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Modified four-sublattice model for Rochelle salt by taking into account piezoelectric interactions with shear
strain 4, €5 and ¢ is proposed. Components of polarization vector and static dielectric permittivity tensor
for both mechanically clamped and free crystals, their piezoelectric characteristics and elastic modules are
derived in the mean field approximation. A comprehensive study of transverse field effect on phase transition
temperatures, dielectric and elastic properties of Rochelle salt has been performed for the first time.
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1. Introduction

Rochelle salt (Rs) is a special ferroelectric hydrogen bonded compound. Some details of its
structure and a precise mechanism of the phase transitions are still unclear. The crystal structure
of Rochelle salt and its properties are described in [1,2]. The most peculiar to Rochelle salt is
the presence of two Curie points. The phase transitions are of the second order. The ferroelectric
phase, existing in the temperature range between 255 and 297 K, is monoclinic and belongs to
the space group C3-P2;. The spontaneous polarization is directed along the a axis. In the low-
temperature and high-temperature paraelectric phases the crystal has an orthorhombic space group
D§7P212121. The unit cell contains four formula units.

Structural studies do not completely clarify the microscopic origin of the phase transitions in
Rochelle salt. The microwave dielectric relaxation and a critical slowing down near the transition
points indicate the order-disorder type phase transition [5]. On the contrary, the soft mode observed
in infrared reflectivity spectra, by Raman scattering in the low-temperature paraelectric phase [6],
and by microwave dielectric measurements [7] indicates the phase transition of a displacement
type. The soft mode in the paraelectric phase is related to the changes in the crystal structure
(displacements of the oxygen atoms O(8) along the axis a and rotation of the water molecules
bonded to ions O(9) and O(10)) taking place at the transition to the ferroelectric phase [8]. This
picture is also confirmed by inelastic neutron scattering data [9]. The static displacements produce
additional dipole moments of the structural elements of Rochelle salt at the ferroelectric phase
transitions. Such displacements can be also treated as changes in the ratio of populations within
double positions in the disordered paraelectric structure, revealed in [10,11], whereas large values
of anisotropic structure factors can be related to the local disorder [12]. The existence of double
atomic positions was explored within the so-called split-atom model for Rochelle salt [13].

The order-disorder scenario for phase transitions in Rochelle salt underlies the half-microscopic
Mitsui model [14] that takes into account the two key effects: asymmetry of population of two local
atom positions and compentation of the electric dipole moments in paraelectric phases. Despite a
simplified approach (two sublattices only), the Mitsui model even in the mean field approximation
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permits, at a proper choice of the theory parameters, to explain the existence of two Curie points
in Rochelle salt and to describe the behavior of its dielectric characteristics and heat capacity.
Later [5,15] the Mitsui model was formulated in terms of pseudospin operators. In [15-17] the
thermodynamic characteristics of Mitsui model were calculated in the mean field approximation.
In [16,17] tunneling of the ordering units was taken into account. Relaxational phenomena in
ferroelectrics described by the Mitsui model were explored in [15,18]. In [15] using the stochastic
Glauber [19] model and in [18] using the Bloch equation method [20] the relaxation times for
deuterated and pure Rochelle salt were calculated.

The main purpose of the above mentioned works was to determine whether the Mitsui model
was capable of describing the experimental data for some selected physical properties of Rochelle
salt. The other characteristics were not always calculated with the account of the obtained values
of the theory parameters. Therefore, it was not firmly established whether the Mitsui model is
applicable to Rochelle salt or not. Also, in [16] a necessity of a thorough study of possible phase
transitions in the Mitsui model was indicated, and a very approximate phase transition of the
model without tunneling was constructed. Later, the phase diagrams for the Mitsui model (also
with tunneling) were more thoroughly studied in [21,22]. The complete phase diagram of the Mitsui
model, also with tunneling, was constructed only in [23]. In [24-26] the thermodynamic and (using
the stochastic Glauber model [19]) dynamic characteristics of pure and deuterated Rochelle salt
were calculated, and the values of the theory parameters providing a fair description of the available
experimental data were obtained for several physical characteristics of the crystals.

Crystals of Rochelle salt are non-centrosymmetric and piezoelectric in paraelectric and ferro-
electric phases. This fact essentially affects their physical properties. Prior to work [31], the model
consideration of dielectric response in Rochelle salt had been restricted to the static limit and to
the microwave region. Qualitatively correct results for high-frequency characteristics can be ob-
tained only within a model that does take into account the piezoelectric coupling. The conventional
Mitsui model does not distinguish free and clamped crystals in the static limit and is not capable
of reproducing the effect of crystal clamping by high-frequency electric field. It permits to calcu-
late [24-26] the dielectric permittivity and relaxation times of a free crystal only. It was obtained,
however, that the relaxation time, exhibiting a critical slowing down at the Curie points, actually
diverges at these points, whereas experiments [5] indicate that it should be large but remain finite.
Also, the calculated permittivity has a sharp minimum at all frequencies which qualitatively differs
from the experimentally observed behavior.

A proposed [27,28] modification of the Mitsui model takes into account the piezoelectric coupling
with the shear strain 4. It allows one to calculate the piezoelectric and elastic characteristics of
Rochelle salt as well as susceptibilities of both free and clamped crystals and to obtain a correct
temperature behavior of the relaxation times and longitudinal dynamic permittivity near the Curie
points.

One should also mention a modification of the phenomenological Landau theory [29] for the
systems with a double critical point that describes the properties of Rochelle salt in a wide temper-
ature, pressure, and composition (when K is replaced by NHy) ranges. Also, in [30] the thermody-
namic, longitudinal dielectric, piezoelectric, and elastic characteristics of the disordered modified
Mitsui model were calculated. A thorough analysis of the obtained results was performed; possible
changes in the physical characteristics of Rochelle salt with deuterated were discussed.

