 2FiFjs
+
i sz

j

−2FjGijs
+
i s+

j − FiGjjs
+
i s+

j − FiF
2
j s+

i s+
j − F 2

j s+
j sz

i ,

TERM 4 : s̃+
i s̃z

j = s+
i sz

j + Fjs
+
i s+

j ,

TERM 5 : s̃−i s̃z
j = −2Fis

z
i s

z
j − 2Gijs

+
j sz

i − Giis
+
i sz

j − Miijs
+
i s+

j − 2FiFjs
+
j sz

i

−2FiGijs
+
i s+

j − FjGiis
+
i s+

j − FjF
2
i s+

i s+
j − F 2

i s+
i sz

j ,

TERM 6 : s̃+
i s̃−j = −2Fjs

+
i sz

j − Gjjs
+
i s+

j − F 2
j s+

i s+
j ,

TERM 7 : s̃−i s̃+
j = −2Fis

+
j sz

i − Giis
+
i s+

j − F 2
i s+

i s+
j ,

TERM 8 : s̃+
i s̃+

j = s+
i s+

j ,

TERM 9 : s̃−i s̃−j = 4Gijs
z
i s

z
j + 2Miijs

+
i sz

j + 2Mijjs
+
j sz

i + Niijjs
+
i s+

j

+2G2
ijs

+
i s+

j + 2FjMiijs
+
i s+

j + 4FjGijs
+
j sz

i + 4FiFjs
z
i s

z
j

+4FiGijs
+
i sz

j + 2FiGjjs
+
j sz

i + 2FiMijjs
+
i s+

j + 4FiFjGijs
+
i s+

j

+2FiF
2
j s+

j sz
i + 2FjGiis

+
i sz

j + GiiGjjs
+
i s+

j + F 2
j Giis

+
i s+

j

+2F 2
i Fjs

+
i sz

j + F 2
i Gjjs

+
i s+

j + F 2
i F 2

j s+
i s+

j ,

TERM 10 : s̃z
i = sz

i + Fis
+
i ,

TERM 11 : s̃−i = −2Fis
z
i − Giis

+
i − (Fi)

2s+
i ,

TERM 12 : (s̃z
i )

2 = (sz
i )

2 + 2Fis
+
i sz

i + Gii(s
+
i )2 + Fi(s

+
i )2 + F 2

i (s+
i )2 ,

TERM 13 : s̃+
i = s+

i . (15)

(Note that s−|Φ〉 = 0 is implicitly assumed in equation (15) above.) We now “pattern-match” the
C−

i operators to those relevant terms in the Hamiltonian from equation (15) above in order to
form the CCM equations EI = 0 of equation (14) at a given level of approximation. These coupled
non-linear equations are then solved readily by using, e.g, the Newton-Raphson method. However,
these are solved via direct iteration for larger values of the approximation level because the cost
of storing the Jacobian in local memory for the Newton-Raphson (or other) method becomes
prohibitive. This may be also parallelized to achieve very high orders of approximation and this is
discussed below.

We now define the following new set of CCM bra-state correlation coefficients given by xI ≡ SI

and x̃I ≡ NB/N(l!)νI S̃I and we assume again that 〈Φ|C−
I C+

I |Φ〉 = 1. Note that NB is the number
of Bravais lattice sites. Note also that for a given cluster I then νI is a symmetry factor which
is dependent purely on the point-group symmetries (and not the translational symmetries) of the
crystallographic lattice and that l is the number of spin operators. We note that the factors νI ,
N , NB, and (l!) never need to be explicitly determined. The CCM bra-state operator may thus be
rewritten as

S̃ ≡ 1 + N

NF
∑

I=1

x̃IC
−
I , (16)
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such that we have a particularly simple form for H̄ , given by

H̄ = N

NF
∑

I=0

x̃IEI , (17)

where x̃0 = 1. We note that the E0 is defined by E0 = 1
N
〈Φ|e−SHeS |Φ〉 (and, thus, E0 = 1

N
Eg)

and that EI is the I-th CCM ket-state equation defined by equation (14). The CCM ket-state
equations are easily re-derived by taking the partial derivative of H̄/N with respect to x̃I , where

δ(H̄/N)

δx̃I

(≡ 0) = EI . (18)

We now take the partial derivative of H̄/N with respect to xI such that the bra-state equations
take on a particularly simple form, given by