In [31], within the framework of the modified Mitsui model, a dynamic dielectric response of
Rochelle salt was considered, with taking into account the dynamics of the piezoelectric strain.
The phenomena of crystal clamping by high-frequency electric field, piezoelectric resonance, and
microwave dispersion were described. Ultrasound velocity and attenuation were calculated, and
peculiarities of their temperature dependence at the Curie points were described. The existence of
a cutoff frequency in the frequency dependence of attenuation was shown.

Within the model proposed in [27], the effect of the shear stress o4 [32], longitudinal electric
field [33], and hydrostatic pressure [34] on the physical characteristics of Rochelle salt was ex-
plored. A satisfactory agreement with experimental data was obtained for the field effect on the
static dielectric permittivity near the lower Curie temperature. At the upper Curie temperature,
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an effective field should be used in calculations to describe the experiment. A possible role of
space-charge build-up in the screening of the external field at high temperatures is discussed. The
effect of the longitudinal electric field on the dynamic dielectric, elastic, piezoelectric, and acoustic
characteristics of Rochelle salt was studied. It was shown that the temperature behavior of the
permittivity in the resonance region can be qualitatively changed by the external field; this is due
to the increase of the resonance frequencies with the field. It was also established that the longi-
tudinal field strongly increases the cutoff frequency, as well as the microwave dielectric relaxation
frequency. These effects are due to the decrease of the relaxation time with the field.

In [34], the effect of hydrostatic pressure on the physical characteristics of Rochelle salt is explo-
red. The available experimental data and dependences of temperature and pressure variation of
the physical characteristics on the theory parameters are analysed. An optimal set of the model
parameters is obtained, allowing one to calculate the temperature dependences of dielectric, elas-
tic, piezoelectric, and thermal characteristics at different pressures and to describe the available
experimental data.

In [35], within the framework of the modified Mitsui model, the effect of tunnelling on thermo-
dynamic, dielectric, piezoelectric, and elastic characteristics of Rochelle salt were explored. It was
shown that tunneling hardly affects the calculated quantities, but improves an agreement between
the theory and experiment for spontaneous polarization. It would be interesting to study the effect
of tunneling on the dynamic characteristics of Rochelle salt within this model. Important is a struc-
tural investigation of Rochelle salt crystals, aimed at answering the question whether tunneling of
the ordering units takes place here indeed.

Hence, the modified Mitsui model [27] made possible a proper description of longitudinal di-
electric, piezoelectric, and elastic characteristics of Rochelle salt and its behavior in the presence
of longitudinal electric field and hydrostatic pressure. However, this model oversimplifies the real
structure of the crystal, postulating the direction of the ferroelectric axis among the three possible
second order axes. As a result, the approach becomes essentially “one-dimensional” and does not
permit a complete description of all dielectric, piezoelectric, and elastic characteristics of the crys-
tal. A possible generalization of the Mitsui model by its transformation to a “three-dimensional”
model that takes into account all four translationally non-equivalent groups of atoms in a unit cell
was proposed in [36]. Within the framework of the order-disorder scenario, the equilibrium posi-
tions of non-equivalent atomic groups are simulated by a four-sublattice pseudospin model that
allows one too calculate all components of the tensors of the crystal characteristics, and to explore
the effects of transverse (perpendicular to the ferroelectric axis a) electric fields. Within the mean
field approximation it has been shown that the transverse electric field E, partially suppresses
the spontaneous polarization and narrows the temperature range of the ferroelectric phase (this
roughly corresponds to the experimentally observed effect [37]), and gives rise to the jumps of the
transverse dielectric permittivity at the transition points, the jump magnitude being proportional
to E7.

If properly generalized, the model proposed in [36] can be used in order to calculate the compo-
nents of the tensors of static and dynamic dielectric permittivities and components of the tensors of
piezoelectric and elastic coefficients of Rochelle salt, and their behavior in the presence of transverse
and longitudinal electric fields.

Therefore, in this paper we propose a modified four-sublattice pseudospin model for Rochelle
salt, where the piezoelectric coupling with the shear strains 4, €5, and €4 are taken into account.
In the mean field approximation, the thermodynamic and transverse dielectric, piezoelectric, and
elastic characteristics of Rochelle salt are calculated. The effect of the transverse electric field on
these characteristics is explored.

2. A four-sublattice model: the Hamiltonian

In order to describe the phase transitions in Rochelle salt and its thermodynamic characteristics
we use the “three-dimensional” model [36] that takes into account the presence of four transla-
tionally non-equivalent groups of atoms in a unit cell, whose positions are related by elements

297



R.R.Levitskii et al.

of the paraelectric point group [3,4]. These structural units are non-centrosymmetric. We assign
them dipole moments d,f(f = 1,...,4). In the paraelectric phase, the sum of these moments is
zero. Changes Adys in these dipole moments are responsible for the appearance of spontaneous
polarization in the ferroelectric state. The vectors d,s are oriented at certain angles to the crys-
tallographic axes and have both longitudinal and transverse components with respect to the axis
a (figure 1).
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Figure 1. Orientations of dipole moments creating the net polarization in a primitive cell of
Rochelle salt crystals: conventional Mitsui model (left) and the proposed model (right). In the
paraelectric phase all absolute values of pseudospins are equal in all sublattices.

The pseudospin variables % .. 0‘14 describe the changes associated with reordering of dipole
moments of structural units: dgy = u f— The mean values (3) = 1(n, — ng) are related to the
differences in populations of the positions in a two-minima representation of the vectors d ¢, whose
orientation in the paraelectric phase is shown in figure 1 (right).

In pseudospin representation, the model Hamiltonian, being a generalization of the proposed
in [36] Hamiltonian with the piezoelectric coupling and the lattice “seed” part taken into account

is, at the same time, a generalization of the [27] Hamiltonian to the “three-dimensional” model

A N N
H = Evcﬂosi + = > —wvcile? + > —wegg et — —Nvelyea By — Nvedses By — NvedgeEs
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- EUXi?E% B) 5 22E2 B) UX33 Z Z Jrs(ad %
qq" f=1
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The first nine terms in (2.1) correspond to the seed part of the Hamiltonian, which is indepen-
dent of the quasispin subsystem and corresponds to the lattice. The “seed” energy includes the
elastic, piezoelectric, and dielectric parts, expressed in terms of the electric fields E; (i = 1,2,3)
and strainse; (j =1+3). ¢ j j , ?j, XY are the “seed” elastic constants, coefficients of piezoelectric
stress, and dielectric susceptibilities, N is the number of primitive cells, v = vkp is the primitive
cell volume, kg is the Boltzmann constant. In (2.1) Jss(¢q’) and Ky (gq’) are constants of in-
teractions in the same and in different sublattices, respectively. The internal field A describes the
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asymmetry of populations of two positions. The last three terms in (2.1) describe the coupling of
the quasispin system with components of external electric field E; and molecular fields induced by
piezoelectric coupling linear over strains ¢, p; are the effective dipole moments per one quasispin;
1, are the deformation potentials. In (2.1) o4 is a quasispin, whose eigenvalues 0,5 = %1 corre-
spond to an ionic group being in a certain minimum of the double asymmetric potential well in
the f-th sublattices in a cell with the position vector Ry.

Performing an identity transformation

oo =nf +(ogr —nyp), (f=1,2,3,4), (2.2)

neglecting quadratic fluctuations and taking into account the symmetry of interaction constants,
we present the system Hamiltonian in the mean field approximation in the form

H=U+H,, (2.3)
where

N N N

U = 5 ve cEde? + 5 —vefQel + > —wvefled — Nvelyea By — Nveses By — NvegeoFs
e0 2 N N
- 5“X11E1 5 —ux59E5 — 5 —ux53 B3 + 8J(771 +15 15+ 0p)+ 4K12(771772 + 1374)
1

+ ZK13(771773 + mama) + ZK14(771774 + 12m3), (2.4)
N o o o o
H, = *Z(?‘h L4 q2+7‘[ q3+7‘[ ;4) (2.5)

In (2.5) the following notations are used

J K K- K
Hy = —-m+ —12772 + —13773 + —14774 + A — 29484 — 29565 — 2Pses + 1 B + poEo + usEs,

2 2
J K K K
Hy = Mt %771 + % Mt = s+ A — 20ueq + 20565 + 20686 + 1 Br — paBs — p3Es
J K K K
Hs = P 712774 + 713771 + —14772 — A — 2944 + 2pses — 29p6e6 — 10y — palo + p3Es,
J K K K
Hy = Mt % N3 + % N4+ %771 — 2tpaeq — 29565 + 290686 + p1 B + poFBe — psEs .
(2.6)
Hence, the mean values of quasispins
ny = tthf . (2.7)
Let us introduce new variables
1 1 B g g B
= = — ([ th= h= h= h=
&1 4(m +n2 + M3 +14) 1 (t 2H1 +t 2H2—|—t 2H3+t 2H4 ,
1 1 B B B B
= =(n1 —1ny — N = — (th=H; — th=H; — th=H3 + th—
&2 4(771 N2 — 13 + Ma) 4< 2H1 2H2 2H3+ 2H4 ;
1 1 B B B B
=—(n — 3 — = — [ th=H; — th= th—H3 — th—
&3 4(771 N2 + 13 — Na) 4< 2H1 2H2+ 27‘(3 27‘(4 )
1 1 g B B g
= - —1n3 — = — | th= th=Hs — th—H3 — th= 2.8
4(771+772 N3 —Na) 4( 2H1+ 2H2 2H3 2H4 ) (2.8)
where the self-consistent fields H ¢ are given by expressions
1 1
H1=B(71+72+73+5)7 H2=B(71—72—73+5),
1 1
H325(71—72+73—5), H4=B(71+72—73—5)7

299



R.R.Levitskii et al.

and
Jl JQ
m=28 351 — 2Pges+ B ), Yo = 5 —&o — 2ses + ks |,
J: J.
v3 =0 (7353 — 21pgeg + M3E3) , o=p (740 + A) (2.9)
and
Ji=J+ K2+ Kz + K4, Jo=J—-Ki2— Kiz+ Ky,

Js=J - Ko+ Kiz3— Ky, Ji=J+Kip—Kiz— K.

Parameters &1, &2, and &3 describe the dipole ordering along the a, b, and c-axes, respectively,
and the parameter ¢ describes the quasispin ordering in the paraelectric phases.

In the paraelectric phases at E; = 0 and o; = 0 the mean values of quasispins are n; = 17 =
—n3 = —n4 = 1 and, respectively, {1, = &2p = &3p = 0,

Op = thﬁ (ﬂ% + A) . (2.10)
2 2
If B # 0 and o5 # 0, then 11 = —n3 = M3, N2 = —n4 = N24 and §1,(2) = &3,(2) =
1 J: J.
§2p(2) = 3 [thé <—2§2p(2) — 2¢5e5 + p2 B2 + 34‘71)(2) + A)

)

+th5 ( §2p(2) — 20565 4 po iy — %%(2) - A)

[ I

7@ = 5|05 (e - 20nen + paa+ Top(2) + 2
fthg <%ggp(2) — 2ses + ppBs — %ap@) - Aﬂ . (2.11)
If By £ 0 and 06 £ 0 n1 = —na = 114 and 1o = —13 = 725. As a result
En(3) = 5 |t (Fu® - 2inc +paBago,(3) + )
+ thg <%§3p(3) — 2pge + pusEs — %O'p(?)) — A)_ ,
73) = g |t (Fel) ~ 20ecs + paBs + Foy3) +4)
—md ( En(8) — 2Woso + 1135 — oy (8) - A)- . (2.12)

To go to the Mitsui model we need to go from the four-sublattice model to the two-sublattice
one (vpr = v/2) and at Fy = E5 = 0 in all phases &(0) = 0 and £3(0) = 0. Also Jy = J + K12
and KM = K13 + K14.