δ(H̄/N)

δxI

=
δE0

δxI

+

NF
∑

J=1

x̃J

δEJ

δxI

(≡ 0) = ẼI . (19)

The equation ẼI = 0 is easily solved computationally via LU decomposition for low to medium
orders of approximation or via direct iteration (which may be parallelized, as discussed below) for
even higher orders of approximation. This may be carried out once the CCM ket-state equations
have been determined and solved. The numerical values of the coefficients {x̃I} may thus be
obtained. We note that this approach greatly simplifies the task of determining the bra-state
equations because we infer the bra-state equations directly from those of the ket-state equations
via equation (19). Thus, we never need to evaluate equation (6) explicitly.

D. Generalized ground-state expectation values

The expectation value of a “generalized” spin operator that we shall call A may be treated in
an analogous manner to that of the expectation value of the Hamiltonian, given by H̄ . We write:

AI = 〈Φ|C−
I e−SAeS |Φ〉 (20)

and with C−
0 = 1. The similarity transform of A is defined by equation (8) and once again this

process results in terms such as those shown in equation (15) may again be employed. However,
unlike the J1–J2 Hamiltonian of equation (1), we do not constrain k and m in the two-body terms
to be only nearest-neighbors or next-nearest-neighbors. The expectation value of the generalized
(spin) operator may again be written in a particularly simple form as:

Ā = 〈Ψ̃|A|Ψ〉 = N

NF
∑

I=0

x̃I 〈Φ|C−
I e−SAeS |Φ〉

⇒ Ā = N

NF
∑

I=0

x̃IAI , (21)

where x̃0 = 1 also and A0 = 1
N
〈Φ|e−SAeS |Φ〉. The same code used to find ground-state equations

may be used to find the generalized expectation values. Again we note that the index I in equa-
tion (21) runs from zero to NF. Again, we note that factors such as NB or νI etc. do not need to
be determined explicitly because they cancel because of the definition of {x̃I} given above.

E. Direct iteration of the ground-state equations and parallelization

The parallelization of the ground-state CCM problem for very high-order CCM is achieved
by solving the ket- and bra-state equations (i. e., EI = 0 and ẼI = 0, respectively) via direct
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iteration. For the case of the ket-state equations this is slightly more complicated because there
are non-linear terms with respect the ket-state correlation coefficients {xI}. We rearrange the ket-
state equations such that the linear terms for xI for the ith CCM ket-state equation are on the
left of the new equation and all other terms are on the right. The right-hand side of this new
equation is denoted by E ′

I after dividing through by the factor on the left-hand-side for the ket-
state correlation coefficients. We may carry out exactly the same procedure for the bra-state in
order to find Ẽ′

I , although the problem is linear with respect to {x̃I} in this case. These equations
are thus rewritten conveniently for the ket state as

xI = E′
I(x1, x2, · · · , xI−1, xI+1, · · · , xNF

, x2
1, x

2
2, · · · , x4

1, · · · , x4
NF

) , (22)

and for the bra state as,

x̃I = Ẽ′
I(x̃1, x̃2, · · · , x̃I−1, x̃I+1, · · · , x̃NF

; x1, x2, · · · , xNF
, x2

1, x
2
2, · · · , x3

1, · · · , x3
NF

) . (23)

Clearly, these equations may be solved for xI and x̃I by iterating them “directly” until convergence.
Indeed, the local memory usage is vastly reduced because we do not need to store any Jacobian or
other large matrix that scales in size with N 2

F.
Furthermore, the computational problem posed by solving equations (22) and (23) via direct

iteration may be solved using parallel processing. The different equations of equations (22) and (23)
for different values of the index I are determined separately on different processors. The resulting
data for these equations for the different values of I are then stored locally to each processor. At
each iteration of the “direct iteration” method we find the right-hand sides of those relevant values
of I allocated to each processor. We then collect the right-hand side into a single array and this
forms our values for xI or x̃I for the next iteration. Again, we note that we must solve the ket-state
equations of equation (22) first and then these values for the ket-state coefficients are used in the
bra-state equations of equation (23). This approach is a simple “brute-force” method, although it
has been found to be surprisingly successful at going to very high orders of approximation. Indeed,
we may now treat of order 106 fundamental clusters using this approach and for approximately
102 − 103 processors used in parallel. Clearly, a similar approach may also be used to find the
“generalized” expectation values via parallel processing.