3. Thermodynamic characteristics of Rochelle salt

To obtain expressions for dielectric, piezoelectric, elastic characteristics of Rochelle salt we use
a thermodynamic potential per one unit calculated cell in the mean field approximation

G _ _ _
g = NkB 3 ﬂ)si + §C5E50€§ + 506]5605% — velye4 B — vedses By — vebgesFs
j1 jg J4
- §X1?E2 - §X23E2 - §X33E3 ATIn2 + 75% + 753 —53 o?
4 3 6
_TzlnCh§Hf_@ZUj€j’ (31)
f=1 j=4
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i

where jz = .
B
From the conditions of equilibrium
1 (9% _o. L(9%)_ p
v 86]' Ei .0 - v \OL; ’
we obtain
oj = cle; — el E+4¢j§- (3.2)
i=6G5¢ i :
P=e)e; + X5 Ei + 2—51- : (3.3)
From (3.3) the electric fields are
= i
= *h?jsj + k5 (Pi — 27&) ; (3.4)
where hO = 50, ke) =
Substltutmg (3.4) in o (3 2), we get
s
05 = cjjes = hij ( —2— &) — S (3.5)

where 0 = £ 4 €, hY;
Using expressions (2.8) and (3.3), we calculate static dielectric susceptibilities of mechanically

clamped crystal of Rochelle salt

e __ op; _ €0 Mg a€1
Xii = (aEi>Ej = Xii +2v (8EZ- Ej-

The static dielectric susceptibilities along the a and b axes, dependent on the stress o5 and field
Fs, in the paraelectric phase read

Xi1p(05, E2) = Xil +£ 5F11p(§2p( )op(2)),
Xoop (03, E2) = X533 + %mzp(@p(zm(z)), (3.6)

where the notations are used
P1p(2) = (p3,(2) — 3,(2)) 7
L= pip(2) (B + 22 ) + (01, (2) — 3, (2) -2
p1p(2) = (p3,(2) = p3,(2) 4
L= pip(@) (% 52 ) + (] (2) — 03, (2) 5 2
p1p(2) =1—-65,(2) —02(2),  p3p(2) = 2625(2) 0, (2). (3.7)

The static dielectric susceptibilities along the a and b axes, dependent on the stress og and field
Fs5, in the paraelectric phase read

Fllp(§2p(2)‘7p(2)) =

F12p(§2p(2)‘7p(2)) =

Xi1p(06, E3) = X11Jr 5F11p(§3p() »(3));

X3sp (06, E3) = X33+ ﬁFpr(&p() p(3)); (3.8)
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where

p1p(3) — (p3,(3) — p3,(3)) 42

Fi1p(&3p(3)0p(3)) =
T @) (H 4 ) (0,8 - 3,30 2
p1p(3) — (p3,(3) — p3,(3)) 2
Fi3p(&3p(3)0p(3)) =
T o pn) (B ) 4 (0,08) - 03,80 22
and p1,(3) = 1 — €2,(3) — 02(3), pap(3) = 26,(3)7, (3).
In the ferroelectric phase
Xi1s(05, Ba)=x53 + £ 5F115(€1s( ), 624(2),€35(2),04(2)),
X525(05, B2) =Xi1 + FﬁF12$(€15(2);525(2)5538(2)70-8(2))7 (3.9)
where
AE
F11s(§1s(2) 5525(2) 7§3$(2) 708(2)) = Aig;; )
AE
Fins(6(2),:(2), 60,2),02(2) = 251
and
1 ms(z;)]% mm%} p35(2>%f p4s(2>%
AS(9) — p23(2);1 1- /715(2)72 p48(2)T3 p35(2)—4
( ) P3s (2)L§1 P4s (2)% 1- /)15(2)674‘]d P2s (2)@:74 ’
P28 ps(ZE 2B 1-p(2)88
p1s(2) pQS(Q)% P35(2)BT]3 P4s(2)%
A€(2) _ —/725(2) 1_pls(2)T2 P45(2)ﬁ§—3 P3s(2)%
! (2 PR 1-p@PE )|
—pas(2) P3s(2)% P2S(2)% 1- PIS(Q)%
1- PIS(Q)% —p2s(2) P35(2)BT]3 P4s(2)%
AE(Q) _ p2s(2)% pls(2) P4S(2)ﬁz_4]3 p3s(2)%
2 P3s (2)% —P4s (2) 1- Pls(Q)% P2s (2)% ’
p4s(2)% *P35(2) P25(2) 1- PIS(Q)%

where the following notations are used

p1s(2) = 1= £,(2) — £5,(2) — &5,(2) — 02(2),
p2s(2) = 2615(2)&2s(2) + 2635(2)04(2),
p3s(2) = 2615(2)€35(2) + 2624(2)05(2),
Pas(2) = 2625(2)€35(2) + 2615(2)05(2),

and &15(2),...,05(2) are obtained from (2.8) at

71(2)=p (ﬁfls@) - 2¢4€4) : 12(2)=p (%623(2) — 2%5es + M2E2) ,

5J3

5@ = B 2, 52) =7 (Eas@) m) |
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Similarly
2
Xils(afiv E3) :X‘i? + %ﬁFlls(fls(?’)a 525(3)a 535(3); 08(3)))
2
Xins (06 B3) = X355 + 52 8F 15, (615(3), €2 (3), €34 (3), 04(3)), (3.10)
where
AE
Fus(€1:(3),60.(3) €0.(3) . 0(9) = 0.
AE
Fia (60(3).€0.03) 60:(9),0.(3) = o3
and
1- pls(S)% P2S(3)% —p3s(3) /’48(3)%
AE (3) _ PQS(S)% 1 — p1s( )%]2 —pas(3) p35(3)%
’ P3s (3)% P4s (3)% p1s(3) P2s (3)&
P4s(3)& p33(3)% —p2s(3) 1 —p1s(3)=

4
Expressions for £15(3), ...,04(3), entering py,(3), are obtained from (2.8) at

1n@3) =2 (%618(3) - 21/1454) , v2(3) = 5%523(3)7

73(3) =8 (%535(3) — 266 + M?,Eg) . 63)=p (%08(3) + A) ,

From relations (2.8) and (3.3) we derive expressions for the coefficients of piezoelectric stress
e;; of deuterated Rochelle salt

ap; i .
eijp(0s, Ba) = (a€j>E. =€ — %ijﬁFlip(§2p(2)aUp(2))v (i=1,2),

contonB) = (Go) =eb - BrwspRu e, @lo,) (=13)
Ej E; v

eijs(057 EQ) e?j - %2%5515 (515(2)a 525(2)a 535(2)a 05(2))3 (Z = 17 2)3
€ijs (067 ES) e?j - %2w]ﬂFMS (gls(g)a 525 (3)3 535 (S)a Os (3))3 (Z = 17 3)

Differentiating (3.4) with respect to the strain at constant polarization we obtain expressions
for the constants of piezoelectric stress

hiy=—(22) -G, (3.11)
9 ) p, X

Let us now calculate the contributions of the pseudospin subsystem to the elastic constants.
From (2.8) and (3.2) we obtain expressions for the elastic constants at a constant field

E Jo; E0 4%2' .

ip(05, EB2) = <6—EJ>E =cjj — = PFup(62p(2), 05(2)), (i=1,2),
Aq)y?

CJEjp(UG’ E3) = ijo - TjﬁFlip(g?»p(?’)a Up(S))v (i=1,3),
44h?

C_]Ejs(05a E2) - CjEjO - %6F1i5(515(2)3525(2)3535(2)a 0—5(2)); (Z = 1, 2),
Aq)y?

C]E]-S (06’ EB) = C]Ejo - TjﬁFIis (518(3)a 528(3)’ 535(3)’ 05(3))’ (7’ = 17 3)a
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and at a constant polarization

cj; = ¢y +eihig,  (i=1,2,3). (3.12)

Let us find the strains ¢; from (3.2)

gj = s 0j +dj;E 4% sTEs

; (3.13)
where s70 = (cF0)~1, df; = ed;s%0.
Substituting expressmns (3 13) to (3.1), we find the Gibbs’ function
_ — = v o} v o
g = 2854003 285E50 o3 — 256EGOU6 d}404 By — vdy505 B2 — Ud3go6Es — §X110Ef - §X220E22
—5X UNDE2 AT 2+ J1E + Jof2 + J5& + Jy5% — TZlnchﬁHf : (3.14)
where
X'L’z - Xm + ezjdzoj ’
_ 1 - _ 1
Héig(’hiﬁer%i(s), HEZB(%:F’_YQ*%i(S)
5 Ji ; EO 0 5 Ja_
Yi=p 2+8 & — 2055005 + (i — 205d);) | d=p 70+A .
From conditions of thermodynamic equilibrium
1/0 1/0
- g1E S - g1E _p,
(% 80]- E; v 8EJ
we find relations (3.13) and
P =dYo; + X3 Ei +2 (’“ - 2ﬁd9j) & . (3.15)
v v
Thence
E; = —glo; + kiOP; + < 4 Yi L g0 — 2k7° ”’) &, (3.16)
where k70 = (xZ°) 71, gioj = d?jk:g-o.
Substituting (3.16) into (3.13), we get
(o Mi\ =
ej = 55,05+ giPi — (ﬁsgo + 52 ) & (3.17)
where
PO _ _EO 0
Sii = %5 gwd

Using expressions (3.15), we find static dielectric susceptibilities of mechanically free crystal of
Rochelle salt

oo ) = X+ By 6y, 7,2), (=12)
oo ) = X3+ By ), 73),  (=13)
o B) = AP+ R 2.6, 6@ 2), (1=1.2),
XGs(06, B3) = X ”@ﬁmlx 3),66(3),654(3),5,(3)),  (i=1,3),
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where we use the following notations

— 20d;
Pip(2) = (p1,(2) — 75,(2)) 7

1= (2) (B2 +4 5 50+ 202) + (57, (2) — 73, ))(‘”1 10
pp(2) — (P1,(2) — p3,(2) 4

1= (2) (B2 +4 5550+ 201) + (52, (2) — 73, (2)) (&2 + 4 s 0) 22

F21p(52p(2)a 6'10(2)) =

Fop(€2p(2),55(2)) =

P =1-6y(2) =32, fl2) = 26,(25,(2),
E(2) = [thﬁ (2-+) + th (32~ )|

op(2) = [thg(% +6) — thg(% - 6)] ;

l\D|>—‘

pip(3) — (1,(3) — 3, (3) 5
1—[31p(3)(ﬁh+4;bq4~ 41540"‘[3]2)"'(/71;; P2p )(ﬁh 43)% ﬁo>ﬁ?_12
pip(3) = (0,(3) — 3, (3) 5"
1=y (3) (4 o0+ 2) + (p1p<3>fp2p<3>) (o aihs) 5

Fo1p(€25(3) ,5,(3)) =

Fa3y(§2p(3) ,(3)) =

where

Prp(3) =1—E3,(3) = 55(3),  P2p(3) = 263,(3)7,(3),

E(3) = 3 15 (a+6) + 05 (32— )]
) = 3 145 (0 +8) - 05 0 - 3|

F2is (515(2% 525(2% 535(2)a 55(2)) - AU(Q) 5 (7’ = ]-a 2)7

the determinants A?(2), A7(2) are obtained from A®(2), Af(2) by replacing pys(2) with pys(2),
Jp and Jy with J; and Js, respectively, where

Ji=Jy +16¢4¢4 sB, h=J+ 16%% i,
and &4(2),...,05(2) are obtained from (2.8) at
J Ja
N(2) =6 < 21 +8w4 EO) £15(2), 72(2) =8 K 5 + 8% EO> €25(2) — 25533 05 + 12 B2 |

73(2) = 533535»(2)7 5(2)=¢ <£08(2) + A> ;

> o

_ _ _ B ‘.7(3) )
F LS s s 828 s 83s s Us = ; ) = 17 )
2is (€15(3), €25 (3), €35(3), 75(3)) A7(3) (i=1,3)
the determinants A?(3), A7 (3) are obtained from A®(2) and A (2) by replacing pss(2) with pys(3),
Jp and Js with J; and J3, where

jg J3 + 16w6w6 6E60 ,
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whereas &5(3),...,5(3) are determined from (2.8) at

i

w® =0 (B st} en. o) - 4280

73(3) = [(? +8w6 EO) €35(3) — 26585 6 +ﬂ3E3} , 5(3)=p (%55(3) +A> .