F. The excited-state formalism

We now consider how the excited state may be treated using the CCM via a high-order approach.
We begin by remarking that the excited-state wave function is given by

|Ψe〉 = Xe eS |Φ〉 . (24)

The Schrödinger equation, Ee|Ψe〉 = H |Ψe〉 and the equivalent equation for the ground state lead
(after some simple algebra) to

εeX
e|Φ〉 = e−S[H, Xe]eS |Φ〉 (≡ R̂|Φ〉) , (25)

where εe ≡ Ee −Eg is the excitation energy. We note that the excited-state correlation operator is
written as,

Xe =
∑

I 6=0

X e
I C+

I . (26)

Equation (26) implies the overlap relation

〈Φ|Ψe〉 = 〈Φ|XeeS |Φ〉

⇒ 〈Φ|Ψe〉 = 0. (27)

We may now form the basic equations for the excited state, given by

εeX
e
I = 〈Φ|C−

I e−S [H, Xe]eS |Φ〉 , ∀I 6= 0 , (28)
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which is a generalized set of eigenvalue equations with eigenvalues εe and corresponding eigenvectors
X e

I . We note that the choice of clusters for the excited-state may be different from those for the
ground state. For example, the ground state for the model considered here is in the subspace
sz

T ≡
∑

i sz
i = 0, whereas the excited state has sz

T ≡
∑

i sz
i = +1. The number of excited-state

“fundamental” clusters that are distinct under the translational and point-group symmetries of
the lattice and Hamiltonian is given by Nfe

.

G. High-order excited-state operators and commutations

In a similar manner as for the ground-state, we now define excited state operator via

Xe =
∑

l

∑

i1,··· ,il

X e
ii,···,il

s+
i1
· · · s+

il
, (29)

where the indices {i1, · · · , il} run over all lattice sites. We assume explicitly again that there are
(l!) orderings of the indices (even for s > 1

2 ). The index I corresponds to one of the choices of
{i1, · · · , il} for the fundamental set of configurations for the excited state, such that X e

I ≡ X e
ii,···,il

.
We now also define the further high-order operators for the excited state, given by

Pk ≡
∑

l

∑

i2,··· ,il]
lX e

k,i2,···,il
s+

i2
· · · s+

il
,

Qkm ≡
∑

l>1

∑

i3,··· ,il
l(l − 1)X e

k,m,i3,···,il
s+

i3
· · · s+

il
,

Rkmn ≡
∑

l>2

∑

i4,··· ,il
l(l − 1)(l − 2)X e

k,m,n,i4,···,il
s+

i4
· · · s+

il
,

Tkmnp ≡
∑

l>3

∑

i5,··· ,il
l(l − 1)(l − 2)(l − 3)X e

k,m,n,p,i5,···,il
s+

i5
· · · s+

il
.



















(30)

The following commutation relations may also be proven:

[sz
k, Xe] = Pks+

k ,
[s−k , Xe] = −2Pksz

k − Qkks+
k ,

[sz
k, Pm] = Qkms+

k ,
[sz

k, Qmn] = Rkmns+
k ,

[sz
k, P 2

m] = 2PmQkms+
k ,

[s−k , Pm] = −2Qkmsz
k − Rkkms+

k ,
[s−k , P 2

m] = −2Q2
kms+

k − 2PmRkkms+
k − 4PmQkmsz

k ,
[sz

k, Rmnp] = Tkmnps
+
k ,

[s−k , Qmn] = −2Rkmnsz
k − Tkkmns+

k .























































(31)

H. Deriving and solving the excited state equations

We now wish to determine and solve the CCM excited-state equations given by equation (28)
Specific terms in the Hamiltonian are now explicitly written in terms of the new excited-state
high-order CCM operators as:

TERM 1 : e−S [sz
i s

z
j , X

e]eS = Pis
+
i sz

j + PiFjs
+
i s+

j + Pjs
+
j sz

i + PjFis
+
i s+

j + Qijs
+
i s+

j ,

TERM 2 : e−S[sz
i s

+
j , Xe]eS = Pis

+
i s+

j ,

TERM 3 : e−S[sz
i s

−
j , Xe]eS = −2PiFjs

+
i sz

j − PiGjjs
+
i s+

j − PiF
2
j s+

i s+
j − 2Pjs

z
i s

z
j − 2PjFjs

+
j sz

i

−2PjFis
+
i sz

j − 2PjGijs
+
i s+

j − 2PjFiFjs
+
i s+

j − 2Qijs
+
i sz

j

−2QijFjs
+
i s+

j − Qjjs
+
j sz

i − QjjFis
+
i s+

j − Rijjs
+
i s+

j ,
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TERM 4 : e−S [s+
i sz

j , X
e]eS = Pjs

+
i s+

j ,

TERM 5 : e−S [s−i sz
j , X

e]eS = −2PjFis
+
j sz

i − PjGiis
+
i s+

j − PjF
2
i s+

j s+
i − 2Pis

z
i s

z
j − 2PiFjs

+
j sz

i

−2PiFis
+
i sz

j − 2PiGijs
+
i s+

j − 2PiFiFjs
+
i s+

j − 2Qijs
+
j sz

i

−2QijFis
+
i s+

j − Qiis
+
i sz

j − QiiFjs
+
i s+

j − Riijs
+
i s+

j ,

TERM 6 : e−S [s+
i s−j , Xe]eS = −2Pjs

+
i sz

j − Qjjs
+
i s+

j − 2PjFjs
+
i s+

j ,

TERM 7 : e−S [s−i s+
j , Xe]eS = −2Pis

+
j sz

i − Qiis
+
i s+

j − 2PiFis
+
i s+

j ,

TERM 8 : e−S [s+
i s+

j , Xe]eS = 0 ,

TERM 9 : e−S [s−i s−j , Xe]eS = 4PiFjs
z
i s

z
j + 4PiGijs

+
i sz

j + 2PiGjjs
+
j sz

i + 2PiMijjs
+
i s+

j

+4PiFiFjs
+
i sz

j + 4PiFjGijs
+
i s+

j + 2PiFiGjjs
+
i s+

j + 2PiFiF
2
j s+

i s+
j

+2PiF
2
j s+

j sz
i + 2QiiFjs

+
i sz

j + QiiGjjs
+
i s+

j + QiiF
2
j s+

i s+
j

+4Qijs
z
i s

z
j + 4QijFjs

+
j sz

i + 4QijFis
+
i sz

j + 4QijGijs
+
i s+

j

+4QijFiFjs
+
i s+

j + 2Riijs
+
i sz

j + 2RiijFjs
+
i s+

j + 2Rijjs
+
j sz

i

+2RijjFis
+
i s+

j + Tiijjs
+
i s+

j + 4PjGijs
+
j sz

i + 2PjMiijs
+
i s+

j

+4PjFis
z
i s

z
j + 4PjFiFjs

+
j sz

i + 2PjGiis
+
i sz

j + 2PjGiiFjs
+
i s+

j

+2PjF
2
i s+

i sz
j + 2PjF

2
i Fjs

+
i s+

j + 4PjFiGijs
+
i s+

j + 2QjjFis
+
j sz

i

+QjjGiis
+
i s+

j + QjjF
2
i s+

i s+
j ,

TERM 10 : e−S [sz
i , X

e]eS = Pis
+
i ,

TERM 11 : e−S [s−i , Xe]eS = −2Pis
z
i − Qiis

+
i − 2PiFis

+
i ,

TERM 12 : e−S [(sz
i )

2, Xe]eS = 2Pis
+
i sz

i + Qii(s
+
i )2 + Pi(s

+
i )2 + 2PiFi(s

+
i )2 ,

TERM 13 : e−S [s+
i , Xe]eS = 0 (32)

(Note that s−|Φ〉 = 0 is again implicitly assumed in equation (32) above.) Again, we now “pattern-
match” the C−

I operators (this time with respect to the fundamental set of the clusters in the excited
state) to those relevant terms in the Hamiltonian from equation (28) above in order to form the
CCM excited-state equations at a given level of approximation. By contrast to the case for the
ground state, we see that the high-order operators of equation (30) are linear in those terms in
equation (32). We choose the eigenvalue of the lowest value to be our result, and this method was
found to provide good results in regions of the parameter space for which the model state was a
good choice. Again we note that we have formed an eigenvalue problem, which is readily solved
using a standard eigenvalue solver. However, the computational problem thus formed uses local
memory that scales with the number of fundamental clusters used in the excited state, i. e., as
N2

fe
. Again, this becomes prohibitive computationally for extremely large values of Nfe

and so we
again use direct iteration methods.