Differentiating (3.15) with respect to the stress, we obtain coefficients of piezoelectric strain of
Rochelle salt

dijp(05, B2) = di; — —2s P0iBFa(60p(2),55(2), (i =1,2),

dijp(06, E3) = di; — 2sE%J6F2w(£3p( ),3p(3)),  (i=1,3),

dijs (05, Ba) = d, — —2s 0B s (§15(2), 26(2), €4(2),55(2)), (i = 1,2),

dijs (06, B3) = d,; — —2s 005 BF 25 (615(3), 25(3), €35(3), 55(3)), (i = 1,3).
From (3.16) we obtain expressions for the constant of piezoelectric strain

i = = 1
9 <6‘7j >Pi X5 (3.18)

Differentiating (3.13) with respect to the stresses, we find the following relations for the com-
pliances of Rochelle salt at a constant field

2
B (05, Ea) = 550 4 412 (sE9208 (60,(2).5,(2). (1 =1.2),
sip(06, Bs) = 53" + &(sfﬁfﬁ&m(&p(sx 5p(3)), (i=1,3),
2
SJEjS(US’E2) E0+4w ( )25F2is(gls(2)a525(2)a535(2)a55(2))7 (i:172)a
wQ

f]s(aﬁaE?)) EO +4— ( )QﬁFQis(éls(?));525(3),535(3);65(3))7 (Z = 173)'

The transition temperatures T.; and T.o are determined from the condition that the inverse
static dielectric susceptibility of free crystal x{;(0) vanishes at T'— T¢; and T — Tpo.

4. Discussion

To calculate the temperature and field E; dependences of the dielectric, piezoelectric, elastic,
and thermal characteristics of Rochelle salt we have to set the values of the following parameters:
interaction constants J, Kio, Ki3, Ki4; parameter A; deformation potentials 1;; effective dipole
moments wi; and the “seed” dielectric susceptibilties x53, x59, coefficients of piezoelectric stress

e?;, elastic constants cf7.

The unit cell volume is a linear function of temperature, since the lattice constants of Rochelle
salt are also almost linear functions of temperature [38,39]. The volume thermal expansion coeffi-
cient, according to [38,39] equals 0.00014cm?®/K and 0.00013cm?/K, respectively. Using the data
of [39], we find the temperature dependence of the unit cell volulme of Rochelle salt

v = 1.0438[1 + 0.00013(T — 190)] - 10~2! cm?.

In order to determine the values of J, K, A and 14 in [27] a line on the (a, b) phase diagram

was found, where
K—-J 8A

= s b:
K+ J+ 8¢y3sEp K+J+ 8y3sE)”
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For the points of this line, two second order phase transitions take place at T,; = 255.02 K and
T.o = 296.86 K. With a and b decreasing along this line, the maximal value of &; increases. The
terminal point of this line was chosen (a = 0.295, b = 0.648), that is, such values of a and b,
when the value of & is maximal. Hence, the following values of the parameters were determined
(J+K12)/kB = 797.36 K, K13 + K14)/kB = 1468.83 K, A/kB = 737.33 K, 1/)4/]17]3 = —760 K. Also
[27] the effective dipole moment was determined p; = [2.52 4+ 0.0066(7 — 190)] - 10~!® esu-cm.

In [27] the temperature dependences of polarization P;, inverse static dielectric susceptibilities
of clamped and free crystals Xﬁl, elastic constant cfj, piezoelectric characteristics e14, di4, hi4,
g14, and the spin contribution to the molar specific heat AC? were found. At the chosen values of
the theory parameters, the theoretical results well agree with experimental data.

In this paper, we find the values of J, Ko, Kis, Ki4, po, and ps by fitting the theoretical
curves for €5, and €55 to experimental points of [41]. The accepted values of the parameters are
given in the table 1.

Table 1. The optimal set of the model parameters for the Rochelle salt crystals.

J/kp | Ki2/ks| K13/ks| K14/k|A/kB
K K K K K
247.36] 550 400 1068.83 737.33|6.5]0.0065|8.67(0.0115

H20| M21 | M30 | M31

—_

At these values of the parameters, we have J; = 2266.19 K, J, = 366.19 K, J3 = —971.47 K,
Jy = —671,47 K. The effective dipole moments o and ps are taken as linear functions of temper-
ature po = [p20 + pio1 (T — 298)] - 10~ Besu em, p3 = [p30 + ps1 (T — 298)] - 1071 esu cm.

The “seed” parameters are taken to be equal to x53 = 0.05, 53 = 0.05, €95 = —0.2-10%esu/dyn,
eds = 0.2 - 10%esu/dyn, £ = 3.6 - 101%dyn/cm?, c& = 10-10%dyn/cm?.

The deformation parameters 15 and g are chosen by fitting all theoretical piezoelectric coeffici-
ents to experimental points given at 7' = 298 K in [42]. As a result, v5/kg=1650K, 15/ kp=-1550K.

Let us now explore the calculated temperature curves of the physical characteristics of Rochelle
salt at different values of the electric fields Fy5 and E5. We should mention that the calculations
are performed at the fields up to 50 MV/m. Obviously, the experimental measurements can be
performed at much lower fields only, because so high fields can destroy the samples.

The temperature dependences of the mean values of pseudospins at F; = F3 = 0 and in fields
FE5 or E3 are shown in figure 2. In the absence of the field 11 = 12, —n3 = —n4 in the ferroelectric
phase, and 11 = 12 = —n3 = —ny in the paraelectric phases. The electric field Fo splits the
values of pseudospins in the ferroelectric phase and narrows its temperature range, whereas in the
paraelectric phases 1 = —n3, 72 = —n4. The field E3 also splits the values of pseudospins in the
ferroelectric phase, but widens its temperature range, and 7; = —ny, 72 = —ns in the paraelectric
phase.

The effect of electric fields E5 and E3 on the projections of the dipole moments is shown in
figures 3 and 4.

In figure 5 we show the field E5 and E3 dependences of the phase transition temperatures 7T,.q
and T.2. With increasing Fs, the ferroelectric phase narrows and disappears and Ey ~ 30 MV /m.
There is no direct experimental evidence for this dependence so far, but the results of [47], where
the relaxation phenomena in Rochelle salt were explored experimentally in a transverse electric
field, can be considered as a certain indirect confirmation of this. The field Fs3, on the contrary,
widens the temperature range of the ferroelectric phase.

Dependences of the transition temperatures T, and 7.2 on the fields F5 and E3 up to 5 MV/m
and on squares of the fields are given in figures 6 and 7, respectively.

As one can see, the dependences T1(Ez) and T¢2(Ez) are quadratic and at fields below 5 MV /m
can be expressed as

w1 (Eo) =T + k12E3, Teo(Eo) = Tuo + koo E3,
Tei(E3) = Ty + ki3E%, Teo(E3) = Teo + ko3 E3,
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Figure 2. The temperature dependence of the mean values of pseudospins 71, 12, 13, N4 in
transverse fields.

where kia = 0.009585 oy = —0.013500 kyy = —0.021587 kyy = 0.016K27,

In figure 8 we plot the temperature dependences of polarization components P; at different
values of the fields Fs and E3. With increasing field E5 the spontaneous polarization P; decreases
(this is observed experimentally) and the polarization Ps induced by the field F5 increases. The
latter polarization is negative and by one order of magnitude smaller than P;. The polarization
P, induced by the field F5 has no peculiarities and is practically temperature independent at low
fields. An increase in the field E3 increases P; as well as the polarization P» induced by this field;
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Figure 3. Projections of the dipole moments on the XY plane in the paraelectric (left) and

ferroelectric (right) phases.
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Figure 4. Projections of the dipole moments on the XZ plane in the paraelectric (left) and

ferroelectric (right) phases.
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Figure 5. Dependence of the lower (T¢1) and upper (T.2) Curie temperatures on the fields F-
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Figure 8. The temperature dependence of polarization components in the field E2 (left) and Es
(right)(kV/cm): 1 - 0; 2 — 50; 3 — 100; 4 — 150; 5 — 200.

this increase is much faster than of Ps(F5). The shape of the polarization P3(Es3) induced by the
field Ej5 is similar to Py(F>), and the magnitude of P3(E3) is almost equal to that of Ps(FEs).

Temperature behavior of the strains e4, €5, €4 under the field E5 or Ejs is similar (almost
proportional) to the temperature behavior of polarizations Py, -Ps, Ps respectively [49)].

Changes in the temperature curves of the inverse components of static dielectric susceptibilities
of mechanically clamped and free crystals of Rochelle salt induced by transverse electric field Fs
are shown in figure 9. The values of x§;(F2)™!, x§;(E2)~! decrease with increasing field in the
ferroelectric phase and increase in the paraelectric phase. The field E3 has an opposite effect [49].
In the temperature curves of x§3(E2) ™! and x5,(E3) ! there arise minima at the transition points,
deepening with increasing fields. The values of x33(E2)~! and x3,(E3) ! decrease with increasing
fields and turn to zero at the transition points. The values of x5,(F2)™ !, x52(F2)™1, x55(E3) 1,
X%5(F3)~! do not depend on the fields in the paraelectric phases and decrease with the fields in
the ferroelectric phase.

The inverse susceptibilities x35(F2)~! and x3(F3)~! have jumps at the transition tempera-
tures, the jump magnitudes increasing with the fields.

The temperature dependence of inverse static permittivities of mechanically free crystal of
Rochelle salt (¢3,)~! in the field Ey below 5 MV/m is shown in figure 10, and that of (£3;)~!
in the field E3 below 5 MV /m is shown in figure 11. Jumps of A(g5,)~* and A(e;)~! at the
transition points are proportional to the squares of the fields (figure 12), and

Alegs)) ™t = ki2ES,  Alegs?) ™t = ko B3,
At = ks B, AE3Y) ! = ks B2,

where kiz = 0.068 557, kaz = 0.04815% | ki3 = 04405257 | Eog = 0.0802; .
The temperature dependences of cﬂ, sﬁ, €14, d14, h14, and g14 at different values of the field Fo

are shown in figure 13. The elastic constat ¢ increases with the field E, in the paraelectric phases
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Figure 9. The temperature dependence of inverse static susceptibilities of clamped and free

=) ()T b= (G2) T (X%2) TN e — (xBs) T, (x3s) 7 at different values of
the field By (kV/cm): 1 — 0; 2 — 100; 3 — 200.
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Figure 10. The temperature dependence of inverse static permittivity (¢3,)~" of a free crystal
near the lower (left) and upper (right) transition points at different values of the electric field
E; (MV/m): 1-0;2-2.5;3-5.

and decreases in the ferroelectric phase. The field E5 has an opposite effect [49]. An increase in
the field E5 increases the compliance s%; and all piezoelectric coefficients in the ferroelectric phase
and decreases them in the paraelectric phases. The field F3 has an opposite effect. The effect of

the fields E5 and Fs on the values of h14 and gy4 is very small.