I. Direct iteration of the excited-state equations and parallelization

The eigenvalue equations of equation (28) may be iterated directly in order to solve them. We
denote the matrix for the eigenvalue problem of equation (28) by B and we denote the eigenvectors
by y = (X e

1 , · · · ,X e
Nfe

)T . Hence, we iterate directly the eigenvalue equation given by

By = λy . (33)

This is just the well-known “power iteration” method and the ratios of X e
I in successive iterations

yields the relevant eigenvalue. However, the eigenvalue determined in this manner is the eigenvalue
of the largest magnitude, λMAX, rather than the lowest (generally the one of smallest magnitude
λMIN for our purposes) that we wish to obtain here. Thus, we find the eigenvalue of smallest
magnitude by using the “shifted” power iteration method. Once λMAX has been found, we then
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solve the following eigenvalue equation by direct iteration:

(B − λMAXI)y′ = λ′y′ . (34)

This process ought to converge to an eigenvalue λ′ = λMIN − λMAX. Indeed, this was found to be
the case for the model studied here at all levels of approximation in those regions where the model
state was a “good choice”. Furthermore, we saw that the lowest-valued eigenvalue obtained in this
manner agreed perfectly with those results for the eigenvalue of the lowest values obtained via a
complete diagonalization of the matrix eigenvalue problem at every level of approximation.

We note that the local memory usage is again far lower for this “power iteration” approach
rather than the corresponding “complete diagonalization” of the matrix problem because we need
store only the values for the set {X e

I } at each point. Finally, the direct iterative solution of the
CCM excited-state problem may be readily parallelized. Again, we share the problem of finding
the left-hand side of equation (33) over all processors for different values of I . We then collect the
results together in order to form the right-hand side of equation (33). We iterate to find λMAX. A
similar parallelization process is then used to find λMIN.
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Розрахунки спонтанного порушення симетрiї у

спiн-половина одновимiрнiй J1–J2 моделi методом

взаємодiючих кластерiв у вищих порядках

Д. Фарнелл

Академiчний вiддiл радiацiйної онкологiї, факультет медичних наук i наук про людину, Унiверситет

Манчестера, NHS фундацiя Крiстi, M20 4BX, Манчестер, Великобританiя

Отримано 12 березня 2009 р., в остаточному виглядi 23 квiтня 2009 р.

У цiй статтi ми представляємо новий формалiзм розрахункiв методом взаємодiючих кластерiв (МВК)
у вищих порядках для “узагальнених” середнiх значень в основному станi i збуджених станiв кван-
тових магнiтних систем зi спiновим квантовим числом s > 1/2. Ми використовуємо МВК у вищих

наближеннях, щоб продемонструвати спонтанне порушення симетрiї у спiн-половина J1–J2 моделi
на лiнiйному ланцюжку. Ми показуємо, що можна вiдтворити точно димеризований основний (кет)
стан у точцi Маджумдара-Гоша (J2/J1 = 1/2), використовуючи як модельний стан стан Нiеля. Ми по-
казуємо, що на встановлення димеризованої фази вказує бiфуркацiя кореляцiйних коефiцiєнтiв для

кет- i бра-станiв для модельного стану Нiеля. Ми показуємо, що енергiя основного стану добре узго-
джується iз результатами точної дiагоналiзацiї ланцюжкiв скiнченої довжини у цьому всьому режимi
(тобто J1 > 0 i J2 6 1/2). Ефекти точки бiфуркацiї також спостерiгаються у намагнiченостi пiдгратки

для модельного стану Нiеля. Нарештi ми використовуємо новий формалiзм для збуджених станiв,
щоб отримати енергiю збудження як функцiю J2/J1 для модельного стану Нiеля, шукаючи розв’язок

аж до наближнення рiвня LSUB14. Ми отримуємо екстрапольоване значення для щiлини для енергiї
збудження −0.0036 при J2/J1 = 0.0 i 0.2310 при J2/J1 = 0.5. Ми показуємо, що енергетична щiлина

для збудження вiдкривається при J2/J1 ≈ 0.24, хоча щiлина стає великою лише при J2/J1 ≈ 0.4.

Ключовi слова: метод взаємодiючих кластерiв у вищих порядках, J1–J2 модель, димеризацiя

PACS: 75.10.Jm, 75.10.Pq, 75.50.Ee
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