The changes in the temperature curves of ¢y, sf, eas, das, has, and gos with increasing fi-
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Figure 11. The temperature dependence of inverse static permittivity (¢33)~" of a free crystal
near the lower (left) and upper (right) transition points at different values of the electric field
Es (Mv/m): 1—-0;2—-2.5; 3-5.
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Figure 12. Dependences of the jumps of inverse dielectric permittivity (¢3,)™" on the square of
the field F2 and of (¢33)™" on the square of the field Es near the lower (left) and upper (right)
transition points.

eld Fy are shown in figure 14, whereas the temperature curves of c&, s&, ess, dss, hae, g3s at
different values of Fo are given in figure 15. These characteristics with increasing field Fs are
shown in [49]. The elastic constants cfi(F2) and cL;(E3) slightly decrease with fields in the fer-
roelectric phase and are field independent in the paraelectric phase. Within the increasing fields
in the temperature curves of cf5(Es3) and cf;(Es>), the minima arise. The piezoelectric coeffici-
ents eo5(E2), es6(Es), dos(E2), dss(Es) are field independent in the paraelectric phases, whereas
hos(E2), hss(E3), g25(E2), gss(F3) are field independent at all temperatures. In all other cases,
an increasing field E5 or E3 increases the piezoelectric coefficients. In the temperature curves of
e25(Es), es6(E2), das(F3), dsg(E2), maxima arise at the transition temperatures, increasing with
the fields. Small maxima at the transition points are also induced in the temperature dependences
of hos(E3), has(E2), g25(E3), gse¢(E2). Finally, jumps of dos(F2) and dss(E3) are observed at the
transitions, with the jump values Adzg(Es3) being proportional to E5 and E2, respectively.

The farther is temperature from 7., and T2, the higher is the field E5 or F3 at which the
transition takes place, and the larger are the jumps Aegy(E2) and Aegs(Es3).
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Figure 13. The temperature dependences of c&j, s¥,, e14, dia, h1a, g1a at different values of the
field F> (kV/cm): 1 —0; 2 — 100; 3 — 200.
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Figure 14. The temperature dependences of ¢, s&s, eas, das, has, g2s at different values of the

electric field F> (kV/cm): 1 - 0; 2 — 100; 3 — 200.
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Figure 15. The temperature dependences of ¢y, s&, ess, das, has, gas at different values of the
electric field F> (kV/cm): 1 —0; 2 — 100; 3 — 200.

5. Concluding remarks

Within the framework of the four-sublattice pseudospin model [36] with piezoelectric coupling
with the shear strains ¢4, €5, €6 in the mean field approximation we find the thermodynamic po-
tential and Gibbs’ function of the system. Therefrom we derive expressions for spontaneous polar-
ization, components of the static dielectric permittivity tensors of mechanically free and clamped
crystals, piezoelectric characteristics, and elastic constants. The proposed model at the proper
choice of the theory parameters permits a good quantitative description of the available experi-
mental data for Rochelle salt [40-46,49]. In contrast to the analogous longitudinal characteristics
[27], the values of the transverse characteristics of Rochelle salt are much smaller and practically
do not change at the phase transitions.

A thorough investigation of the effect of the transverse field (F5 and E3) on the phase transitions
and on physical properties of Rochelle salt is performed for the fist time. With increasing Fo the
temperature range of the ferroelectric phase narrows and disappears at Eo > FE,. On the contrary,
the field F5 widens the ferroelectric phase. Dependences of the transition temperatures T.; and T,
on the fields F5 and E3 are quadratic. The spontaneous polarization Py and strain €4 decrease with
an increasing field Eo (which qualitatively agrees with the experimental results [47]) and increase
with the field Ej3.

With an increasing field Fa, the values of the inverse susceptibilities (x7;7)~! decrease in
the ferroelectric phase and increase in the paraelectric phases. With an increasing Ea, (x5 )"
decreases in the ferroelectric phase and is field independent in the paraelectric phase.

In the temperature curve (y53)~! there arise minima, gradually deepening with an increasing
E5. With an increasing E3, the values of (x33 ) ! increase in the ferroelectric phase and decrease
in the paraelectric phases.

In the temperature curves of (x5,)~! there also arise minima, deepening at an increasing Es.
In the paraelectric phase, (x53 )~' are independent of the field E3, and decrease with the field in
the ferroelectric phase. The values of the jumps of (¢5,)~! and (¢;) ! at the phase transitions are
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proportional to the squares of the fields. Analogous results were obtained in [48,50] in their studies
of the transverse electric field dependence of the transverse dielectric susceptibility of glycinium
phosphite.
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Bname nonepe4yHux eNneKTpU4HUX NoniB Ha AieneKTpuYHi,
n’e€30eneKTPUYHi, NPYXHi i TensoBi BIaCTUBOCTI CErHeToBoOI coni
NaKC,H,O; - 4H,0

PPJleBuupkuin!, 1.P3auek?, A.C.Boosuy'!, I.B.Ctaciok’

1 IHCTUTYT ®i3nkn koHaeHcoBaHux cuctem HAH Ykpainn Byn. CeeHuiubkoro, 1, Jibsis, 79011, YkpaiHa,
2 HaujoHanbHuin yHiBepcuTeT “JIbBiBCbKa nonitexHika”, syn. C. bangepu 12, 79013, JIbBiB, YkpaiHa

OTpumaHo 26 TpaeHsa 2009 p.

3anponoHoBaHO MoAMdIKOBaHY 4YOTMPUNIArPaTKOBY MOAEeNIb CErHETOBOI COMi LUISXOM BpaxyBaHHS Mm'e-
30€e/1EKTPUYHMX B3aEMOAIN 3i 3CYyBHUMU AedOopMaL MU £4, €5 | €. B HaBNMXXEHHI MONEKYNSIPHOrO Moss
OTPMMaHO KOMMOHEHTW BEKTOpA Nonsipu3aaLii Ta TeH30pa CTaTUYHOI AieNIeKTPUYHOI NPOHUKHOCTI Mexa-
HIYHO 3aTMCHYTOrO i BiNbHOIMO KPUCTaniB, iX ME30ENEKTPUYHI XapakTepUCTUKN | NPYXHi cTani. Bnepwe
NpoBeAEHO I'PYHTOBHE AOCNIAXKEHHS BNMBY NONepeyHnx noJsiie Ha Temnepatypu Gpas3oBnx nepexonis, ai-
€NEeKTPUYHI Ta NPYXHi BNACTUBOCTI CErHEeTOBOI CO.

Knio4oBi cnoBa: cerHeToenekTpyiku, CerHeToBa Cib, n'e30e1eKTpuYHi Moaysi

PACS: 77.84.-s, 64.60.Cn, 77.22.-d, 77.80.-e, 77.80.Bh, 77.65.Bn
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